1,754 research outputs found

    Lattice-Based Blind Signatures, Revisited

    Get PDF
    We observe that all previously known lattice-based blind signature schemes contain subtle flaws in their security proofs (e.g., Rückert, ASIACRYPT \u2708) or can be attacked (e.g., BLAZE by Alkadri et al., FC \u2720). Motivated by this, we revisit the problem of constructing blind signatures from standard lattice assumptions. We propose a new three-round lattice-based blind signature scheme whose security can be proved, in the random oracle model, from the standard SIS assumption. Our starting point is a modified version of the (insecure) BLAZE scheme, which itself is based Lyubashevsky\u27s three-round identification scheme combined with a new aborting technique to reduce the correctness error. Our proof builds upon and extends the recent modular framework for blind signatures of Hauck, Kiltz, and Loss (EUROCRYPT \u2719). It also introduces several new techniques to overcome the additional challenges posed by the correctness error which is inherent to all lattice-based constructions. While our construction is mostly of theoretical interest, we believe it to be an important stepping stone for future works in this area

    How to avoid repetitions in lattice-based deniable zero-knowledge proofs

    Get PDF
    Interactive zero-knowledge systems are a very important cryptographic primitive, used in many applications, especially when deniability (also known as non-transferability) is desired. In the lattice-based setting, the currently most efficient interactive zero-knowledge systems employ the technique of rejection sampling, which implies that the interaction does not always finish correctly in the first execution; the whole interaction must be re-run until abort does not happen. While repetitions due to aborts are acceptable in theory, in some practical applications it is desirable to avoid re-runs for usability reasons. In this work we present a generic technique that departs from an interactive zero-knowledge system (that might require multiple re-runs to complete the protocol) and obtains a 3-moves zero-knowledge system (without re-runs). The transformation combines the well-known Fiat-Shamir technique with a couple of initially exchanged messages. The resulting 3-moves system enjoys honest-verifier zero-knowledge and can be easily turned into a fully deniable proof using standard techniques. We show some practical scenarios where our transformation can be beneficial and we also discuss the results of an implementation of our transformation.Preprin

    Contributions to Lattice–based Cryptography

    Get PDF
    Post–quantum cryptography (PQC) is a new and fast–growing part of Cryptography. It focuses on developing cryptographic algorithms and protocols that resist quantum adversaries (i.e., the adversaries who have access to quantum computers). To construct a new PQC primitive, a designer must use a mathematical problem intractable for the quantum adversary. Many intractability assumptions are being used in PQC. There seems to be a consensus in the research community that the most promising are intractable/hard problems in lattices. However, lattice–based cryptography still needs more research to make it more efficient and practical. The thesis contributes toward achieving either the novelty or the practicality of lattice– based cryptographic systems

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Random Oracles in a Quantum World

    Get PDF
    The interest in post-quantum cryptography - classical systems that remain secure in the presence of a quantum adversary - has generated elegant proposals for new cryptosystems. Some of these systems are set in the random oracle model and are proven secure relative to adversaries that have classical access to the random oracle. We argue that to prove post-quantum security one needs to prove security in the quantum-accessible random oracle model where the adversary can query the random oracle with quantum states. We begin by separating the classical and quantum-accessible random oracle models by presenting a scheme that is secure when the adversary is given classical access to the random oracle, but is insecure when the adversary can make quantum oracle queries. We then set out to develop generic conditions under which a classical random oracle proof implies security in the quantum-accessible random oracle model. We introduce the concept of a history-free reduction which is a category of classical random oracle reductions that basically determine oracle answers independently of the history of previous queries, and we prove that such reductions imply security in the quantum model. We then show that certain post-quantum proposals, including ones based on lattices, can be proven secure using history-free reductions and are therefore post-quantum secure. We conclude with a rich set of open problems in this area.Comment: 38 pages, v2: many substantial changes and extensions, merged with a related paper by Boneh and Zhandr

    Zero-Knowledge Password Policy Check from Lattices

    Get PDF
    Passwords are ubiquitous and most commonly used to authenticate users when logging into online services. Using high entropy passwords is critical to prevent unauthorized access and password policies emerged to enforce this requirement on passwords. However, with current methods of password storage, poor practices and server breaches have leaked many passwords to the public. To protect one's sensitive information in case of such events, passwords should be hidden from servers. Verifier-based password authenticated key exchange, proposed by Bellovin and Merrit (IEEE S\&P, 1992), allows authenticated secure channels to be established with a hash of a password (verifier). Unfortunately, this restricts password policies as passwords cannot be checked from their verifier. To address this issue, Kiefer and Manulis (ESORICS 2014) proposed zero-knowledge password policy check (ZKPPC). A ZKPPC protocol allows users to prove in zero knowledge that a hash of the user's password satisfies the password policy required by the server. Unfortunately, their proposal is not quantum resistant with the use of discrete logarithm-based cryptographic tools and there are currently no other viable alternatives. In this work, we construct the first post-quantum ZKPPC using lattice-based tools. To this end, we introduce a new randomised password hashing scheme for ASCII-based passwords and design an accompanying zero-knowledge protocol for policy compliance. Interestingly, our proposal does not follow the framework established by Kiefer and Manulis and offers an alternate construction without homomorphic commitments. Although our protocol is not ready to be used in practice, we think it is an important first step towards a quantum-resistant privacy-preserving password-based authentication and key exchange system

    Critical Perspectives on Provable Security: Fifteen Years of Another Look Papers

    Get PDF
    We give an overview of our critiques of “proofs” of security and a guide to our papers on the subject that have appeared over the past decade and a half. We also provide numerous additional examples and a few updates and errata

    Using models to model-check recursive schemes

    Get PDF
    We propose a model-based approach to the model checking problem for recursive schemes. Since simply typed lambda calculus with the fixpoint operator, lambda-Y-calculus, is equivalent to schemes, we propose the use of a model of lambda-Y-calculus to discriminate the terms that satisfy a given property. If a model is finite in every type, this gives a decision procedure. We provide a construction of such a model for every property expressed by automata with trivial acceptance conditions and divergence testing. Such properties pose already interesting challenges for model construction. Moreover, we argue that having models capturing some class of properties has several other virtues in addition to providing decidability of the model-checking problem. As an illustration, we show a very simple construction transforming a scheme to a scheme reflecting a property captured by a given model.Comment: Long version of a paper presented at TLCA 201
    corecore