1,552 research outputs found

    Pooling spaces associated with finite geometry

    Get PDF
    AbstractMotivated by the works of Ngo and Du [H. Ngo, D. Du, A survey on combinatorial group testing algorithms with applications to DNA library screening, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 55 (2000) 171–182], the notion of pooling spaces was introduced [T. Huang, C. Weng, Pooling spaces and non-adaptive pooling designs, Discrete Mathematics 282 (2004) 163–169] for a systematic way of constructing pooling designs; note that geometric lattices are among pooling spaces. This paper attempts to draw possible connections from finite geometry and distance regular graphs to pooling spaces: including the projective spaces, the affine spaces, the attenuated spaces, and a few families of geometric lattices associated with the orbits of subspaces under finite classical groups, and associated with d-bounded distance-regular graphs

    Non-coherence of arithmetic hyperbolic lattices

    Full text link
    We prove, under the assumption of the virtual fibration conjecture for arithmetic hyperbolic 3-manifolds, that all arithmetic lattices in O(n,1), n> 4, and different from 7, are non-coherent. We also establish noncoherence of uniform arithmetic lattices of the simplest type in SU(n,1), n> 1, and of uniform lattices in SU(2,1) which have infinite abelianization.Comment: 26 pages, 3 figure

    Ramanujan Complexes and bounded degree topological expanders

    Full text link
    Expander graphs have been a focus of attention in computer science in the last four decades. In recent years a high dimensional theory of expanders is emerging. There are several possible generalizations of the theory of expansion to simplicial complexes, among them stand out coboundary expansion and topological expanders. It is known that for every d there are unbounded degree simplicial complexes of dimension d with these properties. However, a major open problem, formulated by Gromov, is whether bounded degree high dimensional expanders, according to these definitions, exist for d >= 2. We present an explicit construction of bounded degree complexes of dimension d = 2 which are high dimensional expanders. More precisely, our main result says that the 2-skeletons of the 3-dimensional Ramanujan complexes are topological expanders. Assuming a conjecture of Serre on the congruence subgroup property, infinitely many of them are also coboundary expanders.Comment: To appear in FOCS 201
    • …
    corecore