We prove, under the assumption of the virtual fibration conjecture for
arithmetic hyperbolic 3-manifolds, that all arithmetic lattices in O(n,1), n>
4, and different from 7, are non-coherent. We also establish noncoherence of
uniform arithmetic lattices of the simplest type in SU(n,1), n> 1, and of
uniform lattices in SU(2,1) which have infinite abelianization.Comment: 26 pages, 3 figure