51,287 research outputs found

    A novel multipath-transmission supported software defined wireless network architecture

    Get PDF
    The inflexible management and operation of today\u27s wireless access networks cannot meet the increasingly growing specific requirements, such as high mobility and throughput, service differentiation, and high-level programmability. In this paper, we put forward a novel multipath-transmission supported software-defined wireless network architecture (MP-SDWN), with the aim of achieving seamless handover, throughput enhancement, and flow-level wireless transmission control as well as programmable interfaces. In particular, this research addresses the following issues: 1) for high mobility and throughput, multi-connection virtual access point is proposed to enable multiple transmission paths simultaneously over a set of access points for users and 2) wireless flow transmission rules and programmable interfaces are implemented into mac80211 subsystem to enable service differentiation and flow-level wireless transmission control. Moreover, the efficiency and flexibility of MP-SDWN are demonstrated in the performance evaluations conducted on a 802.11 based-testbed, and the experimental results show that compared to regular WiFi, our proposed MP-SDWN architecture achieves seamless handover and multifold throughput improvement, and supports flow-level wireless transmission control for different applications

    Towards Autonomic Service Provisioning Systems

    Full text link
    This paper discusses our experience in building SPIRE, an autonomic system for service provision. The architecture consists of a set of hosted Web Services subject to QoS constraints, and a certain number of servers used to run session-based traffic. Customers pay for having their jobs run, but require in turn certain quality guarantees: there are different SLAs specifying charges for running jobs and penalties for failing to meet promised performance metrics. The system is driven by an utility function, aiming at optimizing the average earned revenue per unit time. Demand and performance statistics are collected, while traffic parameters are estimated in order to make dynamic decisions concerning server allocation and admission control. Different utility functions are introduced and a number of experiments aiming at testing their performance are discussed. Results show that revenues can be dramatically improved by imposing suitable conditions for accepting incoming traffic; the proposed system performs well under different traffic settings, and it successfully adapts to changes in the operating environment.Comment: 11 pages, 9 Figures, http://www.wipo.int/pctdb/en/wo.jsp?WO=201002636

    Long term in vitro expansion of epithelial stem cells enabled by pharmacological inhibition of PAK1-ROCK-Myosin II and TGF-β signaling

    Get PDF
    Summary: Despite substantial self-renewal capability in vivo, epithelial stem and progenitor cells located in various tissues expand for a few passages in vitro in feeder-free condition before they succumb to growth arrest. Here, we describe the EpiX method, which utilizes small molecules that inhibit PAK1-ROCK-Myosin II and TGF-β signaling to achieve over one trillion-fold expansion of human epithelial stem and progenitor cells from skin, airway, mammary, and prostate glands in the absence of feeder cells. Transcriptomic and epigenomic studies show that this condition helps epithelial cells to overcome stresses for continuous proliferation. EpiX-expanded basal epithelial cells differentiate into mature epithelial cells consistent with their tissue origins. Whole-genome sequencing reveals that the cells retain remarkable genome integrity after extensive in vitro expansion without acquiring tumorigenicity. EpiX technology provides a solution to exploit the potential of tissue-resident epithelial stem and progenitor cells for regenerative medicine. : Zhang et al. screen a small-molecule collection and find that pharmacologic inhibition of TGF-β and PAK1-ROCK-Myosin II, in low calcium conditions, supports extended expansion of epithelial stem cells in 2D format. This approach enhances the potential of tissue-resident epithelial stem cells for cell therapy. Keywords: epithelial stem and progenitor cells, cell culture method, TGF-β, PAK1/ROCK/Myosin II, feeder-free, regenerative medicine, cell therap

    Design and Experimental Validation of a Software-Defined Radio Access Network Testbed with Slicing Support

    Get PDF
    Network slicing is a fundamental feature of 5G systems to partition a single network into a number of segregated logical networks, each optimized for a particular type of service, or dedicated to a particular customer or application. The realization of network slicing is particularly challenging in the Radio Access Network (RAN) part, where multiple slices can be multiplexed over the same radio channel and Radio Resource Management (RRM) functions shall be used to split the cell radio resources and achieve the expected behaviour per slice. In this context, this paper describes the key design and implementation aspects of a Software-Defined RAN (SD-RAN) experimental testbed with slicing support. The testbed has been designed consistently with the slicing capabilities and related management framework established by 3GPP in Release 15. The testbed is used to demonstrate the provisioning of RAN slices (e.g. preparation, commissioning and activation phases) and the operation of the implemented RRM functionality for slice-aware admission control and scheduling
    corecore