46,973 research outputs found

    Layered Mobility Model Architecture - LEMMA

    Full text link
    This paper presents the generic layered architecture for mobility models (LEMMA), which can be used to construct a wide variety of mobility models, including the majority of models used in wireless network simulations. The fundamental components of the architecture are described and analyzed, in addition to its benefits. One of the core principles stipulates that each mobility model is divided in five distinct layers that communicate via interfaces. This allows their easy replacement and recombination, which we support by reviewing 19 layers that can form 480 different mobility models. Some of the advanced features provided by the architecture are also discussed, such as layer aggregation, and creation of hybrid and group mobility models. Finally, some of the numerous existing studies of the different layers are presented

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Autonomous Mobility and Energy Service Management in Future Smart Cities: An Overview

    Full text link
    With the rise of transportation electrification, autonomous driving and shared mobility in urban mobility systems, and increasing penetrations of distributed energy resources and autonomous demand-side management techniques in energy systems, tremendous opportunities, as well as challenges, are emerging in the forging of a sustainable and converged urban mobility and energy future. This paper is motivated by these disruptive transformations and gives an overview of managing autonomous mobility and energy services in future smart cities. First, we propose a three-layer architecture for the convergence of future mobility and energy systems. For each layer, we give a brief overview of the disruptive transformations that directly contribute to the rise of autonomous mobility-on-demand (AMoD) systems. Second, we propose the concept of autonomous flexibility-on-demand (AFoD), as an energy service platform built directly on existing infrastructures of AMoD systems. In the vision of AFoD, autonomous electric vehicles provide charging flexibilities as a service on demand in energy systems. Third, we analyze and compare AMoD and AFoD, and we identify four key decisions that, if appropriately coordinated, will create a synergy between AMoD and AFoD. Finally, we discuss key challenges towards the success of AMoD and AFoD in future smart cities and present some key research directions regarding the system-wide coordination between AMoD and AFoD.Comment: 19 pages, 4 figure

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Efficient Journey Planning and Congestion Prediction Through Deep Learning

    Get PDF
    The advancements of technology continuously rising over the years has seen many applications that are useful in providing users with sufficient information to make better journey plans on their own. However, commuters still find themselves going through congested routes every day to get to their destinations. This paper attempts to delineate the possibilities of improving urban mobility through big data processing and deep-learning models. Essentially, through a predictive model to predict congestion and its duration, this paper aims to develop and validate a functional journey planning mobile application that can predict traffic conditions, allowing road users to make better informed decisions to their travel plans. This paper proposes a Multi-Layered Perceptron (MLP) deep learning model for congestion prediction and supplements a Linear Regression (LR) model to predict its duration. The proposed MLP-LR model performed reasonably well with an accuracy of 63% in predicting an occurrence of congestion. Some critical discussions on further research opportunities stemming from this study is also presented

    Design and implementation of the node identity internetworking architecture

    Get PDF
    The Internet Protocol (IP) has been proven very flexible, being able to accommodate all kinds of link technologies and supporting a broad range of applications. The basic principles of the original Internet architecture include end-to-end addressing, global routeability and a single namespace of IP addresses that unintentionally serves both as locators and host identifiers. The commercial success and widespread use of the Internet have lead to new requirements, which include internetworking over business boundaries, mobility and multi-homing in an untrusted environment. Our approach to satisfy these new requirements is to introduce a new internetworking layer, the node identity layer. Such a layer runs on top of the different versions of IP, but could also run directly on top of other kinds of network technologies, such as MPLS and 2G/3G PDP contexts. This approach enables connectivity across different communication technologies, supports mobility, multi-homing, and security from ground up. This paper describes the Node Identity Architecture in detail and discusses the experiences from implementing and running a prototype
    • …
    corecore