
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong Thesis Collection
2017+ University of Wollongong Thesis Collections

2023

Contributions to Lattice–based Cryptography Contributions to Lattice–based Cryptography

Quoc Huy Le
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses1

University of Wollongong University of Wollongong

Copyright Warning Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University

does not authorise you to copy, communicate or otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court

may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong. represent the views of the University of Wollongong.

Recommended Citation Recommended Citation
Le, Quoc Huy, Contributions to Lattice–based Cryptography, Doctor of Philosophy thesis, School of
Computing and Information Technology, University of Wollongong, 2023. https://ro.uow.edu.au/theses1/
1544

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses1?utm_source=ro.uow.edu.au%2Ftheses1%2F1544&utm_medium=PDF&utm_campaign=PDFCoverPages

Contributions to Lattice–based Cryptography

Quoc Huy Le

This thesis is presented as part of the requirements for the conferral of the degree:

Doctor of Philosophy

Supervisor:
Distinguished Professor Willy Susilo

Co-supervisors:
Doctor Dung Hoang Duong & Professor Josef Pieprzyk

The University of Wollongong
School of Computing and Information Technology

February, 2023

This work© copyright by Quoc Huy Le, 2023. All Rights Reserved.

No part of this work may be reproduced, stored in a retrieval system, transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the
author or the University of Wollongong.

This research has been conducted with the support of a CSIRO Data61 Scholarship and CSIRO Data61 Top
up.

Declaration

I, Quoc Huy Le, declare that this thesis is submitted in partial fulfilment of the require-
ments for the conferral of the degree Doctor of Philosophy, from the University of Wol-
longong, is wholly my own work unless otherwise referenced or acknowledged. This
document has not been submitted for qualifications at any other academic institution.

Quoc Huy Le

February 2, 2023

Abstract

Post–quantum cryptography (PQC) is a new and fast–growing part of Cryptography.
It focuses on developing cryptographic algorithms and protocols that resist quantum ad-
versaries (i.e., the adversaries who have access to quantum computers). To construct a
new PQC primitive, a designer must use a mathematical problem intractable for the quan-
tum adversary. Many intractability assumptions are being used in PQC. There seems to
be a consensus in the research community that the most promising are intractable/hard
problems in lattices. However, lattice–based cryptography still needs more research to
make it more efficient and practical.

The thesis contributes toward achieving either the novelty or the practicality of lattice–
based cryptographic systems. In particular, we claim the following advancements.

• We construct a forward–secure blind signature scheme over lattices for the first
time.

• We develop a trapdoor delegation mechanism for polynomials. Then we use the
mechanism to construct the first hierarchical identity–based encryption that applies
the problem of degree–parameterised middle–product learning with errors.

• We introduce a cryptosystem called delegatable fully key–homomorphic encryption
(DFKHE). The cryptosystem is the basis for a generic construction of puncturable
encryption (PE). Moreover, we present a construction of DFKHE (hence, PE) from
lattices.

• We propose a cryptographic primitive called delegatable multiple inner product en-
cryption (DMIPE). We show a generic construction for spatial encryption (SE) from
DMIPE. Furthermore, we build DMIPE (hence, SE) from a hard lattice problem.
Our lattice SE construction has sizes that are smaller than those of SEs over lattices
published. The SE design follows a generic construction using the hierarchical in-
ner product encryption. In addition, we demonstrate a formal definition (i.e., syntax
and security notions) for the so–called allow–/deny–list encryption (ADE). Further,
we propose some transformations that map ADE versions to SE.

iv

Acknowledgements

Doing PhD is challenging but unforgettable to everyone and, of course, to me. However,
I was fortunate to be guided and supported by many people, including my supervisors,
family, and close friends.

First and foremost, my deep gratitude is for the principal supervisor, Distinguished
Professor Willy Susilo, for his kind guidance and support. Without his and the co–
supervisors’ strong support, I could not have had a great chance to study at the Uni-
versity of Wollongong (UOW). I am inspired by his excellent research outcome and his
extraordinary career. Also, he helped me a lot in my personal life. I am honoured to be a
Distinguished Professor Willy Susilo’s PhD student.

Sincerely thank my respectable co–supervisor, Professor Josef Pieprzyk from CSIRO
Data61. His wholehearted support and guidance brought me an excellent motivation to
do my PhD. Unfortunately, due to the Covid–19 pandemic, I did not have many chances
to see him physically. That is indeed a pity in my PhD time. Being a PhD student of
Professor Josef is also a special honour.

Nothing can best express my appreciation to Dr Dung Hoang Duong, my other co-
supervisor, for his supervision and support. In particular, Dr Dung organised some sum-
mer schools on Cryptography in 2015–2016, where and when I had a chance to partici-
pate. After that, with his and other supervisors’ priceless help, I was fortunately awarded
a reputable CSIRO Data61 Scholarship to join UOW as a PhD candidate. So I truly owe
him a debt of gratitude.

Also, I gratefully acknowledge my co–authors for their helpful discussion and excel-
lent collaboration. Additionally, I thank everyone at the Institute of Cybersecurity and
Cryptology (IC2) and Room 6.214 in Building 6 for everything they shared with me.

I want to thank CSIRO Data61 for the scholarships they awarded me, giving me the
tremendous financial support in making my PhD dream come true. I am indebted to all
staff of UOW and CSIRO Data61, especially of the School of Computing and Information
Technology, for their paper works and their lovely assistance during my PhD study.

I will not forget the valuable time that I had with friends – Thanh Khuc, Anh Ta,
Yen Tran, Khanh Nguyen, Tuong Nguyen, Hieu Phan, Phong Nguyen, Truc Pham, Trang
Le, Linh Nguyen, Long Le, Huy Tran and Priyanka Dutta. They refreshed me with their

v

active youth.
I also send the honest acknowledgement to all of my friends and students, including

ex–colleagues in the Ernst Thälmann High School, Van Huong Nguyen, Huong Le, Hong
Thai Pham, and Ha Tran – my undergraduate friends – for their kind encouragement.

Last but not least, my parents and siblings have always been beside me on my PhD
journey with their great love. I also love them so much! In especially, I want to give my
greatest love to my wife – Tuyet Chu – who has been going with me on the long way of
my PhD study with true love.

What I have done in my PhD would not be possible without their all support. Once
again, thank you all very much!

vi

List of Abbreviations

In this part, we include some abbreviations frequently used throughout the thesis.

Table 1: List of Abbreviations.

ABE Attribute–based Encryption
ADE Allow–/Deny–list Encryption
ATK Attack
BFE Bloom Filter Encryption
BS Blind Signature
CCA Chosen Ciphertext Attack
CMA Chosen Message Attack
CPA Chosen Plaintext Attack
DFPE Dual–form Puncturable Encryption
DFKHE Delegatable Fully Key–homomorphic Encryption
DLWE Decisional Learning with Errors
DMIPE Delegatable Multiple Inner Product Encryption
DMPLWE Degree–parameterised Middle–product Learning with Errors
DPT Deterministic Polynomial Time
DS Digital Signature
FHE Fully Homomorphic Encryption
FKHE Fully Key–homomorphic Encryption
FSBS Forward–secure Blind Signature
FSE Forward–secure Encryption
FSUF Forward–secure Unforgeability
FuPE Fully Puncturable Encryption
GSO Gram–Schmidt Orthogonalisation
HIBE Hierarchical Identity–based Encryption
HIPE Hierarchical Inner Product Encryption
IBBE Identity–based Broadcast Encryption

to be continued...

vii

List of Abbreviations

... continued from previous page

IBE Identity–based Encryption
IPE Inner Product Encryption
IND Indistinguishability
INDr Indistinguishability from Randomness
KEM Key Encapsulation Mechanism
KH–IRKEM Key–homomorphic Identity–based Revocable KEM
LWE Learning with Errors
MLWE Module Learning with Errors
MPLWE Middle–product Learning with Errors
MSIS Module Short Integer Solution
OMUF One–more Unforgeability
OTS One–time Signature
PAY Payload–hiding
PE Puncturable Encryption
PIBE Puncturable Identity–Based Encryption
PLWE Polynomial Learning with Errors
PKE Public–key Encryption
PQC Post–quantum Cryptography
PrE Predicate Encryption
PPT Probabilistic Polynomial Time
QROM Quantum Random Oracle Model
RLWE Ring Learning with Errors
ROM Random Oracle Model
RSIS Ring Short Integer Solution
sATT Selective Attribute
SDM Standard Model
SE Spatial Encryption
sID Selective Identity
SIS Short Integer Solution
SIVP Shortest Independent Vectors Problem
sPUN Selective Puncture
sVAR Selective Variable
SVP Shortest Vector Problem
W2A Worst–case to Average–case
WI Witness Indistinguishability

viii

Contents

Abstract iv

Acknowledgements v

List of Abbreviations vii

List of Figures xiii

List of Tables xv

List of Publications xvi

1 Introduction 1
1.1 Lattice–based Cryptography . 2
1.2 Contributions and Organisation . 6

1.2.1 Contributions . 6
1.2.2 Organisation of the Thesis . 18

2 Preliminaries 20
2.1 Notation . 20
2.2 Background of Lattices . 24

2.2.1 Lattices . 25
2.2.2 Lattice Worst–case Problems . 27

2.3 Gaussian Distributions over Lattices . 27
2.4 Hardness Assumptions . 30

2.4.1 Learning with Errors Problem 30
2.4.2 Degree–parameterised Middle–product Learning with Errors . . . 31
2.4.3 Shortest Integer Solution Problem 32

2.5 Fundamental Tools . 32
2.5.1 Randomness Extraction . 33
2.5.2 The Gadget Matrix . 33
2.5.3 Lattice Trapdoors . 34
2.5.4 Lattice Homomorphic Evaluations 40

ix

Contents

2.6 Security Proof Models . 41
2.7 Cryptographic Primitives . 42

2.7.1 Digital Signature . 42
2.7.2 Blind Signature . 43
2.7.3 Public–key Encryption . 47
2.7.4 Hierarchical Identity–based Encryption 50
2.7.5 Puncturable Encryption . 53
2.7.6 Spatial Encryption . 54

2.8 Summary . 58

3 Forward–secure Blind Signatures over Lattices 59
3.1 Overview . 59
3.2 Related Background . 63

3.2.1 Rejection Sampling . 63
3.2.2 Hash Functions . 64
3.2.3 Rewinding, Oracle Replay Attack and Forking Lemma 65
3.2.4 Witness Indistinguishability . 67
3.2.5 Fiat–Shamir with Aborts . 68
3.2.6 Commitment Functions . 68

3.3 Binary Tree Structure for Times . 69
3.4 The FSBS Construction . 72

3.4.1 The Construction . 73
3.4.2 Correctness . 75
3.4.3 Security Analysis . 77
3.4.4 Setting Parameters . 84

3.5 Discussion on the Validity of the Proof of Theorem 3.4.3 85
3.6 Summary . 86

4 Hierarchical IBE from Degree–parameterised Middle–product LWE 88
4.1 Overview . 88
4.2 Main Technique: Delegation for LVV19 Trapdoor 91
4.3 DMPLWE–based HIBE in Standard Model 99

4.3.1 The Construction . 99
4.3.2 Correctness . 102
4.3.3 Security Analysis . 103
4.3.4 Setting Parameters . 107

4.4 Summary . 108

5 Puncturable Encryptions over Lattices 110
5.1 Overview . 110

x

Contents

5.2 Delegatable Fully Key–homomorphic Encryption 113
5.2.1 Syntax . 114
5.2.2 Correctness . 115
5.2.3 Security Notions . 115

5.3 Generic PE Construction from DFKHE 116
5.3.1 The Generic Construction . 117
5.3.2 Correctness . 118
5.3.3 Security . 118

5.4 DFKHE Construction over Lattices . 119
5.4.1 The Construction . 119
5.4.2 Correctness . 123
5.4.3 Security Analysis . 125
5.4.4 Setting Parameters . 129

5.5 Lattice–based PE Construction from DFKHE 129
5.6 Summary . 131

6 Spatial Encryption over Lattices and More 132
6.1 Overview . 132
6.2 Delegatable Multiple Inner Product Encryption 136

6.2.1 Syntax . 137
6.2.2 Correctness . 138
6.2.3 Security Notions . 138

6.3 Generic SE Construction from DMIPE 139
6.3.1 Selected Facts . 139
6.3.2 The Generic Construction . 140
6.3.3 Correctness . 141
6.3.4 Security Analysis . 141

6.4 DMIPE Construction over Lattices . 142
6.4.1 Modified Lattice Trapdoors . 143
6.4.2 Lattice Homomorphic Evaluations for Inner Product Functions . . 143
6.4.3 The Construction . 145
6.4.4 Correctness . 147
6.4.5 Security Analysis . 147
6.4.6 Setting Parameters . 151

6.5 Constructing DMIPE from SE . 152
6.6 Allow–/Deny–list Encryption from Spatial Encryption 152

6.6.1 Framework of ADE . 153
6.6.2 Transforming sADE and iADE to SE 156

xi

Contents

6.7 Summary . 157

7 Conclusion and Future Work 159
7.1 Summary of the Thesis . 159
7.2 Future Work . 160

Bibliography 162

xii

List of Figures

1.1 Development timeline of lattice–based cryptography. 5
1.2 Overview of contributions. 6

2.1 An example of security game presentation. 22
2.2 A lattice of dimension 2 with basis {b1,b2}. 25
2.3 Existential unforgeability game for DS. 43
2.4 Blindness game for BS. 44
2.5 One–more unforgeability game for blind signature. 45
2.6 Blindness game for FSBS. 46
2.7 Forward–secure unforgeability game for FSBS. 48
2.8 Security game for PKE. 49
2.9 Security game for HIBE. 52
2.10 Security game for PE. 55
2.11 Security game for SE. 56

3.1 Illustration of forward security. 60
3.2 Signing algorithm in the SIS–friendly BS scheme. 61
3.3 The roadmap of this chapter. 62
3.4 Rejection sampling. 64
3.5 The forking algorithm FA. 67
3.6 Fiat–Shamir with aborts. 69
3.7 Binary tree for 8 time points (of depth ` = 3). 70
3.8 Binary tree of matrices. 71
3.9 Signing algorithm FSBS.Sign(pp,pk,skt, t,µ). 76

4.1 Overview of our work in comparison with [LVV19]. 89
4.2 The roadmap of this chapter. 91
4.3 Flow of algorithms in our LVV19 trapdoor delegation. 92

5.1 Pictorial description of DFKHE in comparison with FKHE. 112
5.2 The roadmap of this chapter. 113

xiii

List of Figures

5.3 Security game for DFKHE. 116
5.4 Reduction from DFKHE to PE. 118

6.1 The relation of SE and other primitives. 135
6.2 The roadmap of this chapter. 137
6.3 Security game for DMIPE. 139
6.4 Reduction from DMIPE to SE. 141
6.5 Security game for ADE versions. 155

xiv

List of Tables

1 List of Abbreviations. vii

1.1 Summary of BS constructions in the literature. 9
1.2 Lattice trapdoors and IBE, HIBE constructions over lattices. 11
1.3 The existing PE constructions in the literature in comparison with our PE. 12
1.4 (Doubly) SE constructions in the literature. 15
1.5 Comparison of IPE variants . 17

3.1 System parameters in our lattice–based FSBS construction. 72

4.1 A description and comparison of Base Case, Middle Case and More Gen-
eral Case. 91

4.2 System parameters in our DMPLWE–based HIBE construction. 100

5.1 System parameters in our lattice–based DFKHE construction. 120
5.2 Sizes in our lattice–based DFKHE. 121

6.1 Comparison of our lattice–based d–dimensional SE with other SEs based
on lattices. 135

6.2 System parameters in our lattice–based DMIPE construction. 145

xv

List of Publications

The thesis includes the following papers.

1. [LDSP22b] Huy Quoc Le, Dung Hoang Duong, Willy Susilo, Josef Pieprzyk. Spa-

tial Encryption Revisited: from Delegatable Multiple Inner Product Encryption and

More. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds) Computer Secu-
rity – ESORICS 2022. ESORICS 2022. Lecture Notes in Computer Science, vol
13554. Springer, Cham. https://doi.org/10.1007/978-3-031-17140-6 14.

2. [SDLP20] Willy Susilo, Dung Hoang Duong, Huy Quoc Le, Josef Pieprzyk. Punc-

turable Encryption: A Generic Construction from Delegatable Fully Key– Homo-

morphic Encryption. In: Chen L., Li N., Liang K., Schneider S. (eds) Computer Se-
curity – ESORICS 2020. Lecture Notes in Computer Science, vol 12309. Springer,
Cham. https://doi.org/10.1007/978-3-030-59013-0 6.

3. [LDS+20] Huy Quoc Le, Dung Hoang Duong, Willy Susilo, Ha Thanh Nguyen
Tran, Cuong Viet Trinh, Thomas Plantard, Josef Pieprzyk. Lattice Blind Signatures

with Forward Security. In: Liu J., Cui H. (eds) Information Security and Privacy–
ACISP 2020. Lecture Notes in Computer Science, vol 12248. Springer, Cham.
https://doi.org/10.1007/978-3-030-55304-3 1.

4. [LDSP20] Huy Quoc Le, Dung Hoang Duong, Willy Susilo, Josef Pieprzyk. Trap-

door Delegation and HIBE from Middle-Product LWE in Standard Model. In: Conti
M., Zhou J., Casalicchio E., Spognardi A. (eds) Applied Cryptography and Network
Security– ACNS 2020. Lecture Notes in Computer Science, vol 12146. Springer,
Cham. https://doi.org/10.1007/978-3-030-57808-4 7.

Other publications not included in the thesis are:

1. [LVD+21] Huy Quoc Le, Bay Vo, Dung Hoang Duong, Willy Susilo, Ngoc Thuy
Le, Kazuhide Fukushima, Shinsaku Kiyomoto (2021). Identity-based Linkable

Ring Signatures from Lattices. IEEE Access, vol. 9, pp. 84739-84755, 2021.
https://doi.org/10.1109/ACCESS.2021.3087808.

xvi

https://doi.org/10.1007/978-3-031-17140-6_14
https://doi.org/10.1007/978-3-030-59013-0_6
https://doi.org/10.1007/978-3-030-55304-3_1
https://doi.org/10.1007/978-3-030-57808-4_7
https://doi.org/10.1109/ACCESS.2021.3087808

List of Tables

2. [LDR+21] Huy Quoc Le, Dung Hoang Duong, Partha S Roy, Willy Susilo, Kazuhide
Fukushima, Shinsaku Kiyomoto (2021). Lattice-based signcryption with equality

test in standard model. Computer Standards & Interfaces 76, 103515, ISSN 0920-
5489. https://doi.org/10.1016/j.csi.2021.103515.

3. [SDL20] Willy Susilo, Dung Hoang Duong, Huy Quoc Le. Efficient Post-quantum

Identity-based Encryption with Equality Test. 2020 IEEE 26th International Con-
ference on Parallel and Distributed Systems (ICPADS), 2020, pp. 633-640.
https://doi.org/10.1109/ICPADS51040.2020.00088.

4. [LSK+19] Huy Quoc Le, Willy Susilo, Thanh Xuan Khuc, Minh Kim Bui, Dung
Hoang Duong (2019). A Blind Signature From Module Lattices. 2019 IEEE Con-
ference on Dependable and Secure Computing (DSC), Hangzhou, China, 2019, pp.
1-8. https://doi.org/10.1109/DSC47296.2019.8937613.

xvii

https://doi.org/10.1016/j.csi.2021.103515
https://doi.org/10.1109/ICPADS51040.2020.00088
https://doi.org/10.1109/DSC47296.2019.8937613

Chapter 1

Introduction

The world today has seen an explosion of the Internet of Things (IoT) and proliferation of
its applications. IoT can collect, transmit, process, and analyse real–time data. This sit-
uation naturally raises concerns regarding the users’ privacy, integrity and confidentiality
of data. Cryptographic algorithms (e.g., hashing, digital signatures, encryption) provide a
rich collection of tools for data and information protection.

One of the most incredible technological discoveries in the 21st century is the inven-
tion of quantum computers. The technology behind quantum computing exploits laws of
quantum mechanics that allow much faster calculations than what is possible for classical
computers. Unfortunately, quantum computing is a double–sword tool. On the positive
side, it has the potential to deliver an unprecedentedly high computing power. On the neg-
ative one, quantum computing in the hands of an adversary is a threat, which is difficult to
overestimate. Remarkably, Shor, in his paper [Sho02], has shown that cryptographic al-
gorithms based on the intractability of integer factorisation and discrete logarithm (hence
the current standard cryptographic techniques) are completely insecure against quantum
adversaries.

The rapid development of quantum technology a and the insecurity of commonly used
cryptographic technologies against quantum threats (e.g., see the report [SCJ+16, Table
1] for a summary) motivate the research community to find new hardness assumptions in-
tractable against quantum attackers. Besides, NIST [NIS16] has acknowledged a need to
face the security challenge and announced in 2016 a standardisation for PQC algorithms.
The standardisation has initiated a large–scale effort to select the best candidates for the
post–quantum secure standards. It has attracted eighty two (82) submissions and has gone
through three rounds with seven final candidates and eight alternatives. At the time of the

aThe readers are referred to the link https://newsroom.ibm.com/2021-11-16-IBM-Unveils-
Breakthrough-127-Qubit-Quantum-Processor for the breakthrough 127–qubit quantum processor built by
IBM, accessed on 2 May 2022.

1

https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor
https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor

1.1. Lattice–based Cryptography

thesis writing, NIST announced the finalists. The finalists include CRYSTALS–Kyber b,
CRYSTALS–Dilithium c, Falcon d and SPHINCS+ e. Note that 75% of them are lattice–
based f.

1.1 Lattice–based Cryptography

There is an overwhelming belief in the research community that intractable problems in
lattices are the most promising tools for designing PQC algorithms. Intuitively, a lattice
looks like a regular grid in space. Mathematically, a lattice comprises all linear combi-
nations, with integral coefficients, of basis vectors. The dimension of a lattice is that of
its basis. A lattice has invariant quantities called successive minima. Namely, the i–th
successive minimum of an n–dimensional lattice is the smallest positive real number λi

such that the n–dimensional ball centred at the origin (i.e., zero vector) having radius λi

contains i linearly independent lattice vectors. Note that a lattice of dimension n has n

successive minima.
In this section, we will sketch a brief history of lattices and the cryptography based

on them. We refer readers to [Pei16] for an excellent survey on lattices and the related
research directions. The history of lattices is dated back to the 18th century when lat-
tices were treated as nice abstract objects with no practical significance. At that time,
lattices were intensively investigated by great mathematicians such as Gauss, Lagrange,
and Minkowski, to name a few. In particular, Gauss and Lagrange used lattices to give
proof of some well–known theorems, e.g., the quadratic reciprocity and the four–square
in Number Theory. Later, in the early 1910s, Minkowski studied lattices as the theory
of “geometry of numbers”. Minkowski’s first theorem and second theorem are famous
results in the lattice theory g.

Since the early 1980s, lattices have found new applications, especially with the dis-
covery of the famous LLL algorithm, named after Lenstra, Lenstra, and Lovász [LLL82].
The LLL algorithm is used to transform a lattice basis into a new one that is more or-
thogonal and shorter. It, therefore, is a versatile tool in Mathematics. For instance, using
LLL, one can factor integer polynomials [LLL82], solve integer programming problems
[Len83], and find integer solutions to many problems [Sim10]. Also, one can use LLL in
cryptanalysis, e.g., to break a variant of the well–known RSA algorithm [Cop97].

The groundbreaking result of Ajtai [Ajt96] has noticed the computational aspects of

bSee https://pq-crystals.org/kyber/index.shtml.
cSee https://pq-crystals.org/dilithium/index.shtml.
dSee https://falcon-sign.info.
eSee https://sphincs.org.
fSee https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4.
gSee, .e.g., https://web.eecs.umich.edu/ cpeikert/lic15/lec01.pdf

2

https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/dilithium/index.shtml
https://falcon-sign.info
https://sphincs.org
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://web.eecs.umich.edu/~cpeikert/lic15/lec01.pdf

1.1. Lattice–based Cryptography

lattices. The author introduced a preliminary variant of the average–case problem, which
was then called the short integer solution (SIS) later in [MR04]. Informally, the SIS
problem requires finding a short integer (vector) solution to a system of random modular
equations. Ajtai [Ajt96] also provided a reduction from worst–case problems in lattices
to SIS. Two of worst–case problems are the approximate shortest independent vectors
problem (γ–SIVP) and the approximate shortest vector problem (γ–SVP). Here γ–SIVP
asks, given a n–dimensional lattice, to find a list of linearly independent lattice vectors
whose length is at most γ ·λn. And γ–SVP requires to search for a lattice vector of length
γ ·λ1. Based on the worst–case lattice problems, Ajtai [Ajt96] presented a cryptographic
one–way function. It is no exaggeration to say that the work [Ajt96] has laid the founda-
tion of lattice–based cryptography – a branch of cryptography that focuses on building
cryptosystems on worst–case lattice problems. Early results in lattice–based cryptog-
raphy include: the cryptographic one–way function mentioned above; the first public–
key encryption by Ajtai and Dwork [AD97]; the NTRU (now known as NTRUEncrypt)
[HPS98]; the GGH Encryption and the GGH Signature [GGH97].

In the early 2000s, many works (e.g., [Mic01, Mic07, Reg03, MR04]) have devel-
oped theoretical aspects of the lattice–based cryptography and have greatly improved its
efficiency. For example, inspired by the NTRU work on polynomial rings, Micciancio
[Mic07] has introduced the polynomial ring variant of SIS (RSIS). The work [Mic07] has
also proposed a ring version of the aforementioned one–way function. Regev [Reg03]
has introduced Gaussian measures and harmonic analysis, which has resulted in several
improvements to the results of [AD97]. Micciancio and Regev [MR04] have investigated
the worst–case to average–case (W2A) reduction. At the heart of [MR04] are Gaussian
measures.

In 2005, Regev [Reg05] significantly advanced the theory and applications of lattice–
based cryptography. He has introduced the average–case learning with errors (LWE)
problem. LWE generalises the learning parities with noise in Coding Theory. LWE
can be considered as a dual variant of SIS. LWE has two main versions: search and
decisional. Both versions enjoy the hardness equivalence through an elementary classical
reduction. Informally, the decisional LWE (for 1 sample) is to decide whether a pair (a,c)
is random over Zn

q ×Zq or (a,c = 〈a,s〉+ e (modq)), where n is a positive integer, q is
a prime, a is a public random vector in Zn

q, s is a secret vector in Zn
q, and e is a small

error sampled from some distribution, e.g., a Gaussian distribution. Regev [Reg05] has
provided a quantum reduction for LWE. The reduction says that one can transform any
(classical, quantum) algorithm for LWE into a quantum algorithm for the (worst–case)
lattice problems γ–GapSVP and γ–SIVP. Here, the γ–GapSVP problem is a decisional
variant of γ–SVP mentioned above. The γ–GapSVP problem is to decide whether λ1(Λ)≤
d or λ1(Λ) > γ · d for some d > 0. Also, it is worth noting that several follow–ups, e.g.,

3

1.1. Lattice–based Cryptography

[Pei09, LM09, BLP+13] have improved the quantum reduction to a classical one for γ–
GapSVP only (but not for γ–SIVP). Regev [Reg05] has also given the first public–key
encryption (PKE) scheme from lattices. The PKE scheme is provably semantic secure,
relying on LWE.

To address the efficiency of lattice–based cryptosystems, some follow–up works re-
garding algebraic structured LWE/SIS variants have been introduced. In 2010, Lyuba-
shevsky, Peikert and Regev formulated the notion of ring–based LWE (RLWE) together
with worst–case hardness guarantees over ideal lattices [LPR10]. They also provided
an essential toolkit for RLWE cryptography [LPR13]. In another work, Stehlé et al.

[SSTX09] have considered the so–called polynomial LWE (PLWE), a special case of
RLWE. Brakerski, Gentry, and Vaikuntanathan [BGV12] have generalised LWE and ring–
LWE to a bigger class called module LWE (MLWE). Langlois and Stehlé [LS15] also
have generalised SIS and RSIS to module SIS (MSIS). Both MLWE and MSIS enjoy
a W2A reduction, as shown in [LS15]. More recently, in 2017, a new variant of PLWE,
called middle–product LWE problem (MPLWE), was proposed by Ros, ca, et al. [RSSS17].
Ros, ca et al. [RSSS17] have shown that the hardness of MPLWE can be reduced to that
of PLWE.

Upon the standard/ring/module versions of LWE/SIS, besides those mentioned above,
numerous more advanced cryptographic constructions over lattices have been proposed.
Well–known examples include a multi–bit amortised version of Regev’s lattice–based
cryptosystem by Peikert et al. [PVW08], digital signatures by Lyubashevsky [Lyu09,
Lyu12], dual Regev encryption by Gentry et al. [GPV08], fully homomorphic encryption
(FHE) by Gentry [Gen09], and so forth. Recall that FHE is a kind of encryption that al-
lows performing computations directly on encrypted data. The result of the computations
is still in encrypted form. The output of decrypting the result shall be the same as that of
doing the computation directly on the unencrypted data.

With the advent of strong tools like lattice trapdoors [GPV08, MP12], one can realise
many more powerful advanced cryptographic constructions. Some constructions enjoy
security in the random oracle model (ROM), such as an identity–based encryption (IBE)
and a hash–and–sign signature scheme in [GPV08]. Whilst others are provably secure in
the standard model (SDM) such as (hierarchical) identity–based encryptions ((H)IBEs)
[CHKP10, ABB10, MP12], digital signatures [Boy10, MP12, DM14, AS15]. We also
note that [LVV19] has introduced a new trapdoor for MPLWE, which enables us to build
IBE from MPLWE. Recall that in the random oracle model, one or more pseudorandom
functions (i.e., those whose output’s distribution looks random but not truly random, such
as cryptographic hash functions) are considered truly random ones. Thus, any queries
to the function(s) will be answered with a value randomly chosen from the function(s)’
domain. However, in the standard model, any functions should be treated as their nature.

4

1.1. Lattice–based Cryptography

Therefore, the standard model is also called “the model without random oracles”.
The development of lattice–based cryptography has also been accelerated by tech-

niques developed from FHE such as key–switching (i.e., dimension reduction) [BV11b,
BV11a], modulus switching [BV11a, BGV12] and a mechanism called lattice homomor-

phic evaluations [BGG+14]. In particular, the lattice homomorphic evaluations were in-
spired from the Gentry–Sahai–Walters FHE work [GSW13a]. The lattice homomorphic
evaluations have realised many advanced cryptosystems, e.g., attribute–based encryption
(ABE) [BGG+14, BV16], predicate encryption for circuits [GVW15], pseudo–random
functions [BTVW17], fully secure ABE [Tsa19], adaptively secure inner product encryp-
tion [KNYY20] and many more.

We summarise some milestones in the development of lattice–based cryptography in
Figure 1.1. Each milestone includes the author(s), the corresponding paper, the publishing
year (in red colour texts), the main contribution(s)/the breakthrough(s) (in black or blue
colour texts) and the concrete lattice–based constructions (in boldface texts).

Lagrange, Gauss,
Minkowski, Hermite

18th – early 20th centuries
Mathematical aspects

Lenstra et al.
[LLL82]

1982
LLL Algorithm

Ajtai [Ajt96]
1996
SIS

Random lattices
with short

vectors
(One–way
function)

Goldreich
et al.

[GGH97]
1997

(PKE, DS)

Micciancio
& Regev
[MR04]

2004
Classical
reduction

of SIS
from γ–SIVP

and γ–GapSVP

Regev
[Reg05]

2005
LWE

Quantum
reduction
of LWE

from γ–SIVP

Gentry et al.
[GPV08]

2008
Lattce

trapdoor
(Dual Regev

PKE,
IBE in SDM,
DS in ROM)

Gentry
[Gen09]

2009
Ideal lattices

(FHE)

Stehlé et al.
[SSTX09]

2009
PLWE

Cash et al.
[CHKP10],

Agrawal et al.
[ABB10]

2010
Trapdoor
delegation

(IBE, HIBE
in SDM)

Lyubashevsky
et al.

[LPR10]
2010

RLWE

Micciancio
& Peikert
[MP12]

2012
New lattice

trapdoor
(CCA PKE, DS)

Brakerski et al.
[BLP+13]

2013
Classical
reduction
of LWE

from γ–GapSVP

Boneh et al.
[BGG+14]

2014
Lattice

homomorphic
evaluations

(ABE)

Langlois
& Stehlé
[LS15]
2015

MLWE, MSIS
(Module lattices)

Ros, ca et al.
[RSSS17]

2017
MPLWE
(PKE)

Lombardi et al.
[LVV19]

2019
Trapdoor

for polynomials,
DMPLWE

(IBE)

present
(Many advanced
cryptosystems)

Cryptographic aspects

· · ·

Figure 1.1: Development timeline of lattice–based cryptography.

Lattice–based cryptography is still developing and draws its inspiration from various

5

1.2. Contributions and Organisation

pure mathematics areas. The remarkable development of lattice–based cryptography is
due to its advantages, as indicated in Peikert’s survey [Pei16].

1.2 Contributions and Organisation

1.2.1 Contributions

This thesis is generally motivated by the following:

1. Many concepts of advanced cryptosystems applicable in real–life applications have
not been constructed in the lattice setting.

2. Some lattice–based advanced cryptosystems need improvement for better efficiency.

Figure 1.2: Overview of contributions.

This thesis builds theoretical constructions of advanced cryptosystems which are ei-
ther unavailable in the literature or existing ones that need to be improved even in heuristic
parameters. In addition, the thesis provides evidence that by using powerful tools/tech-
niques, such as trapdoors and homomorphic evaluations based on lattices, one can actually
construct many high–functional cryptographic systems. This contributes to the literature

6

1.2. Contributions and Organisation

of lattice–based cryptography and further demonstrates the potential of lattices in design-
ing cryptographic protocols of different functionalities.

However, we stress that at the current stage, the contributions in this thesis are mainly
on the theoretical aspects, and they should remain abstract constructions without propos-
ing concrete parameters for practical usage or performance comparison with other works
and without implementations. This is due to the following reasons:

(i) Some of the cryptosystems introduced in this thesis are the first ones of their types
based on lattice problems, e.g., the lattice–based forward–secure blind signature
given in Chapter 3 and the hierarchical identity–based encryption based on the
degree–parameterised middle–product learning with errors problem presented in
Chapter 4. Therefore, there are no other existing lattice–based constructions of the
same functionalities for comparison. One may ask to compare our constructions
with their counterparts based on other hardness assumptions. However, such com-
parisons are unfair because they rely on different design rationales.

(ii) Although some of the proposals in my thesis have lattice–based counterparts, they
either (a) are implicit constructions induced from the corresponding generic frame-
works (e.g., the puncturable encryption in Chapter 5) or (b) have no available im-
plementations and concrete parameters (e.g., the spatial encryption in Chapter 6).
In case (a), we compare the asymptotic performance of our puncturable encryption
with the others, as in Table 1.3. In case (b), we compare the asymptotic performance
of our spatial encryption with others, as in Table 1.4 and Table 6.1.

(iii) Proposing concrete parameters and implementing lattice–based cryptosystems are
essential and complex research problems in their own right and are beyond the
scope of my thesis. Indeed, these problems are interesting and vital but require
intensive engineering investigations. Specifically, the former work needs system-
atic research on potential attacks (that can affect the underlying lattice problems)
and parameter selection procedures for technical tools such as lattice trapdoors and
homomorphic evaluations. The algorithms of lattice trapdoors and homomorphic
evaluations involve many parameters in a heuristic manner, making heavy use of
the Bachmann–Landau asymptotic notations O(·), Õ(·), ω(·), Ω(·), Θ(·). These
asymptotic complexity notations hide constants which affect the choices of specific
parameters. Therefore, to specify conditions related to parameters, one may need
intensive theoretical research and experiments. Consequently, the possible options
for parameters in our constructions are theoretically guaranteed in an asymptotic
sense, but their concrete values are elusive at the moment. The latter work (i.e.,
implementing cryptosystems) also needs considerable engineering skills for pro-
gramming and optimising our proposed algorithms’ running time and sizes. To the

7

1.2. Contributions and Organisation

best of our knowledge, none of the existing cryptosystems related to the topics of
my thesis, in particular, ones that deploy lattice trapdoors and homomorphic evalu-
ations in the literature, gives any practical implementation and concrete parameters
(see, e.g., ones in [GPV08, ABB10, CHKP10, BGG+14, LVV19] etc.). Therefore,
we leave the problem of investigating concrete parameters and practical implemen-
tations for future works. See Chapter 7 for further detail.

Specifically, the thesis focuses on selected advanced cryptosystems, namely, forward–
secure blind signature, hierarchical identity–based encryption, puncturable encryption
and spatial encryption. We categorise the contributions according to types of cryptosys-
tem. Note that Figure 1.2 shows an overview of contributions. More details are as follows.

Contributions to Forward–secure Blind Signatures over Lattices. A blind signature

(BS) [Cha83] allows signing without leaking information about the message con-
tent. Blind signatures have found many applications, such as electronic cash [PS96,
Section 1] and electronic voting [Kuc10].

In general, a key exposure attack is one of the most severe threats against any cryp-
tosystem. If the attack is successful, then secret keys are disclosed. This means that
the cryptosystem is wholly broken. It is, therefore, necessary to protect cryptosys-
tems from such attacks. Possible solutions for mitigating the key exposure attacks
are discussed in [BM99]. An obvious solution can be to design systems free from
such attacks. However, this could be difficult or perhaps impossible to achieve.
An alternative approach is to minimise the damage caused by key exposure. This
approach can be translated into the so–called forward security. Assuming that a
system has multiple keys dependent on time, forward security guarantees that dis-
closing a current key does not make past keys insecure.

Günther [Gün90] has proposed the notion of forward security. Diffie et al. [DOW92]
have used the notion to consider the security of authenticated key–exchange proto-
cols. Both works [Gün90] and [DOW92] have referred to it as forward secrecy.
Anderson [And02] has extended the forward security to cover the security of digi-
tal signature. Bellare and Milner [BM99] have investigated the secret–key exposure
of digital signatures. They have formulated a security notion and defined forward–
secure digital signatures. The authors also designed a forward–secure signature
from the integer factorisation problem. Other works such as [AR00], and [IR01]
have studied the efficiency of the Bellare–Milner signature.

Camenisch [CPS95] proposed blind signatures from the discrete logarithm prob-
lem without enjoying forward security. Duc et al. [DCK03] coined the first work
that investigated forward security for BS. [DCK03] has adopted the syntax and the

8

1.2. Contributions and Organisation

security notion from [BM99] to forward–secure blind signatures (FSBSs). Their
FSBS design is forward–secure unforgeable based on the strong RSA problem in
the random oracle model applying the forking lemma of Pointcheval and Stern
[PS96, PS00]. Several more works have followed up [DCK03] on FSBS. For in-
stance, Chow et al. [CHYC05] and Jia et al. [JFC+10] have designed FSBSs using
bilinear pairings. Lai and Chang [LC05] have designed FSBSs based on the fac-
toring problem. In the lattice setting, the BS scheme designed by Rückert [Rüc10]
has no forward security. Table 1.1 gives a summary of blind signatures with two
options of “Forward–secure?” and “Over lattices?”. To our knowledge, no lattice–
based FSBS construction has been introduced prior to our work [LDS+20].

Table 1.1: Summary of BS constructions in the literature.

Works Forward–secure? Over lattices?
[Cha83] No No
[CPS95] No No
[DCK03] Yes No

[CHYC05] Yes No
[LC05] Yes No

[JFC+10] Yes No
[Rüc10] No Yes

Our work [LDS+20] Yes Yes

Our contribution in [LDS+20] is the first lattice–based construction of BS that
achieves forward security, i.e., the first FSBS over lattices. The security argument
of the proposed FSBS is based on the hardness of the SIS problem. The security
is proven in the random oracle model. The main tools include: the Fiat–Shamir
with aborts framework (Section 3.2.5), the GPV08 trapdoor (Section 2.5.3), the re-
jection sampling (Section 3.2.1), the oracle replay attack and the forking lemma
(Section 3.2.3) and the witness indistinguishability (Section 3.2.4). We present this
contribution in Chapter 3.

Contributions to Lattice Hierarchical Identity–based Encryption. Identity– based en-

cryption (IBE) [Sha85] is a variant of public–key encryption (PKE), in which a user
can use his identity (e.g., email address, user account) as public key. IBE has to in-
clude a mechanism that generates users’ private keys from their identities. This
setting helps mitigate the need to store a list of heavy certificates (generated in the
typical PKE for users). Instead, the system must maintain the common parameters,
lowering the memory cost.

Hierarchical identity–based encryption (HIBE) [HL02, GS02b] is a hierarchical
variant of IBE. User identities in HIBE are arranged in a hierarchical structure that

9

1.2. Contributions and Organisation

can be pictured as a directed tree. Besides all IBE functionalities, HIBE also pos-
sesses a one–way delegation ability to derive a private key for a child identity from
its parents’ private key. By “one–way”, we mean that it is impossible to get the par-
ents’ private key from any of their child’s private keys. Some interesting applica-
tions of HIBE include broadcast encryption [DF03, YFDL04] and forward–secure
encryption [CHK03].

Coming back to the lattice–based cryptography, the original idea by Ajtai [Ajt96,
Ajt99] is to generate a hard random lattice instance together with its short vec-
tors/bases. The idea is extended to the preimage sampleable (trapdoor) functions

(what is known as the GPV08 trapdoor) by Gentry et al. [GPV08]. Basing on the
GPV08 trapdoor, the work [GPV08] has built a hash–and–sign signature scheme
and an IBE construction over lattices, which are secure in ROM. Also, the work
[GPV08] introduced the so–called dual Regev encryption scheme and used it to de-
sign an IBE scheme secure in SDM. Agrawal et al. [AB09] have introduced IBE
secure in SDM using the GPV08 trapdoor. Cash et al. [CHKP10] and Agrawal et al.

[ABB10] independently have added delegation ability to lattice trapdoors. In par-
ticular, Cash et al. [CHKP10] have formulated bonsai tree principles that help gen-
erate and delegate short lattice bases. Agrawal et al. [ABB10] have also proposed
two efficient and distinct trapdoor delegations. Trapdoor delegations by [CHKP10]
and [ABB10] enable constructing some lattice–based advanced cryptosystems in
SDM, including the first HIBE schemes without pairings [CHKP10, ABB10].

As an improvement of the GPV08 trapdoor, Micciancio and Peikert [MP12] have
introduced a new notion of lattice trapdoor (called the MP12 trapdoor so that it is
not mixed with the GPV08 trapdoor). A close relation between GPV08 and MP12
trapdoors is also shown in [MP12]. After the introduction of MPLWE, Lombardi
et al. [LVV19] have proposed a variant of MPLWE called degree–parameterised
MPLWE (DMPLWE) and a lattice trapdoor (henceforth called the LVV19 trap-

door). A dual Regev encryption [GPV08] for DMPLWE is also possible using
the LVV19 trapdoor. The dual Regev encryption allows building IBE constructions
in both ROM and SDM. Both designs are given in [LVV19]. The IBE construction
in SDM of [LVV19] is adapted from the framework of [AB09]. We summarise the
known lattice trapdoors as well as IBE and HIBE (if any) in Table 1.2. We notice
that a DMPLWE–based HIBE construction in SDM cannot be directly obtained
from the IBE construction in SDM of [LVV19] because a trapdoor delegation (for
polynomials in DMPLWE) is missing.

We filled in the gap in the work [LDSP20]. Our contributions are as follows. We
propose a delegation algorithm for the LVV19 trapdoor. Using the delegation, we

10

1.2. Contributions and Organisation

Table 1.2: Lattice trapdoors and IBE, HIBE constructions over lattices.

Trapdoor Trapdoor
delegation?

IBE
over lattices?

HIBE
over lattices?

GPV08 trapdoor
[GPV08]

Yes
[ABB10],
[CHKP10]

Yes
[ABB10],
[CHKP10]

Yes
[ABB10],
[CHKP10]

MP12 trapdoor
[MP12]

Yes
[MP12]

Yes
[MP12]

Yes
[MP12]

LVV19 trapdoor
[LVV19] No

Yes
[LVV19] No

LVV19 trapdoor
[LVV19]

Ours
[LDSP20]

Yes
[LDSP20]

construct the first HIBE based on the hardness of DMPLWE. The HIBE scheme
is provably secure in SDM. Our work here uses both MP12 and LVV19 trapdoors
([MP12, LVV19] that will be summarised in Section 2.5.3) and a delegation algo-
rithm for the LVV19 trapdoor (proposed in Section 4.2). This thesis includes the
contributions in Chapter 4.

Contributions to Puncturable Encryption over Lattices. Puncturable encryption (PE)
has been introduced by Green and Miers in [GM15]. It is a PKE variant that
has a puncturing mechanism. The mechanism works as follows. Encryption re-
quires ciphertext tags while decryption is controlled by punctures. In other words,
a plaintext is encrypted with a list of ciphertext tags and a decryption key can
be punctured on punctures. Puncturing the decryption key produces a new de-
cryption key (punctured key). Whether or not the punctured key can decrypt a
ciphertext depends on the resemblance of the ciphertext tags (embedded in the
ciphertext) and the punctures (in the punctured key). The decryption fails if at
least one ciphertext tag and one puncture are identical. Otherwise, the underlying
plaintext is successfully recovered. Interesting applications of PE include asyn-
chronous messaging system [GM15], forward–secret zero round–trip time protocol
[GHJL17, DJSS18], public–key watermarking scheme [CHN+16], and forward–
secret proxy re–encryption [DKL+18].

There have been several PE works in the literature, e.g., [GM15, GHJL17, DGJ18,
DJSS18, SSS+20] – see Table 1.3 (except the last row). Green & Miers [GM15]
have proposed a generic framework of PE from attribute–based encryption (ABE).
Günther et al. [GHJL17] have introduced a different approach based on HIBE and
one–time signature (OTS). Both Derler et al. [DGJ18] and Derler et al. [DJSS18]
have proposed their generic PE constructions from Bloom filter encryption (BFE).
The BFE comes from identity–based broadcast encryption (IBBE) (in [DGJ18])

11

1.2. Contributions and Organisation

and IBE (in [DJSS18]). Recently, Sun et al. have constructed PE from key–
homomorphic identity–based revocable key encapsulation mechanism (KH–IRKEM).
The last five columns of Table 1.3 present information relating to the specific PE
construction for each work. Here, “<∞” means “bounded/predetermined”, while
“∞” stands for “unlimited/arbitrary”. The column “Over lattices?” says whether or
not the specific PE scheme is relied on lattices.

Note that some generic PE frameworks presented in Table 1.3 can be instantiated
over lattices thanks to the corresponding lattice–based constructions of the source
primitives. However, to our knowledge, no specific PE instantiation over lattices
has existed prior to our work [SDLP20]. Even in the most recent work [SSS+20],
the specific PE constructions are based on hard problems in pairings.

Table 1.3: The existing PE constructions in the literature in comparison with our
PE.

Works Generic
from

Over
lattices?

Security
proof
model

#
Ciphertext

tags

#
Punctures

Correctness
error

Green
& Miers
[GM15]

ABE No ROM <∞ ∞ negligible

Günther
et al.

[GHJL17]

HIBE
+ OTS

No SDM <∞ <∞ negligible

Derler
et al.

[DGJ18]

BFE
(IBBE)

No SDM 1 <∞
non–

negligible

Derler
et al.

[DJSS18]

BFE
(IBE)

No ROM 1 <∞
non–

negligible

Sun
et al.

[SSS+20]

KH–
IRKEM

No SDM

<∞

<∞

∞

<∞

∞ negligible

Our work DFKHE Yes SDM <∞ <∞ negligible

Our contributions to PE are as follows. We introduce a primitive called delegatable

fully key– homomorphic encryption (DFKHE). This primitive is a generalised vari-
ant of fully key–homomorphic encryption (FKHE) introduced in [BGG+14]. We
describe a generic PE framework from DFKHE. We also give a concrete DFKHE
construction from lattices. Since then, we get a lattice–based PE construction using
the generic PE framework. The proposed lattice PE construction can handle a pre-
determined number of tags on a ciphertext. A ciphertext size linearly depends on

12

1.2. Contributions and Organisation

the fixed number of tags embedded in the ciphertext. However, the work of Brak-
erski and Vaikuntanathan [BV16] suggests that our lattice PE construction might
be modified to handle an unbounded number of ciphertext tags. Furthermore, the
lattice PE scheme supports a predetermined number of punctures. In addition, the
secret key size increases quadratically with the number of punctures. Regarding
security, the construction is selective CPA secure proven in SDM owing to that of
the underlying DFKHE construction. Note that such a selective CPA can be con-
verted into full CPA security with an exponential loss in parameters as discussed in
[CHK04, Kil06, BB11, BGG+14]. Finally, the construction also enjoys a negligible
correctness error.

Please see the last row of Table 1.3 for our PE work in comparison with the existing
PE work in the literature. Note that all PE constructions included in Table 1.3 enjoy
the chosen plaintext attacks (CPA) security. The CPA security limits the adversary’s
ability to have only the information of ciphertexts of its chosen plaintexts. For
further detail, please refer to Section 2.7.3.

Our main technical tools are the dual Regev encryption framework [GPV08] (given
in Section 2.7.3), the leftover hash lemma [ABB10] (recapped in Section 2.5.1), the
GPV08 trapdoor [GPV08] (reviewed in Section 2.5.3) and the lattice homomorphic
evaluations [BGG+14] (recalled in Section 2.5.4).

Details are presented in Chapter 5.

Contributions to Spatial Encryption over Lattices. Spatial encryption (SE) has been
coined by Boneh and Hamburg [BH08] followed up by a systematic investigation
in Hamburg’s thesis [Ham11]. In SE, objects that are associated with ciphertexts
(respectively, decryption keys) are affine points/vectors called attribute vector (re-
spectively, affine/vector spaces called predicate space). We call an affine SE if SE
involves affine objects. If SE involves vector objects – we call it a linear SE. How-
ever, one can easily transform an affine SE into a linear SE (see Section 6.3.1 of
Chapter 6). Therefore, we only consider linear SEs. The main characteristic of SE
is that a ciphertext can be decrypted if and only if the attribute vector associated
with the ciphertext is an element of the predicate space, which is associated with
the key. Let say the attribute vector x, the the predicate space V . Then informally

SE.Dec(skV ,SE.Enc(pk,µ,x)) = µ⇔ x ∈ V,

where SE.Dec, SE.Enc, pk, sk and µ are decryption algorithm, encryption algo-
rithm, public key, secret key for V and a plaintext in SE, respectively. Additionally,
SE is also required to have a capacity that delegates a decryption key for a vector

13

1.2. Contributions and Organisation

space, say V , to a decryption key for any V’s subspace.

Hamburg [Ham11] has also introduced doubly spatial encryption (DSE), a more
expressive variant than SE. All objects involved in both decryption and encryption
of DSE are spaces instead of vectors. Decryption is successful if the attribute and
predicate spaces intersect (that is, their intersection is not empty). Both SE and DSE
have many potential applications claimed in [BH08] and [Ham11]. In particular,
one can employ SE to build (broadcast) (H)IBE, or even forward–secure encryption
schemes.

As shown in Chapter 6, PE [GM15] and dual-form PE (DFPE) [DRSS21] can be
built from SE. Generally, we can use SE to implement the so–called allow–/deny–
list encryption (ADE) [DRSS21]. Then, one can consider IBE [Sha85], HIBE
[GS02a], forward–secure puncturable IBE (fs–PIBE) [WCW+19], fully PE (FuPE)
[DKL+18], PE and DFPE as sub–classes of ADE. Roughly speaking, ADE is a gen-
eralisation of PE, in which one can do puncturing on both positive and negative tags

included in the allow and deny lists, respectively. Decryption is only enabled with
positive tags. The main challenge for building ADE is to make sure that one can
positively puncture and negatively puncture on multiple tags in any order. How-
ever, [DRSS21] did not give syntax nor security notions for ADE.

Table 1.4 (except the last row) shows various SE constructions in the literature.
Most of them rely their security on the number-theoretic assumptions. Examples in-
clude bilinear decision Diffie–Hellman exponent (BDDHE) [BH08, Ham11], deci-
sional bilinear Diffie–Hellman (DBDH) [ZC09, CW14, CZF12], and decisional lin-
ear (DLIN) [CZF12]. Some SE constructions are proven secure in the generic group
model (GGM) [BH08, Ham11], while others – in SDM [ZC09, CZF12, CW14].

Notice that there is a generic SE framework from the hierarchical inner product

encryption (HIPE) [OT09]. The framework was coined by Chen et al. [CLLW14]
(called Chen et al. framework for short). Using the generic framework, one can
realise lattice–based SE constructions, thanks to the lattice–based HIPE counter-
parts, such as HIPE of [ADCM12] and HIPE of [Xag15]. Both [ADCM12] and
[Xag15] HIPE schemes are secure due to the LWE hardness. Unfortunately, such
lattice–based SE constructions via Chen et al. framework are not free from a few
weaknesses detailed below.

The notion of HIPE [OT09] is a generalisation of inner product encryption (IPE)
[KSW08]. IPE ciphertext (and decryption key) involves a vector residing in a finite
field. The decryption of IPE succeeds if and only if the inner product of two vectors
(one in ciphertext and one in decryption key) returns zero. In other words, two vec-
tors are orthogonal to each other. In HIPE, multiple attribute vectors are embedded

14

1.2. Contributions and Organisation

Table 1.4: (Doubly) SE constructions in the literature.

Works
Generic

framework
from

Instantiation
based on

Security
proof
model

Security Over
lattices?

Boneh,
Hamburg
[BH08]

BDDHE GGM
Selective

& Adaptive
No

Hamburg
[Ham11]

BDDHE GGM Selective No

Chen, Wee
[CW14]

DBDH SDM Selective No

Chen et al.
[CZF12]

DLIN,
DBDH

SDM Adaptive No

Zhou, Cao
[ZC09]

DBDH SDM Selective No

Abdalla
et al.

[ADCM12]

HIPE
via Chen

[CLLW14]
LWE SDM Selective Yes

Xagawa
[Xag15]

HIPE
via Chen

[CLLW14]
LWE SDM Selective Yes

Our work DMIPE LWE SDM Selective Yes

into a ciphertext and multiple predicate vectors – in a decryption key. Therefore,
the condition for successful decryption is now more complicated.

We now give more details on HIPE and on the Chen et al. framework to argue
why the Chen et al. framework is not ideal for SE constructions. A HIPE is pa-
rameterised by a field F (e.g., Zq for prime q), a hierarchical format ∆(δ; ~̀δ) :=
(δ;`1, . . . , `δ) of depth δ, where `i’s are positive integers. For k ≤ δ, define Γi :=
F`i and Γ|k := Γ1 × · · · × Γk. Given ~V = (v1, · · · ,vk) ∈ Γ|k, the hierarchical predi-
cate f~V(·) indicated by ~V maps a vector ~X = (x1, · · · ,xt) ∈ Γ|t to 1 iff the condition
k≤ t∧〈vi,xi〉= 0, ∀i ∈ [k] hold. Roughly, with ∆(δ; ~̀δ)–HIPE, one can do encryption
with attribute vectors ~X. Accordingly, producing decryption keys can be performed
using predicate vectors contained in ~V . Decryption is successful if f~V(·) maps ~X to
1.

The Chen et al. [CLLW14] framework works as follows. It transforms a ∆(d)–
HIPE (here, we denote by ∆(d) the hierarchical format ∆(d; ~̀d) := (d;`1, · · · , `d) in
which `1 = · · · = `d = d) to a d–dimensional linear SE and vice versa for any positive
integer d. The key idea is that the “belong to” relation in SE and the “orthogonal
to” relation in HIPE can be swapped, i.e., for some vector space V , it holds that

x ∈ V if and only if 〈x,v〉 = 0 for all v ∈ V⊥. (1.1)

15

1.2. Contributions and Organisation

Here V⊥ is the orthogonal complement space of V . Now, denoteB⊥(V) to be a basis
of V⊥. Then “〈x,v〉 = 0 for all v ∈ V⊥” in Equation (1.1) is identical to “〈x,v〉 = 0
for all v ∈ B⊥(V)”. Deploying HIPE for SE, for each x and V in SE, one sets ~X and
~V to be ~X := (x, · · · ,x) and ~V := {vi : vi ∈ B

⊥(V)}, respectively.

The above DMIPE construction incurs the following shortcomings:

• Because of the HIPE’s complex structure, it may be hard to instantiate HIPE.
There have been two HIPE constructions in the lattice setting of Abdalla et

al. [ADCM12] and Xagawa [Xag15]. Hence, we have two corresponding SEs
based on lattices. Note further that HIPE of [ADCM12], and [Xag15] are not
efficient enough in terms of sizes for keys and ciphertext.

• SE encryption involves only one vector. SE decryption keys may take multiple
vectors. Contrarily, HIPE encryption involves many vectors for its hierarchi-
cal format. Therefore, the Chen et al. framework duplicates the SE attribute
vector to fit the HIPE hierarchical format. This may result in the size explosion
of SE keys and ciphertext keys.

All discussions above raise the question:

“Can we construct SE from (a) primitive(s) other than HIPE, which results in better

SE sizes?”

Our contributions to SE are as follows. First, we propose a primitive: delegatable
multiple inner product encryption (DMIPE). This primitive notion stems from IPE
endowed with the delegation ability to produce decryption keys. Specifically, one
can produce a DMIPE ciphertext with attribute vectors. Moreover, one can gener-
ate a DMIPE decryption key from either other decryption keys or a master secret
key. In the former case, one can do that by making the predicate vectors list’s
cardinality bigger. Successful decryption requires that the predicate vector and the
attribute vector are “orthogonal” (i.e., their inner product is zero). Roughly, DMIPE
generalises IPE differently and more naturally than HIPE. Table 1.5 quantitatively
compares IPE, HIPE and DMIPE, whilst Figure 6.1 intuitively illustrate their rela-
tion with other primitives.

Second, we present a DMIPE design using LWE. The trapdoors and the homo-
morphic evaluations over lattices are the core tools for our DMIPE construction.
In particular, the homomorphic evaluations focus on inner product functions. Our
design is provably selective payload–hiding secure in SDM.

We show that there are security–preserving conversions between DMIPE and SE.
This also implies that if a lattice DMIPE construction exists, then an SE con-

16

1.2. Contributions and Organisation

Table 1.5: Comparison of IPE variants

IPE HIPE DMIPE
Predicate vectors 1 ≤ d ≥ 1
Attribute vectors 1 d 1

Delegation? No Yes Yes
Dimension of predicate

and attribute vectors
same
for all

may vary due to the
hierarchical format

same
for all

struction over lattices exists accordingly. In particular, in terms of sizes, our (d–
dimensional) lattice SE construction built on DMIPE is more efficient than (d–
dimensional) SE built on ∆(d)–HIPEs from [ADCM12, Xag15].

The last row of Table 1.4 demonstrates an overview of our lattice-based SE work.
Further, Table 6.1 in Chapter 6 compares our lattice–based SE with different lattice–
based SEs, induced from the lattice–based HIPEs via the Chen et al. framework.
Moreover, we formally present the syntax and security notions for the allow–/deny–
list encryption (ADE). By definition, ADE includes PE [GM15], FuPE [DKL+18],
DFPE [DRSS21] and so on. We introduce three ADE versions: sADE, iADE and
k–tADE which standing for standard ADE, inclusive ADE and k–threshold ADE,
respectively.

Finally, we transform sADE and iADE (hence PE, FuPE, and DFPE) into SE. The
main technical tools deployed for the SE work are the dual Regev encryption frame-
work (given in Section 2.7.3), the leftover hash lemma (included in Section 2.5.1),
the lattice trapdoor (Section 2.5.3) (that will be merged in a general framework),
the lattice homomorphic evaluations (reviewed in Section 2.5.4) and some tools in
Algebra (collected in Section 6.3.1). The readers are referred to Chapter 6 for more
details.

17

1.2. Contributions and Organisation

1.2.2 Organisation of the Thesis

We structure the thesis as follows.

Chapter 1 sketches the history of lattice–based cryptography. It also presents the contri-
butions as well as the organisation of the thesis.

Chapter 2 introduces notations and recaps some necessary knowledge on lattices and re-
lated topics, e.g., Gaussian distributions. This chapter also reviews the fundamental
tools and frameworks of basic cryptographic primitives that are used in the thesis.

Chapter 3 focuses on constructing blind signatures over lattices supporting forward se-
curity. Part of the content of this chapter has been published in the proceedings
of the 25th Australasian Conference on Information Security and Privacy (ACISP
2020) [LDS+20]. The paper [LDS+20] got the Best Paper Award in this confer-
ence. The author of this thesis is the first, and one of two corresponding authors of
[LDS+20]. He contributed to finding the topic, the method to design the cryptosys-
tem, the security analysis of the cryptosystem, and the writing of the manuscript.

Chapter 4 develops a trapdoor delegation for polynomials and proposes a hierarchical
identity-based encryption from the degree–parameterised middle–product learning
with errors problem. Part of the content of this chapter appeared in [LDSP20],
which has been published in the proceedings of the 18th International Confer-
ence on Applied Cryptography and Network Security (ACNS 2020). The author
of this thesis is the first, and one of the corresponding authors of [LDSP20]. Hav-
ing received the topic from his supervisors, he contributed to developing the main
method, the design of the cryptosystem, the security analysis of the cryptosystem
and the writing of the manuscript.

Chapter 5 proposes a novel primitive called delegatable fully key homomorphic en-
cryption (DFKHE) and a generic construction for puncturable encryption from
(DFKHE). From an instantiation of the lattice–based DFKHE, one can get a lattice–
based puncturable encryption construction. Part of the content of this chapter ap-
peared in [SDLP20], which has been published in the proceedings of the 25th Euro-
pean Symposium on Research in Computer Security (ESORICS 2020). The author
of this thesis is one of the corresponding authors of [SDLP20]. Having received
the topic from his supervisors, he contributed to finding an appropriate theoretical
framework, the design of the cryptosystems, the security analysis of the cryptosys-
tems and the writing of the manuscript.

Chapter 6 revisits spatial encryption (SE) towards a more compact construction from
lattices. In particular, we propose a novel primitive called delegatable multiple in-

18

1.2. Contributions and Organisation

ner product encryption (DMIPE). The chapter shows a security–preserving equiv-
alence between DMIPE and SE. This chapter also considers allow–/deny–list en-
cryption (ADE) and gives transformations that map ADE variants to SE. Part of the
content of this chapter appeared in [LDSP22b], which has been published in the
proceedings of the 27th European Symposium on Research in Computer Security
(ESORICS 2022). The readers can find the full version of the paper at [LDSP22a].
The author of this thesis is the first and the corresponding author of [LDSP22b].
He contributed to finding the topic, the design of the cryptosystems, the security
analysis of the results and the writing of the manuscript.

Chapter 7 presents some concluding remarks and discusses future works.

19

Chapter 2

Preliminaries

This chapter presents essential notions and definitions utilised throughout the thesis. Specif-
ically, we start with notations (Section 2.1). We then discuss on the background of lattices
(Section 2.2), the Gaussian distributions over lattices (Section 2.3). and hardness assump-
tions (Section 2.4). Next, we will recap some fundamental tools (Section 2.5), security
proof models (Section 2.6) followed by basic cryptographic primitives (Section 2.7).

2.1 Notation

Sets. The notation N (respectively, Z, R) will stand for the set of natural numbers (re-
spectively, integers and real numbers). We sometimes use Z+ (respectively, R+) to
denote the set of positive integers (respectively, positive real numbers). We also use
Zq to denote the set of integers modulo q. For a discrete set S , we use |S | standing
for its cardinality. Given a positive integer n, [n] stands for the set {1,2, · · · ,n}.

Vectors, Matrices. A vector is written in small boldface and column form unless stated
otherwise, e.g., x. Zero vector is 0. A matrix is written in capital boldface, e.g.,
B. The notation b> (respectively, A>) denotes the transpose of vector b (respec-
tively, matrix A). The row concatenation of two vectors a and b will be written as
(a>|b>). The concatenation of two matrices A and B will be written as [A|B]. For
vector c and matrix A, c[i] and A[i] represent the i–th element of c and the i–th
column of A, respectively. While A[i, j] indicates the entry at row i and column
j of matrix A. The inner product of vectors a := (a1, · · · ,an) and b := (b1, · · · ,bn)
is denoted by 〈a,b〉 :=

∑n
i=1 aibi. We use ⊗ to denote the tensor product of two

matrices/vectors. For example, if A =

a1 a2

a3 a4

 and B is an arbitrary matrix then

A⊗B =

a1 ·B a2 ·B
a3 ·B a4 ·B

.
20

2.1. Notation

Polynomials. We denote the set of polynomials having a degree less than n whose co-
efficients reside in the commutative ring R by R<n[x]. We use small italic letters
for polynomials over R, e.g., polynomial a. For n ∈ N and i ∈ [n], let hi’s be poly-
nomials. We call h = (h1, · · · ,hn) an n–polynomial family (i.e., h is a family of
n polynomials). The notation a|h denotes a concatenation of a and h. The scalar
product of two n–polynomial families b = (b1, · · · ,bn) and u = (u1, · · · ,un) is defined
as 〈b,u〉 :=

∑n
i=1 bi ·ui.

Let f (x) ∈ R[x] be a polynomial over R. The notation R[x]/〈 f (x)〉 denotes the ring
of polynomials over R modulo f (x).

Security Games. We present a security notion through a game. The name of the game
will be in the form

CSSEC
B

(λ)⇒ 0/1/⊥,

where CS is the considered cryptosystem, SEC stands for the mentioned security
notion, B is the adversary playing the game with an implicit challenger (which
is usually denoted by C), and λ is a parameter (e.g., security parameter). Here,
“⇒ 0/1/⊥” says that the game will return either 1 (if B wins) or 0 (if B loses) or
even ⊥ (if the game is aborted). We always assume that the challenger is honest in
all security games mentioned in the thesis. Accordingly, the B’s advantage in this
game is denoted by

AdvSEC
B, CS(λ).

Figure 2.1 gives an example of the IND–CPA security game for PKE. Steps 1, 3
and 5 are done by the challenger. Steps 2 and 4 are performed by the adversaryA,
where in Step 2,A can adaptively query to two oracles EQ(·), and DQ(·). After the
queries, A releases two challenge plaintexts µ∗0, µ

∗
1. The oracles EQ(·), and DQ(·)

are then described in enough detail right after in the box. In Step 4,A based on the
challenge ciphertext ct∗ to output a guess of the bit b (which is denoted as b′). The
challenger returns 1 (i.e., A wins) if b′ = b and returns 0 (i.e., A loses) otherwise.
TheA’s advantage in this game is denoted by AdvIND-CPA

B,PKE (λ).

Complexity. We review some standard Bachmann–Landau notations like O, Õ, ω, Ω, Θ

and so on. We also define negligible as well as polynomial functions. All functions
here are assumed to be in variable n.

• f = O(g) if ∃C > 0,∃n0 such that | f (n)| ≤C ·g(n) for all n ≥ n0.

• f = Õ(g) if ∃k > 0 such that f (n) = O(g(n) logk(n)).

• f = o(g) if ∀C > 0, ∃n0, ∀n > n0 such that | f (n)| <C ·g(n).

21

2.1. Notation

GAME PKEIND-CPA
A

(λ)⇒ 1/0:

1. (pp,pk,sk)← PKE.Setup(1λ);
2. (µ∗0,µ

∗
1)←AEQ(·),DQ(·)(pp,pk);

3. b
$
←− {0,1}, ct∗← PKE.Enc(pp,pk,µ∗b);

4. b′←Act∗,EQ(·)(pp,pk);
5. If b′ = b, return 1. Otherwise, return 0.
Queried Oracles:
• Encryption Oracle EQ(µ): Return the output of PKE.Enc(pp,pk,µ).
• Decryption Oracle DQ(ct): Return the output of PKE.Dec(sk,ct).

Figure 2.1: An example of security game presentation.

• f = ω(g) if g = o(f), i.e., ∀C > 0, ∃n0, ∀n > n0 such that | f (n)| >C ·g(n).

• f = Θ(g) if f = O(g) and g = O(f). That is, ∃C1 > 0,∃C2 > 0, ∃n0, ∀n > n0

such that C1 ·g(n) ≤ | f (n)| ≤C2 ·g(n).

• f is negligible in n (written as f = negl(n)) if f = o(1/nk) for any k > 0. That
is, ∀k > 0, ∀C > 0, ∃n0, ∀n > n0 such that | f (n)| <C/nk.

• In particular, if ∃k ∈ N such that f = O(nk) then we write f = poly(n).

Algorithms, Distributions. For the uniform distribution over a set X, we write U(X).
A random variable X follows distribution χ (respectively, density function f) is
denoted as X ∼ χ (respectively, X ∼ f). Whereas, notation a← χ says that a is

sampled from the distribution χ. By b
$
←− X, we mentions sampling b uniformly at

random from the set X. By “overwhelming probability”, we mean the probability
of “1−negl(λ)” for some implicit security parameter λ. An “efficient” algorithm is
a polynomial–time one.

Suppose that A, B are two algorithms. We write a← A(a1, · · · ,an) to say that a is a
randomised (probabilistic) output of A on input (a1, · · · ,an). This implicitly means
A is probabilistic polynomial–time. On the other hand, we write b := B(b1, · · · ,bm)
to say that b is a (deterministic) output of B on input (b1, · · · ,bm). This implicitly
means B is deterministic polynomial–time.

The statistical distance of X and X′ (over a countable set S) is the quantity

∆(X,X′) :=
1
2

∑
x∈S

∣∣∣Pr[X = x]−Pr[X′ = x]
∣∣∣ .

The following triangle inequality holds ∆(X1,X3) ≤ ∆(X1,X2) + ∆(X2,X3), where
X1, X2 and X3 are three random variables over a countable set S .

Finally, through the text, the logarithm log is to base 2 unless otherwise stated.

22

2.1. Notation

Rounding Operations. The notation bae means that a is mapped to the integer that is
closest to a. If it is a tie then a is rounded up. For example, b5.3e = 5, b8.5e = 8.
Whilst, dae always rounds a up to the smallest integer that is not less than a. If
a = 10.1, for example, then dae = 11. Of course, d10e = 10.

Norms. Throughout the thesis, we consider the following norms:

Euclidean norm. For a vector v = (v1, ...,vn) ∈ Rn, the Euclidean norm of v is de-
noted and defined by ‖v‖ :=

√∑
i∈[n] v2

i . The (Euclidean) norm of a column
matrix A = [a1| · · · |an] is defined as ‖A‖ := maxi ‖ai‖.

Gram–Schmidt (GS) norm. Let A = [a1| · · · |ak], be a matrix. The Gram–Schmidt
Orthogonalisation (GSO) (cf. Section 2.2 for the definition) of A is denoted
by Ã := [̃a1| · · · |̃ak]. The GS norm of A is defined as ‖Ã‖.

Operator norm (a.k.a., sup norm). This norm, on input a matrix R, returns the
R’s largest singular value, which is also computed by

s1(R) := sup
u

(
‖Ru‖
‖u‖

)
= sup
‖u‖=1

(‖Ru‖).

By definition, the following lemma holds.

Lemma 2.1.1. For all vector u and matrix R such that the operation Ru makes

sense, then

‖Ru‖ ≤ s1(R) · ‖u‖.

Lemma 2.1.2 below gives an upper bound of s1(R) for any matrix R.

Lemma 2.1.2 ([LVV19, Lemma 6]). Let R = (R[i, j])i, j ∈ R
m×n be any matrix, it

holds that

s1(R) ≤
√

mn ·max
i, j
|R[i, j]|. (2.1)

Lemma 2.1.3 demonstrates an upper bound for the operator norm of a matrix (and
its transpose) whose each entry is sampled from {−1,1}.

Lemma 2.1.3 ([BGG+14, Lemma 2.5]). For integer m> 0, if S is sampled uniformly

from {−1,1}m×m then

s1(S) ≤ 20
√

m, s1(S>) ≤ 20
√

m.

Max–absolute–value norm. We denote this norm by ‖ · ‖max. It simply returns
the maximum absolute value of the entries of an input vector/matrix. For
example, for a vector a and a matrix A, ‖a‖max := maxi |a[i]| and ‖A‖max :=

23

2.2. Background of Lattices

maxi, j |A[i, j]|. The following lemma is the well–known result regarding the
max–absolute–value norm.

Lemma 2.1.4. Let e1,e2,e3 be vectors of dimensions m1,m2,m3 ∈ N, respectively.

Let A1,A2 be matrices of appropriate dimensions. The following holds,

1. ‖e>1 A1‖max ≤ m1‖e>1 ‖max · ‖A1‖max.

2. ‖(e>2 |e
>
3)A2‖max ≤ (m2‖e>2 ‖max + m3‖e>3 ‖max) · ‖A2‖max.

Infinity norm. We define the infinity norm as ‖v‖∞ := maxi∈[n] |vi|. Correspond-
ingly, ‖A‖∞ := maxi ‖Ai‖∞.

We have the following well–known property on the relation of infinity norm
and Euclidean norm.

Lemma 2.1.5. For any vector x ∈ Zn,

‖x‖∞ ≤ ‖x‖ ≤
√

n · ‖x‖∞.

1–norm. The 1–norm is defined as ‖v‖1 :=
√∑

i∈[n] |vi|. Correspondingly, ‖A‖1 :=
maxi ‖Ai‖1.

Note that we can define the above norms for a set of vectors in the same way as
for a matrix. For example, given a set of vectors A = {a1, · · · ,ak}, the Euclidean
norm ‖A‖ := maxi∈[k] ‖ai‖. Also, remark that we can define the above norms for
polynomials through its coefficient vector. If f (x) = 2 + 5x + 4x2 − x3 ∈ Z[x], for
example, then ‖ f ‖ = ‖f‖ = ‖(2,5,4,−1)‖, where f = (2,5,4,−1).

Other Notations. The notation v will stand for the “subspace” relation (Chapter 6). For
example, if V1 is a subspace of V2 then we write V1 v V2. For a string x, notation
|x| means the length of x. The notation � (respectively, �) means “much smaller
than” (respectively, “much larger than”). We write a∧b to mean “a and b”.

2.2 Background of Lattices

Lattices and their hard problems are utilised throughout the thesis. Our cryptosystem
proposals are based on the hardness of lattice assumptions. We will first present a formal
definition of lattice and some related notions in Section 2.2.1. We then state some worst–
case problems over lattices in Section 2.2.2.

24

2.2. Background of Lattices

2.2.1 Lattices

General Lattices. Roughly speaking, a lattice is a collection of points regularly arranged
over space. We can define it mathematically as below.

Definition 2.2.1 (Lattice). Let a1, · · · ,am be m linearly independent vectors in Rn. The

lattice Λ = Λ(A) with basis A = [a1, · · · ,am] ∈ Rn×m comprises all linear integral combi-

nations of ai’s, i.e.,

Λ(A) :=
{
A ·x : x ∈ Zm}

=

 m∑
i=1

xiai : xi ∈ Z

 .
We say that each ai is a basis vector. We also say that m (respectively, n) is the lattice’s

rank (respectively, dimension). The lattice is full–rank if m = n.

Figure 2.2: A lattice of dimension 2 with basis {b1,b2}.

One can prove that det(A>A) = det(B>B) given two different bases A and B (among
infinitely many bases) of a lattice Λ. The invariant det(Λ(A)) :=

√
det(A>A) is called the

determinant (or volume) of lattice Λ(A). Figure 2.2 illustrates a lattice of dimension 2
taking {b1,b2} as a basis.

Denote Bn(0, κ) to be an n–dimensional sphere of radius κ > 0 (i.e., Bn(0, κ) = {v ∈
Rn : ‖v‖ ≤ κ}). We are going to state the definition of successive minima, which are also
invariant quantities for each lattice. Informally, the i–th successive minimum of a n–
dimensional lattice is the smallest positive integer κ such that a closed ball of dimension
n and radius κ contains i linearly independent lattice vectors. Formally,

Definition 2.2.2 (Successive Minima). Let Λ be an n–dimensional lattice. The i–th suc-

cessive minimum λi(Λ) of Λ is computed as

λi(Λ) := min{κ : dim(span(Λ∩Bn(0, κ))) ≥ i}.

25

2.2. Background of Lattices

Here span(A) := {Ax : x ∈ Rm} for any A ∈ Rn×m. Obviously, the shortest lattice
vectors in Λ are ones having the length of the first successive minimum λ1(Λ).

The notion of dual lattices defined below will help determine the so–called smoothing
parameters. Roughly speaking, the smoothing parameter is an essential measure of a
lattice’s quality as it has a close relation to the successive minima of a lattice (see, e.g.,
[MR04, Section 3] for this relation). We will formally define the smoothing parameter in
Definition 2.3.2 and state its properties needed for our work later.

Definition 2.2.3 (Dual Lattices). Let Λ be n–dimensional lattice. We call the lattice de-

fined by Λ∗ := {x ∈ Rn : ∀v ∈ Λ, 〈x,v〉 ∈ Z} the dual of Λ.

A lattice Λ is self–dual if the lattice is identical to its dual, that is, Λ = Λ∗. The
following lemma is a well–known result about dual lattices.

Lemma 2.2.1. For any positive integer m, Zm is a self–dual lattice.

Random q–ary Lattices. We will focus on a special sort of lattices which is called ran-

dom q–ary lattice or random modular lattice. This is a lattice whose each co-
ordinate is invariant under shifts by a fixed modulus q. Namely, given a matrix

B
$
←− Zn×m

q , U ∈ Zn×k
q and a vector u ∈ Zn

q, the following sets are q–ary lattices:

Λ⊥q (B) :=
{
x ∈ Zm : Bx = 0 (mod q)

}
,

Λu
q(B) :=

{
x ∈ Zm : Bx = u (mod q)

}
,

ΛU
q (B) :=

{
X ∈ Zm×k : BX = U (mod q)

}
.

The shortness of a lattice basis can be measured through the norm of its Gram-
Schmidt orthogonalisation (GSO). We, therefore, define the GSO below.

Gram–Schmidt Orthogonalisation. Given any set of vectors A = {a1, · · · ,am} of the
same dimension. The GSO Ã = {̃a1, · · · , ãm} for A is computed as follows:̃a1 = a1

ãi = ai−
∑i−1

j=1
〈ai ,̃a j〉

‖̃a j‖2
, i = 2, · · · ,m

.

Similarly, we can define the GSO matrix for a matrix (hence for a basis of any
lattice).

We will concern about lattice bases that are “short”, which is determined in the
following sense.

Definition 2.2.4. A lattice basis is called short if its corresponding Gram–Schmidt

norm is short.

26

2.3. Gaussian Distributions over Lattices

2.2.2 Lattice Worst–case Problems

One of the most fundamental lattice problems is the shortest vector problem (SVP).
Roughly stating, SVP requires finding a lattice vector of the first minimum given a basis
of the lattice.

Additionally, there are some worst–case variants of SVP which are proved to be NP–
hard, such as the approximation SIVP and the decisional GapSVP. We recall them right
below.

Definition 2.2.5 (γ–SIVP). On input an n–dimensional full-rank lattice Λ, γ := γ(n) ∈
R+, the γ–SIVP problem requires to find n linearly independent lattice vectors S :=
{s1, · · · ,sn} ⊂ Λ such that ‖S ‖ ≤ γ ·λn(Λ).

Definition 2.2.6 (γ–GapSVP). On input an n–dimensional full–rank lattice Λ, γ := γ(n) ∈
R+ and d ∈R+, the γ–GapSVP problem asks to decide whether λ1(Λ)≤ d or λ1(Λ)> γ ·d.

2.3 Gaussian Distributions over Lattices

The discrete Gaussian distributions are a very important measure for lattice–based cryp-
tography. To review the distributions, we start with the definition of m–dimensional (con-
tinuous) Gaussian distribution centred at c ∈ Rm with Gaussian parameter σ > 0 and char-
acterised through the density function

ρσ,c(x) := exp
(
−
π‖x− c‖2

σ2

)
.

Now, we give a formal definition for discrete Gaussian distributions.

Definition 2.3.1 (Discrete Gaussians). The discrete Gaussian distribution over Λ ⊆ Zm,

parameterised by vector c ∈ Rm and σ ∈ R+, is defined as

DΛ,σ,c(v) =
ρσ,c(v)∑

w∈Λ ρσ,c(w)
, ∀v ∈ Λ.

We call c and σ the center and the Gaussian parameter, respectively. We will write
ρσ (respectively, DΛ,σ) for ρσ,0 (respectively, DΛ,σ,0). Moreover, we will write ρ for ρ0,1.
Particularly, if the lattice is Zm, then we can write Dm

σ,c and Dm
σ respectively standing for

DZm,σ,c and DZm,σ.
Before stating some actual results regarding discrete Gaussian distributions, we re-

view the notion of smoothing parameter [MR04] for a lattice.Informally, the smoothing
parameter is a quantity related to the Gaussian parameter such that a discrete Gaussian
distribution over a lattice looks like a continuous one. Formally, we have the following
definition.

27

2.3. Gaussian Distributions over Lattices

Definition 2.3.2 ([MR04, Smoothing Parameters]). For any n–dimensional lattice Λ and

positive real ε > 0, the smoothing parameter ηε(Λ) is the smallest real number s > 0 such

that ρ1/s(Λ∗ \ {0}) ≤ ε.

Let Λ be a lattice having an ordered basis A = (ai)i. Define Gram–Schmidt minimum
to be

b̃l(Λ) = min
A
‖Ã‖ = min

A
max

i
‖ãi‖.

Lemma 2.3.1 ([GPV08, Lemma 3.1]). For any n–dimensional lattice Λ and real ε > 0,

we have

ηε(Λ) ≤ b̃l(Λ) ·

√
ln(2n(1 + 1/ε))

π
.

Then, for any ω(
√

logn) function, there is a negligible ε = ε(n) for which

ηε(Λ) ≤ b̃l(Λ) ·ω(
√

logn).

We sometimes deal with the smoothing parameter ηε(Z) of Z. We will give a lower
and upper bound for it. By Lemma 2.2.1, Z is a self–dual lattice. Then,

ηε(Z) = min{s : ρ1/s(Z) ≤ 1 + ε}.

We know that for any s > 0, ρ1/s(Z) = 1 + 2
∑∞

i=1 exp(−πs2i2) > 1 + 2exp(−πs2). For
any 0 < ε < 1, by choosing s fulfilling ρ1/s(Z) ≤ 1+ε, then 2exp(−πs2) < ε, which implies
that s >

√
ln(2/ε)/π. Therefore,

ηε(Z) >

√
ln(2/ε)
π

.

Moreover, by Lemma 2.3.1, we have

ηε(Z) ≤ b̃l(Z) ·

√
ln(2 + 2/ε)

π
=

√
ln(2 + 2/ε)

π
.

The equation yields the result presented in Lemma 2.3.2 below.

Lemma 2.3.2 (Bounds of ηε(Z)). For any 0 < ε < 1, the following holds√
ln(2/ε)
π

< ηε(Z) ≤

√
ln(2 + 2/ε)

π
.

Lemma 2.3.3 ([GPV08, Corollary 5.4]). Let m,n,q ∈ Z+, q is prime, m ≥ 2n logq. Then

for all but 2q−n fraction of all matrix A ∈Zn×m
q and for anyσ≥ω(

√
logm), the distribution

of u := Ae (mod q) is statistically close to uniform over Zn
q, where e← DZm,σ.

Below, we give some results related to Gaussian distributions.

28

2.3. Gaussian Distributions over Lattices

Lemma 2.3.4 ([MR04, Lemma 4.4], [GPV08, Lemma 2.9]). For any n–dimensional

lattice Λ, c ∈ span(Λ) and any 0 < ε < 1, any σ ≥ ηε(Λ), then

Prx←DΛ,σ,c[‖x− c‖ ≥ σ
√

n] ≤
1 + ε

1− ε
·2−n.

In particular, when Λ = Z, we have Lemma 2.3.5 given below.

Lemma 2.3.5 ([GPV08, Lemma 4.2]). For any ε > 0, any σ ≥ ηε(Z) and any t > 0,

Prx∼DZ,σ,c[|x− c| ≥ t ·σ] ≤ 2e−πt2 ·
1 + ε

1− ε
.

Moreover, for 0 < ε < 1/2 and t ≥ ω(
√

logn),

2e−πt2 ·
1 + ε

1− ε
≤ negl(n).

Lemma 2.3.6 stated below is necessary for arguments related to the rejection sampling
reviewed in Section 3.2.1.

Lemma 2.3.6 ([Lyu12, Lemma 4.5]). For any c ∈ Zm, if σ = α · ‖c‖, where α > 0, we have

Pr
[
Dm
σ(x)/Dm

σ,c(x) ≤ e12/α+1/(2α2) : x← Dm
σ

]
≥ 1−2−100.

Remark 2.3.1. In Lemma 2.3.6, if α = 12, i.e., σ = 12‖c‖ then Dm
σ(x)/Dm

σ,c(x) ≤ e1+1/288

with probability not smaller than 1−2−100.

Next, we present the definition of (B, ν)–bounded distributions (with B, ν > 0) and
then show that a discrete Gaussian distribution over Z is actually (kσ,2exp(−k2))–bounded
for any k > 0.

Definition 2.3.3 ([BV16, Definition 2.1]). A distribution χ supported over Z is (B, ν)–
bounded if

Prx←χ[|x| > B] < ν.

Lemma 2.3.7 ([Lyu12, Lemma 4.4]). For any positive k > 0, it holds that

Pr[|x| > kσ : x← DZ,σ] ≤ 2exp(−
k2

2
).

Note that in Lemma 2.3.7, 1− 2exp(−72) ≈ 1− 2−100 if k = 12. Finally, this section

gives a result according to Gaussian distributions and the sup norm.

Lemma 2.3.8 ([BGG+14, Lemma 2.5]). For integers n,m,k,q > 0 and a positive real

numberσ> 0, matrices A ∈Zn×m
q , U ∈Zn×k

q , if R is sampled from the distribution DΛU
q (A),σ,

then

s1(R) ≤ σ
√

mk, s1(R>) ≤ σ
√

mk.

29

2.4. Hardness Assumptions

2.4 Hardness Assumptions

Our specific constructions in the upcoming chapters base their security heavily on the
average–case lattice hardness assumptions reviewed below.

2.4.1 Learning with Errors Problem

The learning with errors problem (LWE) is an average–case problem in lattices. For
cryptographic purposes, two LWE versions usually taken into consideration are: (i) the
search LWE and (ii) the decisional LWE. Roughly saying, the former is, given some LWE
samples, to require recovering the LWE secret, while the latter requires distinguishing an
LWE sample from a uniformly random one.

In the thesis, we only concentrate on the decisional variant of LWE (DLWE). A
DLWE instance is parameterised by n,m ∈ Z+, a prime number q and a noise distribu-
tion χ over Zq. We denote such a DLWE instance by (n,m,q,χ)–DLWE.

Definition 2.4.1 (DLWE, [Reg09]). A DLWE instance requires to distinguish the two joint

distributions:

(a) (B,r>B + x>),

(b) (B,b>), in which B
$
←− Zn×m

q ,r
$
←− Zn

q,x← χm,b
$
←− Zm

q .

Define by

Adv(n,m,q,χ)−DLWE
S

:=
∣∣∣Pr[S(B,r>B + x>) = 1]−Pr[S(B,b>) = 1]

∣∣∣
the advantage of any probabilistic polynomial–time solver S against (n,m,q,χ)–DLWE.

Then, (n,m,q,χ)–DLWE is hard if Adv(n,m,q,χ)−DLWE
S

≤ negl(n) for all S.

Regarding the DLWE hardness, there have been some related well–known works,
such as [Reg09] with a quantum reduction from GapSVP. The reduction means that if
there exists a solving algorithm for DLWE, one can (quantumly) transform it into a solv-
ing algorithm for GapSVP. After that, [Pei09, BLP+13] gave a classical reduction (i.e., the
transformation now is not quantum but classical) from the worst–case GapSVP problem.
We formally restate Lemma 2.4.1 for choosing parameters in our lattice designs.

Lemma 2.4.1 (DLWE Hardness, [BV16, Corollary 3]). The (n,m,q,χ)–DLWE problem

is at least as hard as the classical γ–GapSVP and the quantum γ–SIVP, where q = q(n) ≤
2n, m = Θ(n logq) = poly(n), χ = χ(n) such that χ is a (B, ν)–bounded for some B = B(n),
q/B ≥ 2nν and γ = 2Ω(nν).

30

2.4. Hardness Assumptions

2.4.2 Degree–parameterised Middle–product Learning with Errors

The degree–parameterised middle–product LWE (DMPLWE) problem, introduced by
Lombardi et al. [LVV19], is a variant of the middle–product LWE problem (MPLWE)
[RSSS17]. MPLWE is, in turn, an LWE variant that exploits the so–called middle–

product. Before presenting a formal definition for the DMPLWE problem, we first need
to define the notion of middle–product.

Definition 2.4.2 (Middle–product, [RSSS17, Definition 3.1]). Let da, db,k,d ∈ Z+ such

that da + db − 1 = 2k + d. The middle–product of two polynomials a ∈ Z<da[x] and b ∈

Z<db[x] is defined as follows:

�d : Z<da[x]×Z<db[x]→ Z<d[x], (a,b) 7→
⌊
ab mod xk+d

xk

⌋
. (2.2)

The following lemma states a helpful property of middle–product.

Lemma 2.4.2 ([RSSS17, Lemma 3.3]). Let d,k,n ∈ Z+. For all r ∈ R<k+1[x], a ∈ R<n[x],
s ∈ R<n+d+k−1[x], it holds that r�d (a�d+k s) = (r ·a)�d s.

Let n′, t′ ∈ Z+, q ≥ 2, d = (d1, · · · ,dt′) ∈ [n′
2]t′ . Let χ be a distribution over Rq. For

s ∈ Z<n′−1
q [x], define DMPq,n′,d,χ(s) to be a distribution over

∏t′
i=1(Zn′−di

q [x]×Rdi
q [x]) that

outputs (fi,cti := fi�di s + ei)i∈[t′], where fi
$
←− Z<n′−di

q [x] and ei← χdi[x] for each i ∈ [t′].
Now, we define the DMPLWE problem.

Definition 2.4.3 (DMPLWE, [LVV19, Definition 9]). A (q,n′,d,χ)–DMPLWE instance

requires distinguishing DMPq,n′,d,χ(s) from
∏t′

i=1U(Zn′−di
q [x]×Rdi

q [x]) through the same

arbitrarily many samples of them.

We define
ef(f) := max

g∈Z<2m−1[x]

‖g mod f ‖∞
‖g‖∞

to be the expansion factor ([LM06]) of f ∈ Z[x] be degree–m polynomial.
Adapting the proof technique of [RSSS17], Lombardi et al. [LVV19] also showed

that (q,n′,d,χ)–DMPLWE is as hard as (f ,d,Dα·q)–PLWE with f such that |ef(f)| ≤
poly(n′). We will define PLWE below.

Definition 2.4.4 (PLWE, [SSTX09]). Let n ∈ Z+, q ≥ 2. Let f be a degree–m integer poly-

nomial. Let χ be a distribution over R[x]/〈 f 〉. Choose an s
$
←− Zq[x]/〈 f 〉. A decisional

problem polynomial learning with errors instance (f ,d,Dα·q)–PLWE(s) requires distin-

guishing the joint distribution of {(ai,ai · s + ei) : ai
$
←− Zq[x]/〈 f 〉,ei ← χ}i∈I , from that of

{(ai,ci) : ai
$
←−U(Zq[x]/〈 f 〉),ci

$
←−U(Rq[x]/〈 f 〉)}i∈I for an arbitrarily index set I.

31

2.5. Fundamental Tools

The authors of [SSTX09] proved that (f ,d,Dα·q)–PLWE is as hard as SVP over ideal
lattices in Z[x]/〈 f 〉.

Let ζ > 0. We define F (ζ,d,n′) to be the set of polynomials f ∈ Z[x] such that the
following hold: (i) f is monic and has degree m, (ii) the constant coefficient of f is co–
prime with q, (iii) m ∈ ∩t′

i=1[di,n′−di] and (iv) ef(f) < ζ. We now claim the hardness for
DMPLWE via [LVV19].

Lemma 2.4.3 (Hardness of DMPLWE, [LVV19, Theorem 2]). Let n′ ∈ Z+, q ≥ 2, d =

(d1, · · · ,dt′) ∈ [n′
2]t′ , and α ∈ (0,1). Then, there is a probabilistic polynomial–time re-

duction from (f ,d,Dα·q)–PLWE for any f ∈ F (ζ,d,n′) to (q,n′,d,Dα′·q)–DMPLWE with

α′ = α · ζ ·
√

n′
2 .

2.4.3 Shortest Integer Solution Problem

Definition 2.4.5 (SIS, [Lyu12, Definition 3.1]). Let n,m,q ∈Z+ and η ∈R+. Let B
$
←−Zn×m

q .

The (q,n,m,η)–SIS instance with respect to B asks to search for a short non–zero integer

vector w in Zm subject to Bw = 0 (mod q) and ‖w‖ ≤ η.

The following lemma demonstrates the hardness of (q,n,m,η)–SIS problem.

Lemma 2.4.4 (Hardness of SIS, [GPV08, Proposition 5.7]). Let m ∈ Z+ be polynomial–

bounded. Suppose that β = poly(n), q is prime and q ≥ η ·ω(
√

n logn). Then, (q,n,m,η)–
SIS is as hard as γ–SIVP problem for γ = η · Õ(

√
n).

For d ∈R+, define (q,n,m,d)–SIS to be a distribution that outputs pairs (A,A ·s (mod

q)), in which A
$
←− Zn×m

q and s
$
←− {−d, · · · ,0, · · · ,d}. The following lemma characterises

the distribution.

Lemma 2.4.5 (Discussed in [Lyu12]). For d� qm/n, (q,n,m,d)–SIS is statistically close

to U(Zn×m
q ×Zn

q). Furthermore, given (A,u) ∼ (q,n,m,d)–SIS, there exist many possible

s’s such that A · s = u (mod q).

2.5 Fundamental Tools

We employ some technical tools to design cryptosystems that base their security on lattice
problems. In the following, we recap the common fundamental ones for completeness.
Specifically, we recall the randomness extraction (leftover hash lemma) in Section 2.5.1,
the gadget matrix in Section 2.5.2, the lattice trapdoors in Section 2.5.3. and the lattice
homomorphic evaluations in Section 2.5.4.

32

2.5. Fundamental Tools

2.5.1 Randomness Extraction

The following specific leftover hash lemma is helpful and standard to argue the security
of many cryptographic schemes in the lattice setting.

Lemma 2.5.1 (Leftover Hash Lemma, [ABB10, Lemma 4], [BGG+14, Lemma 2.7]).
Let m,n,q ∈ Z+ subject to q > 2 prime, k = poly(n), and m > (n + 1) logq +ω(logn). Let

B
$
←− Zn×m

q and A
$
←− Zn×k

q . Then, the joint distributions (B,BX, X>r) and (B,A, X>r) are

statistically close. Here, X
$
←− {−1,1}m×k and r ∈ Zm

q .

Lemma 2.5.1 will be used in reasoning on indistinguishability of hybrid games in
security proofs for specific constructions that based on the DLWE problem, namely in
Chapters 5–6.

2.5.2 The Gadget Matrix

The gadget matrix was introduced in some works, e.g., [MP12, GSW13b], much involved
in the MP12 trapdoor [MP12] (Section 2.5.3) and in the lattice homomorphic evaluation
(Section 2.5.4). We formally define it below.

Let n, q ∈Z+, and k := dlogqe. Define G = In⊗g> ∈Zn×nk
q ,where g> = (1,2,4, ...,2k−1) ∈

Zk
q, and In ∈ Z

n×n is an n–dimensional identity matrix. We call G the gadget matrix. Ex-
plicitly,

G =

· · ·g> · · ·

· · ·g> · · ·
. . .

· · ·g> · · ·

∈ Zn×nk.

One can find a short basis, say Sk ∈ Z
k×k, for Λ⊥(g>), i.e., g> ·Sk = 0 ∈ Zk

q. Accord-
ingly, the matrix TG := In ⊗ Sk ∈ Z

nk×nk will be a short basis of Λ⊥(G). Precisely, the
matrices Sk and TG are as follows:

Sk =

2 q0

−1 2 q1

−1 . . .
...

. . . 2 qk−2

−1 qk−1

∈ Zk×k, TG =

Sk

Sk
. . .

Sk

Sk

∈ Znk×nk,

where (q0,q1, · · · ,qk−1) is the binary expansion of q, i.e., q =
∑k−1

i=0 2iqi. One can compute
that ‖T̃G‖ ≤

√
5 and ‖TG‖ ≤max{

√
5,
√

k}.

33

2.5. Fundamental Tools

Note that we can also define the gadget matrix G ∈ Zn×m
q for any m ≥ nk, with k =

dlogqe by first computing K := In ⊗ (1,2, · · · ,2k−1) and then adding more (m− nk) zero
columns to K (after K’s last column).

Accompanying G is a polynomial–time algorithm, named G−1, that maps any matrix
A ∈ Zn×t

q to a matrix G−1(A) ∈ {0,1}m×t subject to G ·G−1(A) = A. More formally,

Lemma 2.5.2. Let n, q, m ∈ Z+ and m ≥ ndlogqe. Let G ∈ Zn×m
q be the gadget matrix

defined as above. Then, for any t ∈ N, there is a deterministic polynomial–time algorithm

G−1 : Zn×t
q → {0,1}m×t that maps any matrix A ∈ Zn×t

q to B ∈ {0,1}m×t subject to G ·B = A.

Lemma 2.5.3 below gives the sup norm of an output of G−1.

Lemma 2.5.3 ([BGG+14, Claim 2.3]). Given a matrix A ∈ Zn×t
q and R = G−1(A). Then,

s1(R) ≤ t and s1(R>) ≤ t.

Throughout the thesis, namely in Chapters 4–6, the notation G is exactly the gadget
matrix mentioned here unless otherwise stated.

2.5.3 Lattice Trapdoors

Lattice trapdoors are one of powerful tools in designing many advanced cryptosystems
(e.g., IBE, HIBE). The theory of lattice trapdoors has a long line of development, e.g.,
[Ajt96, GPV08, AP09, CHKP10, ABB10, MP12, LVV19] and so on. In this section, we
classify lattice trapdoors into three classes: GPV08 trapdoor [GPV08], MP12 trapdoor
[MP12] and LVV19 trapdoor [LVV19]. Regarding their usage, the GPV08 trapdoor will
be employed in Chapter 3 and Chapter 5. We will take the MP12 trapdoor and the LVV19
trapdoor into account in Chapter 4. In Chapter 6, we will merge these trapdoors into a
common framework suitable for the proposed construction.

GPV08 Trapdoor. The GPV08 trapdoor uses short bases of hard random lattices as trap-
doors. The idea has initially been from the seminal work by [Ajt96] and systemat-
ically considered by Gentry et al. [GPV08] followed up by Cash et al. [CHKP10]
and Agrawal et al. [ABB10].

Definition 2.5.1 (GPV08 Trapdoor). Let A be any random matrix. A matrix TA is called

a σ–trapdoor for Λ⊥q (A) (or for A) if TA is a basis for the corresponding lattice Λ⊥q (A)
(that is, A ·TA = 0 (mod q)) and ‖T̃A‖ ≤ σ.

The following lemma covers algorithms helpful to generate a random lattice together
with a (short basis) trapdoor, extend and even randomise a trapdoor. We adapt it from
[BGG+14, Lemmas 2.1–2.2].

34

2.5. Fundamental Tools

Lemma 2.5.4 ([AP09, GPV08, ABB10, CHKP10, BGG+14]). Let n,m,q ∈ Z+ and q be

prime.

1. (A,TA)← TrapGen(1n,1m,q). TrapGen is a trapdoor generation algorithm. It is

probabilistic polynomial–time. Its inputs are n > 0,q > 0 and m = Θ(n logq). Its

output is a pair (A,TA) ∈ Zn×m
q ×Zm×m, where TA is a O(

√
n logq)–trapdoor for

Λ⊥q (A) such that A is negligibly far from uniform.

2. TD := ExtBasisRight(D := [A|AS + B],TB). ExtBasisRight is a right trapdoor ex-

tension algorithm. It is deterministic polynomial–time. Its inputs are a matrix

(D := [A|AS + B], (where A,B ∈ Zn×m
q , S ∈ Zm×m) and a trapdoor TB for Λ⊥q (B).

Its outputs is a ‖T̃B‖ · (1 + s1(S))–trapdoor TD for Λ⊥q (D).

3. TE := ExtBasisLeft(E := [A|B],TA). ExtBasisLeft is a left trapdoor extension al-

gorithm. It is deterministic polynomial–time. Its inputs are a matrix E := [A|B]
(where A,B ∈ Zn×m

q) and a trapdoor TA for Λ⊥q (A). Its output is a ‖T̃A‖–trapdoor

TE for Λ⊥q (E).

4. R← SampleD(A,TA,U,σ). SampleD is a sampling algorithm. It is probabilistic

polynomial–time. Its inputs are a matrix A ∈ Zn×m
q , a trapdoor TA ∈ Z

m×m for

Λ⊥q (A), a matrix U ∈ Zn×k
q and a σ ≥ ‖T̃A‖ ·ω(

√
logm) ∈ R+. Its output is a short

matrix R ∈ Zm×k
q whose distribution is statistically close to DΛU

q (A),σ. Furthermore,

s1(R>) ≤ σ
√

mk, s1(R) ≤ σ
√

mk.

5. T′A ← RandBasis(A,TA,σ). RandBasis is a trapdoor randomising algorithm. It

is probabilistic polynomial–time. Its input are a matrix A ∈ Zn×m
q , a trapdoor TA ∈

Zm×m for Λ⊥q (A), and a σ = ‖T̃A‖ ·ω(
√

logm) ∈ R+. Its output is a new basis T′A
for Λ⊥q (A) whose distribution is statistically close to (DΛ⊥q (A),σ)m. Furthermore,

‖T̃′A‖ ≤ σ
√

m.

MP12 Trapdoor (or G–Trapdoor). Micciancio and Peikert [MP12] have improved the
GPV08 trapdoor by introducing a new notion of lattice trapdoors making use of
primitive matrices.

Definition 2.5.2 (Primitive Matrices, [MP12, Section 4]). A matrix G ∈ Zn×m
q is called

primitive if G ·Zm = Zn
q.

From now on, we only focus on G that is primitive. More precisely, G can be seen to
be the gadget matrix presented in Section 2.5.2 which is also a primitive matrix.

35

2.5. Fundamental Tools

Definition 2.5.3 (G–Trapdoor, [MP12, Definition 5.2]). Let A ∈ Zn×m
q and G ∈ Zn×w

q be

matrices with m ≥ w ≥ n. A matrix R ∈ Z(m−w)×w is called G–trapdoor for A with tag H
(which is an invertible matrix in Zn×n

q) if

A ·
[R

Iw

]
= HG.

The quality of R is measured by s1(R) (i.e., sup norm of R).

Given G is primitive, then A is also primitive if A admits a G–trapdoor. We state a
lemma that collects necessary algorithms for G–trapdoors.

Lemma 2.5.5 ([MP12]). Let n, q ∈ Z+, q ≥ 2, w = ndlogqe, m ≥ w ≥ n. Let G ∈ Zn×w
q be

a primitive matrix or even the gadget matrix. For G–trapdoor, there exist the following

algorithms:

1. (A,R)←MPGenTrap(1n,1m,q). MPGenTrap is a trapdoor generation algorithm.

It is probabilistic polynomial–time. Its inputs are integers n,q and m. Its outputs

is a pair (A,R) ∈ Zn×m
q ×Z(m−w)×w, where R is a G–trapdoor for A such that A is

negligibly far from uniform over Zn×m
q .

2. x← MPSamTrap(R,A,u,σ)a. MPSamTrap is a sampling algorithm. It is proba-

bilistic polynomial–time. Its inputs are a matrix A ∈ Zn×m
q and its G–trapdoor ma-

trix R ∈ Z(m−w)×w
q , a Gaussian parameter σ≥ω(

√
logn) ·

√
7(s1(R)2 + 1) b, and any

u ∈ Zn
q. Its output is a vector x whose distribution is negligibly far from DΛu

q(A),σ.

3. R′ ← MPDelTrap([A|A1],R,H′,σ′). MPDelTrap is a trapdoor delegation algo-

rithm. It is probabilistic polynomial–time. Its inputs are a matrix A′ := [A|A1] ∈
Zn×m

q ×Zn×w
q , a G–trapdoor R ∈ Z(m−w)×w for A, and an invertible H′ ∈ Zn×n

q , a

Gaussian parameter σ′ ≥ ηε(Λ⊥q (A)) c. Its output is a G–trapdoor R′ ∈ Zm×w for

A′ such that s1(R′) ≥ σ′ ·O(
√

m +
√

w) except with negligible probability.

LVV19 trapdoor. The LVV19 trapdoor is a trapdoor mechanism for polynomials in-
volved in the DMPLWE problem. The mechanism was developed in [LVV19] and
is a modification of the MP12 trapdoor. To formally introduce the LVV19 trapdoor,
now we will define Toeplitz matrix and present its basic properties.

aIn [MP12], the algorithm’s name is SampleD. We change its name into MPSamTrap to distinguish it
from SampleD in Lemma 2.5.4 which belongs to GPV08 trapdoor.

bSee [MP12, Section 5.4, Quality analysis]
cBy [MP12, Lemma 5.3], the basis SA of Λ⊥q (A) satisfies ‖S̃A‖ ≤ s1(

[I R
0 I

]
) · ‖S̃‖ = (s1(R) + 1) · |̃S‖

where SA is orthogonalised in suitable order, where ‖S̃‖ =
√

5. By Lemma 2.3.1, ηε(Λ⊥q (A)) ≤ ‖S̃A‖ ·√
ln(2n(1+1/ε))

π ≈ ‖S̃A‖ ·ω(
√

logn).

36

2.5. Fundamental Tools

Definition 2.5.4 (Toeplitz Matrix). Suppose that R is a ring. Let d,n ∈ Z+. For any

v ∈ R<n[x], the Toeplitz matrix Tpn,d(v) ∈ R(n+d−1)×d is a matrix whose column j comprises

the coefficient vector of x j−1 · v. These coefficients are put from the top going down with

an increasing degree of x. The zeros 0’s will be inserted, if any.

For example, let u(x) = 9−3x2 + 7x3 ∈ Z[x] and d = 3,n = 4. Then,

Tp4,3(u) =

9 0 0
0 9 0
−3 0 9
7 −3 0
0 7 −3
0 0 7

∈ R6×3.

The Toeplitz matrix enjoys the properties given in Lemmas 2.5.6–2.5.8 below.

Lemma 2.5.6. Let v,w ∈ R<n[x]. Then,

Tpn,d(v±w) = Tpn,d(v)±Tpn,d(w).

Lemma 2.5.7. Let v ∈ R<n[x]. It holds that

Tpn,d(v) = [Tpn+d−1,1(v)|Tpn+d−1,1(x · v)| · · · |Tpn+d−1,1(xd−1 · v)].

Lemma 2.5.8 ([LVV19, Lemma 7]). For k,n,d ∈ Z+ and v ∈ R<k[x], if w ∈ R<n[x], then

Tpk,n+d−1(v) ·Tpn,d(w) = Tpk+n−1,d(v ·w).

Definition 2.5.5 (Toeplitz Representation). Let a = (a1, · · · ,an) be an n–family of polyno-

mials for any integer n > 0. A matrix A is called a Topelitz representation for a if it is a

concatenation of all Toeplitz matrices according to all polynomials a1’s in a..

We are now going to give the definition for LVV19 trapdoor. The LVV19 trapdoor
follows the MP12 trapdoor through Toeplitz representations. First, let τ = dlogqe, γ =

(n + 2d − 2)/d and β = dlogn/2e. Consider the family g = (g1, · · · ,gγτ) ∈ (Zn+d−1
q [x])γτ,

where
g j = 2ηxdζ ∈ Zn+d−1

q [x], (2.3)

for j = ζτ+η+1 with η ∈ {0, · · · , τ−1}, ζ ∈ {0, · · · ,γ−1}. Define the Toeplitz representation
for g as

G = [Tpn+d−1,d(g1)| · · · |Tpn+d−1,d(gγτ)] ∈ Z
dγ×dγτ
q . (2.4)

Definition 2.5.6 (LVV19 Trapdoor, formally stated via [LVV19]). Let t1, n1, t2, n2 ∈

Z+. Let a = (a1, · · · , at1) ∈ (Z<n1
q [x])t1 and g = (g1, · · · ,gt2) ∈ (Zn2

q [x])t2 . The family of

37

2.5. Fundamental Tools

polynomials td is called a g–trapdoor for a if there exist a Toeplitz representation A for

a, a Toeplitz representation G for g, a Toeplitz representation T for td (with appropriate

dimensions) such that

A ·
[T

I
]
= G.

We state two basic algorithms with respect to the LVV19 trapdoor. The first algorithm
LVVGenTrap(1n) gives a way to generate a family of polynomials aε together with a g–
trapdoor tdε ; whilst the second algorithm LVVSamTrap uses (aε , tdε) to sample a family
of polynomials r from a distribution close to a discrete Gaussian over Z under condition
that

∑t+γτ
i=1 ai · ri = u, given a polynomial u of appropriate degree.

Lemma 2.5.9 ([LVV19]). Let n,d,γ, t,β,τ ∈ Z+ be such that q = poly(n), d ≤ n, dt/n =

Ω(logn), dγ = n + 2d− 2, τ := dlog2 qe, β := d log2(n)
2 e � q/2. For g–trapdoor, there exist

the following algorithms:

1. (aε , tdε)← LVVGenTrap(1n). LVVGenTrap is a trapdoor generation algorithm. It

is probabilistic polynomial–time. Its input is a security parameter n. Its output is a

pair (aε , tdε), where tdε is a g–trapdoor for aε . Furthermore, the distribution of aε
is negligibly far from uniform over (Z<n

q [x])t × (Z<n+d−1
q [x])γτ.

2. r← LVVSamTrap(aε = (a1, · · · ,at+γτ), tdε = (w(1), · · · ,w(γτ)),u,σ)). LVVSamTrap

is a sampling algorithm. It is probabilistic polynomial–time. Its inputs are aε =

(a1, · · · ,at+τγ) ∈ (Z<n
q [x])t+τγ and its g–trapdoor tdε , a Gaussian parameter σ ≥

ω(
√

log(dγ)) ·
√

7(s2
1(Tε) + 1), and any u ∈ Z<n+2d−2

q [x]. Its output is a polynomial

family r := (r1, · · · ,rt+γτ) whose distribution is negligibly far from (DZ2d−1,σ[x])t ×

(DZd ,σ[x])γτ. Moreover,

〈aε ,r〉 :=
t+γτ∑
i=1

ai · ri = u.

Here, matrix Tε is defined as in Equation (2.6).

Below, we describe in detail LVVGenTrap and LVVSamTrap for reference later in
Chapter 4.

• (aε , tdε)← LVVGenTrap(1n). Do the following:

1. Sample a′ = (a1, · · · ,at)
$
←− (Z<n

q [x])t, and for all j ∈ [γτ], sample w(j)
= (w(j)

1 ,

· · · ,w(j)
t)← (Γd[x])t, where Γ :=U({−β, · · · ,β}).

2. For all j ∈ [γτ], define u j = 〈a′,w(j)
〉 and at+ j = g j−u j.

3. Output aε := (a1, · · · ,at,at+1, · · · ,at+γτ) with its corresponding trapdoor tdε :=
(w(1), · · · ,w(γτ)).

38

2.5. Fundamental Tools

• r← LVVSamTrap(aε = (a1, · · · ,at+γτ), tdε = (w(1), · · · ,w(γτ)),u,σ). Do the follow-
ing:

1. First, construct (implicitly) Toeplitz representations A′, Aε ,Tε ,G for a′, aε ,
tdε , g, respectively as below:

A′ = [Tpn,2d−1(a1)| · · · |Tpn,2d−1(at)],

Aε : = [Tpn,2d−1(a1)| · · · |Tpn,2d−1(at)|Tpn+d−1,d(at+1)|

· · · |Tpn+d−1,d(at+γτ)],
(2.5)

Tε :=

Tpd,d(w(1)

1) · · · Tpd,d(w(γτ)
1)

...
...

Tpd,d(w(1)
t) · · · Tpd,d(w(γτ)

t)

 ∈ Z(2d−1)t×dγτ
q , (2.6)

and

Idγτ =

Tp1,d(1) · · ·
· · · · · ·

· · · Tp1,d(1)

 ∈ Zdγτ×dγτ
q . (2.7)

Here, Idγτ is the unit matrix of dimension dγτ. Then Aε = [A′|G−A′Tε] and
hence Aε ·

[Tε
Idγτ

]
= G.

2. The Toeplitz matrix of u is u = Tpn+2d−2,1(u) ∈ Zn+2d−2
q .

3. Sample r ∈ Z(2d−1)t+dγτ from DΛu
q(A),σ by calling the algorithm MPSamTrap

mentioned in Lemma 2.5.5 using the matrix Tε , with noting that by Lemma
2.5.5

σ ≥ ω(
√

log(dγ)) ·
√

7(s1(Tε)2 + 1), (2.8)

and by Lemma 2.1.2,

s1(Tε) ≤
√

(2d−1) · t · (dγτ) ·β. (2.9)

4. Parse r as [r>1 | · · · |r
>
t+γτ]

>, and rewrite it as a Toeplitz representation for poly-
nomials r1, · · · ,rt+γτ, where r j = Tp2d−1,1(r j), deg(r j) < 2d− 1, ∀ j ∈ [t], r j =

Tpd,1(r j), deg(rt+ j) < d, ∀ j ∈ t + 1, · · · , t +γτ.

5. Output r := (r1, · · · ,rt+γτ). Note that 〈aε ,r〉 =
∑t+γτ

i=1 ai · ri = u.

More details can be found in [LVV19, Section 5].

39

2.5. Fundamental Tools

2.5.4 Lattice Homomorphic Evaluations

Lattice homomorphic evaluations [BGG+14] exploit some techniques developed for fully
homomorphic encryption (FHE) regarding the gadget matrix G and the accompanied al-
gorithm G−1. For what FHE is, please refer to Section 1.1. Here, we will make the term
“homomorphic evaluations” clear. Informally speaking, the idea of lattice homomorphic
evaluations is to homomorphically evaluate a function f through a list of “ciphertexts”
of LWE form {ci := (xiG + Bi)>s + ei}i∈[d] to obtain an evaluated ciphertext of LWE form
c f := (f (x1, · · · , xd) ·G+B f)>s+e f . Here Bi’s are uniformly random matrices. To do that,
we need two algorithms called Evalpk, Evalct that work as follows:

{Bi}i∈[d]
Evalpk, f
−−−−−−→ B f

{ci}i∈[d]
Evalct, f
−−−−−−→ c f

Moreover, in security proof reductions we may replace uniformly random matrices
Bi’s with one computed as ASi − x∗G = Bi for some uniformly random matrix A, short
matrices Si’s and some vector x∗. Then, we also need algorithm Evalsim that

{ASi−x∗G}i∈[d]
Evalsim, f
−−−−−−−→ AS f − f (x∗)G = B f

The algorithms Evalpk, Evalct and Evalsim should work well together.
We will formally present the lattice homomorphic evaluations below. Let n,q,d,m ∈

Z+ such that m = Θ(n logq). Let G ∈ Zn×m
q be the gadget matrix defined in Section 2.5.2.

For i ∈ [d], let xi ∈ Zq, x∗i ∈ Zq, Bi
$
←− Zn×m

q , Si ∈ Z
m×m
q and ei ∈ Z

m
q with ‖ei‖ ≤ δ. For

s
$
←− Zn

q, and for each i ∈ [d], define

ci := (xiG + Bi)>s + ei ∈ Z
m
q .

Let F = { f : (Zq)d → Zq} denote a family whose each function can be computed by
depth τ, polynomial–size arithmetic circuits (Cλ)λ∈N.

Lemma 2.5.10 ([BGG+14, Section 4]). There exist deterministic polynomial–time algo-

rithms Evalpk, Evalct, Evalsim and a constant βF associated F such that the following

properties hold.

1. If B f ← Evalpk(f ∈ F , (Bi)d
i=1), then B f ∈ Z

n×m
q .

2. If c f ← Evalct(f ∈ F , ((xi,Bi,ci))d
i=1), and B f ← Evalpk(f , (Bi)d

i=1), then

c f := (f (x1, · · · , xd) ·G + B f)>s + e f ,

40

2.6. Security Proof Models

where ‖e f ‖ ≤ βF · ‖ei‖ < βF ·δ.

3. If S f ← Evalsim(f ∈ F , ((x∗i ,Si))d
i=1,A) and B f ← Evalpk(f , (ASi− x∗i G)d

i=1) then

AS f − f (x∗1, · · · , x
∗
d) ·G = B f .

In particular, if S1, · · · ,Sd
$
←− {−1,1}m×m, then s1(S f) < βF ·maxi∈[d] s1(Ri) ≤ βF ·

20
√

m d with all but negligible probability for all f ∈ F .

Lemma 2.5.11 gives an estimation of the constant βF for the family F defined above.

Lemma 2.5.11 ([BGG+14, Lemma 4.7]). For any f ∈ F , Suppose that all of the input

values to the multiplication gates (possibly except one) of circuits Cλ are bounded by

some positive integer p� q. Then,

βF =

(
pd −1
p−1

·m
)τ
.

2.6 Security Proof Models

Throughout this thesis, we use the game–playing method to give security proof for cryp-
tosystems. Following the approach, a security property is abstracted to a security game.
This game is played by an adversary and a challenger. The game tries to mimic the nat-
ural behaviours of a realistic potential adversary against the cryptosystem. For example,
the real–world adversary can try to “collect as much information about a system as pos-
sible” before “attacking”. In the game, “collecting as much information about a system
as possible” is modelled as being able to query some oracles to get back some desired
information; while “attacking” is demonstrated via the action “challenging”, when the
adversary releases the target he wants to challenge. Winning or losing the game depends
on what the adversary can reach after “challenging”. Roughly speaking, if the oracles
are working via their designed functionality, then we say that the game is in the standard
model (SDM). For example, we consider a hash function as an oracle. Suppose further
that the adversary can query to the oracle. Then, in SDM, the challenger replies to the
query with the actual output produced by the hash function.

By contrast, due to either efficacy reasons or the difficulty in seeking an SDM proof,
one can instead design a cryptosystem that is secure in the random oracle model (ROM)
[BR93]. In ROM, one or many oracles (e.g., hash functions) can be replaced by random
oracles, which return truly random values. Then, instead of using the oracle to produce
the responses, the challenger instead can sample these responses uniformly at random
over an appropriate set/space.

dThis is due to Lemma 2.1.3

41

2.7. Cryptographic Primitives

In the thesis, we will take both models into account.

2.7 Cryptographic Primitives

This section reviews some cryptographic primitives of interest in the upcoming chapters.

2.7.1 Digital Signature

Digital signatures can guarantee the authenticity of messages/documents. In a public–key
digital signature scheme, a party (i.e., signer) uses a secret key to sign on a message/doc-
ument to get a signature which can be verified together with the message/document just
using the corresponding public key by any other party (i.e., verifier).

Syntax. A digital signature (DS) ΠDS consists of three polynomial–time algorithms
DS.Setup, DS.Sign, and DS.Verify. The algorithms work as follows:

• (pp,pk,sk) ← DS.Setup(1λ). DS.Setup is the setup generation algorithm. It is
probabilistic polynomial–time. Its input is a security parameter λ. Its outputs are a
set of public parameters pp, a public key pk and a corresponding secret key sk.

• ⊥/Σ← DS.Sign(pp,sk,µ). DS.Sign is the signing algorithm. It is probabilistic
polynomial–time. Its inputs are a set of public parameters pp, a secret key sk and
a message µ. Its output is either a signature Σ if it succeeds or a failure symbol ⊥
otherwise.

• 1/0 := DS.Verify(pp,pk,µ,Σ). DS.Verify is the verification algorithm. It is deter-
ministic polynomial–time. Its inputs are a set of public parameters pp, a public key
pk, a message µ and a signature Σ. Its output is either 1 (if the signature Σ is non–⊥
and valid) or 0 (otherwise).

Correctness. The correctness of ΠDS is defined as follows. For any security parameter λ,
any (pp,pk,sk)← DS.Setup(1λ) and any message µ, it holds that

Pr[DS.Verify(pp,pk,µ,DS.Sign(pp,sk,µ)) = 1] = 1−negl(λ),

over the randomness of all algorithms involved.

Security Notions. For a DS, the basic security notion is EUF–aCMA (i.e., existential

unforgeability under adaptive chosen message attacks). Assuming that any polynomial–
time adversary can see signatures produced on some messages of its choice, the EUF–
aCMA security guarantees that the adversary cannot produce any valid signature for a
new message. A relaxation of EUF–aCMA is the static one (EUF–sCMA) that requires

42

2.7. Cryptographic Primitives

the adversary specifies, in advance, a list of s queried messages µ1, · · · ,µs for some s ∈ Z+.
Figure 2.3 presents the game for EUF–sCMA. The game for EUF–aCMA is precisely
DSEUF–sCMA
F

(λ) but having no Step 1.

GAME DSEUF–sCMA
F

(λ)⇒ 0/1:

1. µ1, · · · ,µs←F (λ);
2. (pp,pk,sk)← DS.Setup(1λ);
3. (µ∗,Σ∗)←F SQ(sk,µ1,··· ,µs)(pp,pk);
4. If DS.Verify(pp,pk,µ∗,Σ∗) = 1 and µ∗ , µi for all i ∈ [s], return 1.

Otherwise, return 0.
Queried Oracles:
• Signing Oracle SQ(sk,µ1, · · · ,µs): Return Σi← DS.Sign(pp,sk,µi) for i ∈ [s].

Figure 2.3: Existential unforgeability game for DS.

We formally define the EUF–sCMA security through the game DSEUF–sCMA
F

(λ) (Fig-
ure 2.3) and Definition 2.7.1.

Definition 2.7.1 (EUF–sCMA for Digital Signatures). Define the advantage of F in the

game DSEUF−sCMA
F

(λ) (Figure 2.3) by

AdvEUF−sCMA
F ,DS (λ) :=

∣∣∣Pr[DSEUF−sCMA
F

(λ)⇒ 1]−1/2
∣∣∣ .

We say that ΠDS is EUF–sCMA if, for any efficient algorithm F , it holds that

AdvEUF−sCMA
F ,DS (λ) ≤ negl(λ).

A stronger security notion of DS is strong unforgeability against chosen message at-
tacks (SUF–CMA) which additionally requires that the forger cannot produce a valid new
signature for any previously queried messages. Specifically, Step 4 of DSSUF–sCMA

F
(λ)

should be “If DS.Verify(pp,pk,µ∗,Σ∗) = 1 and (µ∗,Σ∗) , (µi,Σi) for all i ∈ [s], return 1.
Otherwise, return 0.”.

2.7.2 Blind Signature

Blind Signature. Blind signature (BS) [Cha83] is a kind of digital signature with the
ability to make messages invisible to the signer while being signed. We remind its
syntax and security notions below.

Syntax. A blind signature scheme is a system ΠBS that consists of the polynomial–time
algorithms BS.Setup, BS.Sign, BS.Verify defined as follows:

43

2.7. Cryptographic Primitives

• (pp,pk,sk)← BS.Setup(1λ). BS.Setup is the key setup algorithm. It is probabilis-
tic polynomial–time. Here, λ denotes a security parameter. The algorithm outputs
a set of system parameters pp, a public key pk and a secret key sk.

• (Σ,V)← BS.Sign(pp,sk,pk,µ). BS.Sign is the signing algorithm. It is a proba-
bilistic polynomial–time interactive protocol between a user algorithmU(pp,pk,µ)
and a signer algorithm S(pp,sk) in such a way that the user will get the signature Σ

on message µ, while the signer gets a viewV. In the case that the interaction fails,
Σ := ⊥ andV := ⊥.

• 1/0 := BS.Verify(pp,pk,µ,Σ). BS.Verify is the verification algorithm. It is determin-
istic polynomial–time. Here, pp is a set of system parameters, pk – a public key, µ
– a message and Σ – a signature. The algorithm returns either 1 (if the signature is
non–⊥ and valid) or 0 (otherwise).

Correctness. The scheme ΠBS is correct if for any security parameter λ, any (pp, pk, sk)
← BS.Setup(1λ), any message µ and any (Σ,V)← BS.Sign(pp,sk,pk,µ), it holds that

Pr[BS.Verify(pp,pk,µ,Σ) = 1] = 1−negl(λ),

over the randomness of all algorithms.

Security Notions. The basic security requirements for a blind signature are blindness

and one–more unforgeability (OMUF). The blindness guarantees that any message being
signed is hidden from the signer. The OMUF security ensures that the number of valid
signatures is always not larger than that of successful interaction between the user and the
signer.

The blindness is defined in Figure 2.4 and Definition 2.7.2. Whereas the OMUF
security is defined in Figure 2.5 and Definition 2.7.3.

GAME BSBLIND
S∗

(λ)⇒ 0/1:

1. (pp,pk,sk)←S∗BS.Setup(1λ);
2. (µ0,µ1)←S∗(pk,sk);

3. b
$
←− {0,1},U1 :=U(pk,µb),U2 :=U(pk,µ1−b);

4. (Σ1,Σ2)←S∗U1,U2 ;
5. b′←S∗,b′ ∈ {0,1};
6. If b′ = b, return 1. Otherwise, return 0.

Figure 2.4: Blindness game for BS.

44

2.7. Cryptographic Primitives

Definition 2.7.2 (Blindness for Blind Signatures). Define the advantage ofS∗ in the blind-

ness game BSBLIND
S∗

(λ) (Figure 2.4) by

AdvBLIND
S∗,BS (λ) :=

∣∣∣Pr[BSBLIND
S∗

(λ)⇒ 1]−1/2
∣∣∣ .

We say that ΠBS is blind if, for any efficient algorithm S∗, it holds that

AdvBLIND
S∗,BS (λ) ≤ negl(λ).

GAME BSOMUF
U∗

(λ)⇒ 0/1:

1. (pp,pk,sk)← BS.Setup(1λ);
2. (µ1,Σ1), · · · , (µs,Σs)←U∗S(sk)(pk) after at most s−1

successful signing interactions with S(sk);
3. If BS.Verify(pp,µi,Σi,pk) = 1,∀i ∈ [s] and µi , µ j for all

i, j ∈ [s], i , j, return 1. Otherwise, return 0.

Figure 2.5: One–more unforgeability game for blind signature.

Definition 2.7.3 (One–more Unforgeability for Blind Signatures). Define the advantage

ofU∗ in the game BSOMUF
U∗

(λ) (Figure 2.5) by

AdvOMUF
U∗,BS(λ) :=

∣∣∣Pr[BSOMUF
U∗

(λ)⇒ 1]
∣∣∣ .

We say that ΠBS is OMUF secure if, for any efficient algorithmU∗, it holds that

AdvOMUF
U∗,BS(λ) ≤ negl(λ).

Forward–secure Blind Signatures. We will focus on a variant of blind signature that
we call forward–secure blind signatures (FSBS). For the syntax and security notions of
FSBS, we follow [DCK03], which is in turn adapted from [BM99].

Syntax. A FSBS scheme ΠFSBS composes of polynomial–time algorithms FSBS.Setup,
FSBS.KeyUp, FSBS.Sign, and FSBS.Verify, which are described as follows:

• (pp,pk,skε) ← FSBS.Setup(1λ). FSBS.Setup is the key setup algorithm. It is
probabilistic polynomial–time. Its input is a security parameter λ. Its outputs are
system parameters pp, a public key pk and an initial secret key skε . Suppose that
pp implicitly includes a time duration T .

• skt+1← FSBS.KeyUp(skt, t). FSBS.KeyUp is the key update algorithm. It is prob-
abilistic polynomial–time. Its input is a secret key skt at time point t. Its output is

45

2.7. Cryptographic Primitives

a secret key skt+1 for time point t + 1. Note that after having skt+1, the algorithm
deletes the key skt.

• (V,Σ)← FSBS.Sign(pp,pk,skt, t,µ). FSBS.Sign is the signing algorithm. It is
a probabilistic polynomial–time interactive protocol between a user U(pp,pk, t,µ)
and a signer S(pp,pk,skt, t). After the interaction, the user obtains a signature Σ on
message µ corresponding to time point t, while the signer gets its own view V. In
the case that the interaction fails, Σ := ⊥ andV := ⊥.

• 1/0 := FSBS.Verify(pp,pk, t,µ,Σ). FSBS.Verify is the verification algorithm. It is
deterministic polynomial–time. Its inputs are system parameters pp, a public key
pk, a time point t, a message µ and a signature Σ. Its output is either 1 (if the
signature is non–⊥ and valid) or 0 (otherwise).

Correctness. The scheme ΠFSBS is correct if for any security parameter λ, any (pp,pk,skε)
←FSBS.Setup(1λ), any time point t, any message µ and any (Σ,V)←FSBS.Sign(pp,pk,

sk, t,µ),
Pr[FSBS.Verify(pp,pk, t,µ,Σ) = 1] = 1−negl(λ),

over the randomness of all algorithms.

GAME FSBSBLIND
S∗

(λ)⇒ 1/0:

1. (pp,pk,skε)←S∗FSBS.Setup(1λ);
2. (µ0,µ1)←S∗(pp,pk);

3. b
$
←− {0,1},U1 :=U(pp,pk, t1,µb),U2 :=U(pp,pk, t2,µ1−b);

4. (Σ1,Σ2)←S∗U1,U2 ;
5. b′←S∗Σ1,Σ2 ;
6. if b′ = b, return 1. Otherwise, return 0.

Figure 2.6: Blindness game for FSBS.

Security Notions. Two standard security notions required for FSBS are blindness and
forward–secure unforgeability (FSUF) (following [DCK03]). The blindness of FSBS is
the same as that of blind signature. On the other hand, the FSUF security is roughly
similar to the unforgeability of digital signatures but stated in the forward security manner.
The FSUF requires that the user cannot produce any valid signature for any time point
prior to the corrupted time.

We formally define the blindness through the blindness game FSBSBLIND
S∗

(λ) (Figure
2.6) and Definition 2.7.4.

46

2.7. Cryptographic Primitives

Definition 2.7.4 (Blindness). Define the advantage of S∗ in the game FSBSBLIND
S∗

(λ) (Fig-

ure 2.6) by

AdvBLIND
S∗,FSBS(λ) :=

∣∣∣Pr[FSBSBLIND
S∗

(λ)⇒ 1]−1/2
∣∣∣ .

We say that ΠFSBS is blind if, for any efficient algorithm S∗, it holds that

AdvBLIND
S∗,FSBS(λ) ≤ negl(λ).

We define the FSUF security through the game FSBSFSUF
U∗

(λ) (Figure 2.7), and then
in Definition 2.7.5 in which the forgerU∗ is a malicious user (adversary). Moreover, the
game FSBSFSUF

U∗
(λ) is put in the random oracle model (ROM) assuming that the construc-

tion would involve some random oracle. More specifically, we assume that the signing
protocol will exploit some hash function considered as a random oracle. Whenever the
adversary wants to make a signing query, it always makes a random oracle query in ad-
vance.

Definition 2.7.5 (Forward–secure Unforgeability for FSBS). Define the advantage ofU∗

in the game FSBSFSUF
U∗

(λ) (Figure 2.7) by

AdvFSUF
U∗,FSBS(λ) :=

∣∣∣Pr[FSBSFSUF
U∗

(λ)⇒ 1]−1/2
∣∣∣ .

We say that ΠFSBS is FSUF secure if, for any efficient algorithmU∗, it holds that

AdvFSUF
U∗,FSBS(λ) ≤ negl(λ).

2.7.3 Public–key Encryption

Roughly speaking, encryption is a process of transforming a plaintext into a ciphertext.
Mainly, in the public–key encryption (PKE) scheme, one uses a public key to encrypt
a plaintext so that only the corresponding secret key can decrypt the ciphertext. The
thesis does not involve directly PKE but its advanced variants. However, we still give a
description of it for completeness.

Syntax. A PKE system is a tuple ΠPKE of polynomial–time algorithms PKE.Setup,
PKE.Enc and PKE.Dec. They work as follows:

• (pp,pk,sk)← PKE.Setup(1λ). PKE.Setup is the key setup algorithm. It is proba-
bilistic polynomial–time. Its input is a security parameter λ. It outputs are system
parameters pp, a public key pk and a secret key sk.

47

2.7. Cryptographic Primitives

GAME FSBSFSUF
U∗

(λ)⇒ 1/0 :

1. (pp,pk,sk)← FSBS.Setup(1λ);
2. (µ∗, t∗,Σ∗)←U∗KQ(·),HQ(·,·),SQ(·,·),BQ(t);

// NOTE: Only one break–in query to BQ(t) is allowed and BQ(t) is the last one
being queried. After that,U∗ has to output the forgery (µ∗, t∗,Σ∗). Further,
HQ(·) is optional depending on whether the security is considered
in ROM or in SDM.

3. If FSBS.Verify(pp,pk, t∗,µ∗,Σ∗) = 1: return 1.
Otherwise, return 0.

Queried Oracles:
• Key Update Oracle KQ(t): If t < T −1, update secret key skt to skt+1 and update t

to t + 1. If t = T −1 then skT is given as an empty string.
// NOTE: HQ(x, ·) and SQ(x, ·) for all x < t are not allowed after KQ(t).

• Hashing Oracle HQ(t,µ): Return a random value in an appropriate range.
• Signing Oracle SQ(t,µ): Return a valid signature at time point t.
• Break-in Oracle BQ(t) (t < T −1): Return secret key skt and close all oracles KQ(·),

HQ(·, ·), SQ(·, ·), BQ(·). // NOTE: Only one query is allowed.

Figure 2.7: Forward–secure unforgeability game for FSBS.

• ct← PKE.Enc(pp,pk,µ). PKE.Enc is the encryption algorithm. It is probabilis-
tic polynomial–time. Its inputs are system parameters pp, a public key pk and a
plaintext µ. Its output is a ciphertext ct.

• µ/ ⊥:= PKE.Dec(pp,sk,ct). PKE.Dec is the decryption algorithm. It is determin-
istic polynomial–time. Its inputs are system parameters pp, a secret key sk and a
ciphertext ct. Its output is either a plaintext µ (if it succeeds) or a failure symbol ⊥
(otherwise).

Correctness. The correctness for ΠPKE requires that for any security parameter λ, and
any (pp,pk,sk)← PKE.Setup(1λ), and any plaintext µ, it holds that

Pr[PKE.Dec(pp,sk,PKE.Enc(pp,pk,µ)) = µ] = 1−negl(λ),

over the randomness of all algorithms.

Security Notions. For ΠPKE, any polynomial–time adversary should be unable to distin-
guish the ciphertexts of two distinct underlying plaintexts even of the adversary’s choice.
This requirement is called the indistinguishability (IND) security. Moreover, one typically
considers the IND with one of the following three attack models:

• The chosen plaintext attack model (CPA): In this model, the adversary cannot query
to the decryption oracle.

48

2.7. Cryptographic Primitives

• The chosen ciphertext attack model (CCA1): In this model, the adversary can query
to the decryption oracle, but the adversary performs this query before the adversary
commits the target plaintexts.

• The stronger chosen ciphertext attack model (CCA2): In this model, the adversary
can query to the decryption oracle at any time it wants; that is, the adversary can
query to the decryption oracle even after it sees the target ciphertext.

More formally, the IND–ATK (where ATK ∈ {CPA, CCA1, CCA2}) security of a PKE is
defined through the following game PKEIND–ATK

A
(λ) (Figure 2.8) and Definition 2.7.6.

GAME PKEIND–ATK
A

(λ)⇒ 1/0:
(where ATK ∈ {CPA,CCA1,CCA2})

1. (pp,pk,sk)← PKE.Setup(1λ);
2. (µ∗0,µ

∗
1)←ADQ1(·)(pp,pk);

3. b
$
←− {0,1}, ct∗← PKE.Enc(pp,pk,µ∗b);

4. b′←Act∗, DQ2(·)(pp,pk); // NOTE: DQ2(ct∗) is not allowed.
5. If b′ = b, return 1. Otherwise, return 0.
Queried Oracles:
• Decryption Oracle DQ1(ct) (allowed only if ATK ∈ {CCA1,CCA2}): Return

the output of PKE.Dec(sk,ct).
• Decryption Oracle DQ2(ct) (allowed only if ATK = CCA2): Return the

output of PKE.Dec(sk,ct).

Figure 2.8: Security game for PKE.

Definition 2.7.6 (IND security for PKE). Define the advantage of the adversaryA in the

game PKEIND–ATK
A

(λ) as

AdvIND–ATK
A, PKE (λ) :=

∣∣∣∣∣Pr[PKEIND–ATK
A (λ)⇒ 1]−

1
2

∣∣∣∣∣ .
We say that ΠPKE is IND–ATK secure if for any polynomial–time adversary A, it holds

that

AdvIND-ATK
A, PKE (λ) ≤ negl(λ).

We involve much a specific lattice–based PKE, named dual Regev, in our lattice–
based designs later. We recall it right below.

Dual Regev PKE. The encryption framework is introduced in [GPV08, Section 7] (for
1–bit plaintexts). It is parameterised by integers n,m,q, some Gaussian parameter σ ≥
ω(

√
logm), a public matrix A ∈ Zn×m

q , and some noise distribution χ. The dual Regev
PKE encompasses polynomial–time algorithms Dual.Setup, Dual.Enc and Dual.Dec de-
scribed for t–bit plaintexts (t ≥ 1) as follows.

49

2.7. Cryptographic Primitives

• (pk,sk)← Dual.Setup(1λ). On input a security parameter λ, do:

1. Sample a matrix E←Dm×t
Z,σ .

2. Output U := AE ∈ Zn×t
q as public key, E as secret key.

• ct← Dual.Enc(pk,µ). On input a public key pk and a plaintext µ ∈ {0,1}t, do:

1. Sample s
$
←− Zn

q, x0← χm and x1← χt.

2. Compute c0 = A>s + x0 ∈ Z
m
q , and c1 := U>s + x1 +µ · dq/2e ∈ Zt

q.

3. Output ciphertext ct = (c0,c1).

• µ/⊥:= Dual.Dec(pk,sk,ct). On input a public key pk, a secret key sk and a cipher-
text ct, do:

1. Compute µ′ = (µ′1, · · · ,µ
′
t) := c1−E>c0.

2. For i ∈ [t], return 0 if |µ′i | < q/4; otherwise return 1.

One can modify the dual Regev PKE to have a variant working as follows. In the
Dual.Setup, generate A together with a trapdoor TA, then sample U uniformly at random.
Then, use TA to compute E such that U := AE ∈ Zn×t

q via the lattice trapdoor algorithms
(reviewed in Section 2.5.3). This case, TA is a secret key, while (A,U) is a public key.

2.7.4 Hierarchical Identity–based Encryption

Hierarchical identity–based encryption (HIBE) [GS02a] is a delegatable variant of identity–
based encryption (IBE) [Sha85]. Recall that in an IBE system, a public key can be an
identity, e.g., an email address or a user account. Further, there is a method that generates
a corresponding private key from the master secret key on each identity. HIBE is quite the
same as IBE, except that the identities in HIBE are arranged as a tree. Moreover, HIBE
can derive a private key for a child identity from any private key for parent identities. We
give the formal syntax and security notions for HIBE below.

Syntax. We denote by d the maximum depth of identities. Suppose that identities are
presented as binary vectors. For example, id = (id1, · · · , id`) ∈ {0,1}` is a depth–` identity.
In this example, id|id`+1 = (id1, · · · , id`, id`+1) is a child of id. A HIBE scheme ΠHIBE

composes of polynomial–time algorithms HIBE.Setup, HIBE.Ext, HIBE.Der, HIBE.Enc

and HIBE.Dec, defined as follows:

• (pp,mpk,msk)← HIBE.Setup(1λ,1d). HIBE.Setup is the key setup algorithm. It
is probabilistic polynomial–time. Its inputs are a security parameter λ and the max-
imum depth d. Its outputs are system parameters pp, a master public key mpk and
a master secret key msk.

50

2.7. Cryptographic Primitives

• skid← HIBE.Ext(pp,msk, id). HIBE.Ext is the key extraction algorithm. It is prob-
abilistic polynomial–time. Its inputs are system parameters pp, a master secret key
msk and an identity id. Its output is a private key skid for id.

• skid|id`+1 ← HIBE.Der(pp,skid, id|id`+1). HIBE.Der is the key derivation algorithm.
It is probabilistic polynomial–time. Its inputs are system parameters pp, a secret
key skid for the identity id and a child id|id`+1 of id. Its output is a private key
skid|id`+1 for id|id`+1.

• ct← HIBE.Enc(pp,mpk, id,µ). HIBE.Enc is the encryption algorithm. It is proba-
bilistic polynomial–time. Its inputs are system parameters pp, a master public key
mpk, an identity id and a plaintext µ. Its output is a ciphertext ct.

• µ/ ⊥:= HIBE.Dec(pp, id,skid,ct). HIBE.Dec is the decryption algorithm. It is de-
terministic polynomial–time. Its inputs are system parameters pp, an identity id and
its associated private key skid and a ciphertext ct. Its output is either a plaintext µ
(if it succeeds) or a failure symbol ⊥ (otherwise).

Note that HIBE.Der works similarly to HIBE.Ext when its input secret key is the master
secret key msk, which can be seen as the private key for any depth–0 identity.

Correctness. The HIBE scheme ΠHIBE is correct if for any security parameter λ, any d,
any (pp,mpk,msk)← HIBE.Setup(1λ,1d), any identity id, and any skid generated either
via HIBE.Ext(pp,msk, id) or from HIBE.Der(pp,skid′ , id) (where id′ is any parent of id)
and any plaintext µ, the following holds:

Pr[HIBE.Dec(pp, id,skid,HIBE.Enc(pp,mpk, id,µ)) = µ] = 1−negl(λ),

over the randomness of all involved algorithms.

Security Notions. The standard security of a HIBE is the indistinguishability of cipher-

texts under chosen identities against chosen plaintext/ciphertext attack (for short, IND-
ID-CPA/CCA). The IND-ID-CPA/CCA security is similar to the IND-CPA/CCA security
of PKE, with an additional assumption that the adversary can see private keys concern-
ing identities of its choice. A relaxation of IND–ID–CPA/CCA is IND–sID–CPA/CCA
standing for “indistinguishability of ciphertexts under selective chosen identities against
chosen–plaintext/ciphertext attack”. We model IND–sID–CPA/CCA through the game
HIBEIND–sID–ATK

A
(λ,d) given in Figure 2.9. In the game, the challenger can ask the adver-

sary for its target identity id∗ before generating keys. In Figure 2.9, if the target identity
id∗ is released together with µ∗0, µ

∗
1 in Step 3 instead of in Step 1, then we have the game

for IND–ID–ATK. Here ATK can be one of CPA, CCA1 and CCA2.

51

2.7. Cryptographic Primitives

GAME HIBEIND-sID-ATK
A

(λ,d)⇒ 1/0:
(where ATK ∈ {CPA,CCA1,CCA2})

1. id∗ = (id∗1, · · · , id
∗
k)←A(λ,d) with k ≤ d;

2. (pp,mpk,msk)← HIBE.Setup(1λ,1d);
3. (µ∗0,µ

∗
1)←APKQ(·), DQ1(·,·)(pp,mpk);

4. b
$
←− {0,1}, ct∗← HIBE.Enc(pp,mpk, id∗,µ∗b);

5. b′←Act∗, PKQ(·), DQ2(·,·)(pp,mpk);
// NOTE: DQ2(id∗,ct∗) is not allowed.

6. If b′ = b, return 1. Otherwise, return 0.
Queried Oracles:
• Private Key Oracle PKQ(id): Return the output of HIBE.Ext(pp,msk, id).

// NOTE: id is not a prefix of id∗.
• Decryption Oracle DQ1(id,ct) (allowed only if ATK ∈ {CCA1,CCA2}):

Return the output of HIBE.Dec(pp, id,skid,ct).
• Decryption Oracle DQ2(id,ct) (allowed only if ATK = CCA2): Return the

output of HIBE.Dec(pp, id,skid,ct).

Figure 2.9: Security game for HIBE.

Moreover, there is one more version of IND–(s)ID–ATK in which the adversary just
sends only one challenge plaintext, and the challenger C produces the challenge ciphertext
ct∗ as follows:

• Having received the challenge plaintext µ∗, C chooses b
$
←− {0,1}.

• If b = 0, then ct∗← HIBE.Enc(pp,mpk, id∗,µ∗b).

• If b = 1, ct∗ is randomly uniform over the ciphertext space.

We call this security version as the indistinguishability from randomness under (selective)

chosen identities against chosen plaintext/ciphertext attack (INDr–(s)ID–CPA/CCA).
Now, we state the IND–sID–CPA/CCA security for HIBE in Definition 2.7.7 below.

Definition 2.7.7 (IND–sID–ATK security for HIBE). Define the advantage of the adver-

saryA in the game HIBEIND–sID–ATK
A

(λ) as

AdvIND–sID–ATK
A,HIBE (λ) :=

∣∣∣∣∣Pr[HIBEIND–sID–ATK
A

(λ,d)⇒ 1]−
1
2

∣∣∣∣∣ .
We say that ΠHIBE is IND–sID–ATK secure if for any polynomial–time adversary A, it

holds that

AdvIND-sID-ATK
A,HIBE (λ) ≤ negl(λ).

52

2.7. Cryptographic Primitives

2.7.5 Puncturable Encryption

Puncturable encryption (PE) [GM15] is a subclass of public–key encryption with the abil-
ity to revoke decryption ability through puncturing. In PE, key generation, encryption and
decryption will involve tags. Specifically, any plaintext is encrypted together with some
ciphertext tags. On the other hand, decryption keys can be (possibly multiple times)
punctured with other tags (also called punctures). Note that ciphertext tags and punctures
belong to the same tag space. Suppose that one wants to decrypt a ciphertext using some
decryption key. Then, “puncturing” means that whenever the key has been punctured with
at least one puncture that also belongs to the list of ciphertext tags in the ciphertext, then
decryption will fail. The “puncturing” also involves security requirements for PE.

Formally, the syntax and security notions of PE are given as follows.

Syntax. Besides a security parameter λ, we need some more parameters. We denote
d = d(λ) (respectively, M =M(λ) and T = T (λ)) to be the maximum number of tags
per ciphertext (respectively, the space of plaintexts and the set of valid tags). A PE sys-
tem ΠPE consists of polynomial–time algorithms PE.Gen, PE.Enc, PE.Pun and PE.Dec

stated as follows:

• (pp,pk,sk0)←PE.Gen(1λ,1d). PE.Gen is the key generation algorithm. It is prob-
abilistic polynomial–time. Its inputs are a security parameter λ and positive integer
d indicating the maximum number of tags per ciphertext. Its outputs are system
parameters pp, a public key pk and an initial secret key sk0.

• ct← PE.Enc(pp,pk,µ, tg). PE.Enc is the encryption algorithm. It is probabilistic
polynomial–time. Its inputs are a public key pk, a plaintext µ, and a list tg of
ciphertext tags t1, · · · , td. Its output is a ciphertext ct.

• ski← PE.Pun(pp,pk,ski−1, t∗i). PE.Pun is the key puncturing algorithm. It is prob-
abilistic polynomial–time. Its inputs are system parameters pp, a public key pk, a
punctured key ski−1 and a puncture t∗i . Its outputs is a punctured key ski.

• µ/⊥ := PE.Dec(pp,pk,ski, (ct, tg)). PE.Dec is the decryption algorithm. It is deter-
ministic polynomial–time. Its inputs are system parameters pp, a public key pk, a
ciphertext ct, a punctured key ski and a list tg of tags {t1, · · · , td}. Its output is either
a plaintext µ (if the decryption succeeds) or a failure symbol ⊥ (otherwise).

Correctness. The system ΠPE is correct if for any λ ∈ Z+, any d ∈ Z+, any η ∈ Z+,
any punctures t∗1, · · · , t

∗
η ∈ T , any ciphertext tags tg = (t1, · · · , td) ∈ T , any (pp,pk,sk0)←

PE.Gen(1λ,1d), any punctured key ski← PE.Pun(pp,pk,ski−1, t∗i), and any plaintext µ ∈
M it holds sthat

53

2.7. Cryptographic Primitives

• If {t∗1, · · · , t
∗
η}∩ {t1, · · · , td} = ∅, then ∀i ∈ {0, · · · ,η},

Pr[PE.Dec(pp,pk,ski, (PE.Enc(pp,pk,µ, tg), tg)) = µ] ≥ 1−negl(λ).

• If there exist j ∈ [d] and k ∈ [η] such that t∗k = t j, then ∀i ∈ {k, · · · ,η},

Pr[PE.Dec(pp,pk,ski, (PE.Enc(pp,pk,µ, tg), tg)) = µ] ≤ negl(λ),

over the randomness of all involved algorithms.

Security Notions. The standard security notion for PE is the indistinguishability under
chosen punctures against chosen plaintext/ciphertext attacks (IND–PUN–CPA/CCA). It
resembles the IND–ID–CPA/CCA for HIBE stated in Section 2.7.4 with the difference
that IND–PUN–CPA/CCA relates punctures instead of identities. Precisely, the PE secu-
rity game allows an adversary to query on punctures of its choice to get the corresponding
punctured keys. Likewise, one can define the selective version (IND–sPUN–CPA/CCA)
and the “indistinguishability from random” version INDr–(s)PUN–CPA/CCA for the PE’s
security notion. In Figure 2.10, we give the PEIND–sPUN–ATK

A
(λ,d)⇒ 1/0/⊥ game (where

ATK belongs to {CPA, CCA1, CCA2}) for IND–sPUN–ATK which can be easily changed
to one for IND–PUN–ATK.

Definition 2.7.8 (IND–sPUN–ATK security for PE). Define the advantage of the adver-

saryA in the game PEIND–sPUN–ATK
A

(λ) as

AdvIND–sPUN–ATK
A, PE (λ) :=

∣∣∣∣∣Pr[PEIND–sPUN–ATK
A

(λ,d)⇒ 1]−
1
2

∣∣∣∣∣ .
We say that ΠPE is IND–sPUN–ATK secure if for any polynomial–time adversaryA,

AdvIND–sPUN–ATK
A, PE (λ) ≤ negl(λ).

2.7.6 Spatial Encryption

Spatial encryption (SE), put forward by Boneh and Hamburg [BH08, Ham11], is a sub-
class of the so–called predicate encryption (PrE) [KSW08], in which the latter takes at-

tributes and predicates into account. More precisely, encryption (respectively, key gener-
ation) of PrE will performed together with attributes (respectively, predicates). Typically,
an attribute acts as a variable, say x, while a predicate – a function, say f . Decryption is
successful if, say f (x) = 1.

SE has a top space T. A predicate is a vector (or an affine) subspace V of T. An
attribute is a vector (or an affine point) v residing in T. Then v ∈ V is the condition for

54

2.7. Cryptographic Primitives

GAME PEIND–sPUN–ATK
A

(λ,d)⇒ 1/0/⊥:
(where ATK ∈ {CPA,CCA1,CCA2})

1. t̂g = (̂t1, · · · , t̂k)←A(λ,d) with k ≤ d;
2. pT∗← ∅, cT∗← ∅; // Set of punctures and set corrupted tags, respectively
3. (pp,pk,sk0)← PE.Setup(1λ,1d);
4. (cT∗, µ̂0, µ̂1)←APKQ(·), CQ1(·), DQ1(·,·)(pp,pk);

//NOTE: cT∗ is updated and returned via the query to CQ1(·);
5. If {̂t1, · · · , t̂d}∩cT∗ = ∅, return ⊥;

6. b
$
←− {0,1}, ĉt← PE.Enc(pp,pk, t̂g, µ̂b);

7. b′←Aĉt, PKQ(·), CQ2(·), DQ2(·,·)(pp,pk); // NOTE: DQ2(t̂g, ĉt) is not allowed
8. If b′ = b, return 1. Otherwise, return 0.
Queried Oracles:
• Puncture Key Oracle PKQ(t∗i+1): Compute ski+1← PE.Pun(pp,ski, t∗i+1) and

save ski+1. Update pT∗← pT∗∪{t∗i+1}. Always return ⊥.
• Corruption Oracle CQ1(pT∗): Assign cT∗← pT∗. If {̂t1, · · · , t̂d}∩cT∗ = ∅,

return ⊥. Otherwise (i.e., {̂t1, · · · , t̂d}∩cT∗ , ∅), return (cT∗,sk|cT∗|).
// NOTE: This oracle allows to be queried in only one time. Further, after
execution of CQ(·), all subsequent queries to PKQ(·) are answered with ⊥.

• Decryption Oracle DQ1(tg,ct) (allowed only if ATK ∈ {CCA1,CCA2}): Return
the output of PE.Dec(pp,pk,sk|cT∗|, (ct, tg)).

• Corruption Oracle CQ2(pT∗): Always return ⊥.
• Decryption Oracle DQ2(tg,ct) (allowed only if ATK = CCA2): Return the output

of PE.Dec(pp,pk,skid, (ct, tg)).

Figure 2.10: Security game for PE.

successful decryption. However, SE requires that from a decryption key for any space
V1 v T, one can delegate a decryption key for V2 v V1. If attributes and predicates are
affine objects, we call such SE affine. If they are vector objects, then SE is called linear.
We define the dimension of SE by that of the top space T.

Syntax. Formally, an SE system ΠSE encompasses polynomial–time algorithms SE.Setup,
SE.Der, SE.Del, SE.Enc and SE.Dec working as below:

• (pp,msk)← SE.Setup(1λ,sp). SE.Setup is the key setup algorithm. It is proba-
bilistic polynomial–time. Its inputs are a security parameter λ and setup parameters
sp. Its outputs are public system parameters pp and a master secret key msk. Here
pp implicitly defined a top space T. Then, msk is exactly the secret key skT with
respect to T.

• skV ← SE.Der(pp,msk,V). SE.Der is the key derivation algorithm. It is proba-
bilistic polynomial–time. Its inputs are system parameters pp, a master secret key
msk and a subspace V . Its output is a secret key skV for V .

55

2.7. Cryptographic Primitives

• skV2 ← SE.Del(pp,skV1 ,V2). SE.Del is the key delegation algorithm. It is proba-
bilistic polynomial–time. Its inputs are system parameters pp, a secret key skV1 for
the space V1 and a space V2 v V1. Its output is a secret key skV2 for V2.

• ctx ← SE.Enc(pp,x,µ). SE.Enc is the encryption algorithm. It is probabilistic
polynomial–time. Its inputs are system parameters pp, a plaintext µ and an affine
point/vector x. Its output is a ciphertext ctx.

• µ/ ⊥:= SE.Dec(pp,ctx,skV). SE.Dec is the decryption algorithm. It is determin-
istic polynomial–time. Its inputs are system parameters pp, a secret key skV and a
ciphertext ctx. Is output is either a plaintext µ underlying ctx (if x ∈ V) or a failure
symbol ⊥ (otherwise).

GAME SEPAY-sATT-ATK
A

(λ,sp):
(where ATK ∈ {CPA,CCA1,CCA2})

1. x∗←A(1λ,sp);
2. (pp,msk)← SE.Setup(1λ,sp);
3. (µ∗0,µ

∗
1)←AKQ(·), DQ1(·,·)(pp);

4. b
$
←− {0,1}, ct∗x∗ ← SE.Enc(pp,x∗,µ∗b);

5. b′←AKQ(·), DQ2(·,·)(pp,ct∗x∗). //NOTE: DQ2(V,ct∗x∗) is not allowed
with x∗ ∈ V .

6. If b′ = b, return 1. Otherwise, return 0.
Queried Oracles:
• Key Oracle KQ(V) (allowed only if x∗ < V): Return skV ← SE.Der(pp,msk,V).
• Decryption Oracle DQ1(V,ctx) (allowed only if ATK ∈ {CCA1,CCA2}): Run

skV ← SE.Der(pp,msk,V), then return the output of SE.Dec(pp,ctx,skV).
• Decryption Oracle DQ2(V,ctx) (allowed only if ATK = CCA2): Run skV
← SE.Der(pp,msk,V), then return the output of SE.Dec(pp,ctx,skV).

Figure 2.11: Security game for SE.

Correctness. The SE system ΠSE is correct if for any λ ∈ Z+, any appropriate setup
parameters sp, any (pp,msk)← SE.Setup(1λ,sp)), any vector/affine point x, any skV ←

SE.Del(pp,skV′ ,V) (for some V′ such that V v V′) or skV ← SE.Der(pp,msk), and any
plaintext µ ctx ← SE.Enc(pp,x,µ), over the randomness of all involved algorithms, it
holds that

• If x ∈ V then

Pr[SE.Dec(pp,skV ,SE.Enc(pp,x,µ)) = µ] ≥ 1−negl(λ).

56

2.7. Cryptographic Primitives

• Otherwise,

Pr[SE.Dec(pp,skV ,SE.Enc(pp,x,µ)) = µ] < negl(λ).

It is also required that secret key skV for any subspace V follows the same distribution
regardless of the way the key is produced. The way is either directly from SE.Der or
indirectly generated using SE.Del.

Security Notions. There are several security notions for SE, following ones for PrE
[KSW08]. They are combinations of payload–/attribute–hiding with selective/adaptive
security.

• Payload–hiding. The security notion is the most basic for PrE, requiring that no
information of the underlying plaintext is leaked through a ciphertext. However,
the requirement is not required for attributes. When challenged, the adversary must
send to the challenger an attribute, say x∗ (and, of course, two plaintexts µ∗0, µ

∗
1 of

the same length). The restriction f (x∗) = 0 must be fulfilled for any key queries
according to the predicate f .

• Attribute–hiding. This is a stronger security notion than payload–hiding. Attribute–
hiding requires that no information about either plaintext or attached attributes is
leaked through a ciphertext. When challenged, the adversary must send to the chal-
lenger two attributes x∗0, x∗1 (along with two plaintexts µ∗0, µ

∗
1 of the same length).

The restriction f (x∗0) = f (x∗1) must be satisfied for any key queries according to the
predicate f . If there is a query for some f making f (x∗0) = f (x∗1) = 1, then it is a must
that µ∗0 = µ∗1. Note that the notion of weak attribute-hiding mentioned in [AFV11]
is an intermediate one. It requires that f (x∗0) = 0 and f (x∗1) = 0 for any key query
for predicates f ’s.

• Selective security. The adversary must release its target attribute(s) before the
challenger outputs any keys.

• Adaptive (full) security. The adversary does not have to announce its target at-
tribute(s) ahead of time. Instead, the adversary can do that when challenged.

However, we only formally define the selective payload–hiding (PAY–sATT–ATK)
security for SE – see Definition 2.7.9 and the game SEPAY–sATT–ATK

A
(λ) in Figure 2.11.

Note that ATK ∈ {CPA,CCA1,CCA2}. The adaptive version can be obtained with a bit
modification in Step 1 and Step 3 of the game SEPAY–sATT–ATK

A
(λ) in Figure 2.11. Namely,

Step 1 will be deleted and in Step 3, the adversary will release the target attribute x∗ and
two plaintexts µ∗0, µ

∗
1. Accordingly, there is no any restrictions on the adversary’s queries

to Key Oracle KQ(·) as well as Decryption Oracle DQ(·, ·).

57

2.8. Summary

Definition 2.7.9 (PAY–sATT–ATK security for SE). Define the advantage of the adver-

saryA in the game SEPAY–sATT–ATK
A

(λ,sp) as

AdvPAY–sATT–ATK
A, SE (λ) :=

∣∣∣∣∣Pr[SEPAY–sATT–ATK
A

(λ,sp)⇒ 1]−
1
2

∣∣∣∣∣ .
We say that an SE is PAY–sATT–ATK secure if for any polynomial–time adversary A, it

holds that

AdvPAY–sATT–ATK
A, PE (λ) ≤ negl(λ).

2.8 Summary

We have reviewed some preliminary materials for the upcoming chapters. Specifically,
some knowledge regarding lattice–based cryptosystems, such as the background of lat-
tices, the discrete Gaussian distributions, the lattice trapdoors, and the lattice homomor-
phic evaluations, was covered. We also gave a summary of fundamental tools that will be
exploited. In addition, we reviewed related cryptographic primitives.

In Chapter 3, we will consider enhancing blind signatures with the forward security.
The forward security ensures that exposing the current secret key does not affect the past
keys. Our primary contribution presented in Chapter 3 is proposing the first lattice–based
forward–secure blind signature.

58

Chapter 3

Forward–secure Blind
Signatures over Lattices

Part of the content in this chapter appeared in Le et al. [LDS+20]. The author of this

thesis is the first, and one of two corresponding authors of [LDS+20]. He contributed

to finding the topic, the method to design the cryptosystem, the security analysis of the

cryptosystem, and the writing of the manuscript.

3.1 Overview

The key exposure attacks aim to learn about the secret key of a cryptosystem. There-
fore, they are one of the most dangerous attacks that can break cryptosystems completely.
Among other solutions to preventing the attacks (e.g., see [BM99] for a summary), for-
ward security is a promising method helping us minimize damages caused by secret–key
disclosure. Given that a cryptosystem has a list of secret keys, each for a time session,
forward security says that if an adversary compromises the current session key, the infor-
mation of previous session keys is still hidden from the adversary. We illustrate the idea
of forward security in Figure 3.1. Here, assume that at the time ti, the key ski is exposed.
Then, forward security ensures that all secret keys at times before ti (i.e., sk0, · · · ,ski−1)
are still safe, while the ones after ti (i.e., ski+1, · · ·) would be compromised.

Blind signature (BS) is a kind of digital signature introduced by Chaum [Cha83]. In
a BS, one blinds a message before sending it to be signed. This way, no information
about message contents can be leaked to the signer. Cryptographic voting [Kuc10] and
electronic cash schemes [PS96, Section 1] are remarkable applications of BS.

One may ask why and how the signer can sign the message if they cannot see its
content. Fortunately, Chaum [Cha83] also gave an example to explain the idea of blind
signature. Namely, if we write a signature on the outside of a carbon–lined envelope,

59

3.1. Overview

Time points:

Secret keys:

t0 t1 t2 · · · ti ti+1 · · · · · ·

sk0 sk1 sk2 · · · ski ski+1 · · · · · ·

Current

Exposed

previous

still safe

after

compromised

Figure 3.1: Illustration of forward security.

there is a carbon copy of the signature captured on a slip of paper inside the envelope.
Obviously, in this case, we do not see the paper inside, but we can still sign on it.

In this chapter, we consider endowing a BS with forward security, i.e., forward–
secure blind signature (FSBS). (For the formal definition of BS and FSBS, please refer to
Section 2.7.2.) Certainly, FSBS has the same applications as BS and additionally enjoy
the forward security. Furthermore, we put such a scheme into a quantum–safe scenario.
In doing that, we propose the first construction of lattice–based blind signature enjoying
forward security (in the random oracle model (ROM)). Specifically, we rely the construc-
tion’s security on the short integer solution (SIS) problem. In the following, we give
more details about the contributions and techniques/tools that we will present later in this
chapter.

Forward Security. The approach to have forward security we apply in this work is to
put time points into a structure of a directed binary tree and build up a key evolution
mechanism working on the structure. In the structure, we represent each time point as
a binary vector whose elements can be arranged via tree nodes going from the root to
the leaf concerning the time point. This way, each leaf of the tree corresponds to a time
point. Any smaller time points sit to the left of bigger ones. We use the key evolution
mechanism to store and manage the secret keys so that the number of keys is minimal but
enough to be used to update secret keys for larger time points. The binary structure and
the key evolution mechanism ensure that using the stored secret keys cannot recover the
keys for smaller time points (i.e., the past keys). We will give further detail below.

Lattice–based FSBS. To realise an FSBS construction over lattices, we deploy the lattice–
based blind signature construction proposed by [Rüc10], inspired by Lyubashevsky’s
identification scheme [Lyu08a] in combination with a modified version of the Fiat–Shamir
with aborts (see Section 3.2.5). Here “aborts” is implemented using the rejection sampling
technique (see Section 3.2.1). This also allows the blindness for the lattice–based FSBS.
Notice that the [Rüc10] construction’s security is neither based on the learning with er-

60

3.1. Overview

SIGNER S(pp,pk,sk): USERU(pp,pk,µ) :

Phase 1: Phase 2:
01. pk := (F,K) ∈ Zn×m

q ×Zn×k
q 05. pk := (F,K) ∈ Zn×m

q ×Zn×k
q

02. sk = S ∈ Zm×k, 06. a← Dm
σ3

, b← Dk
σ1

K = F ·S (mod q)) 07. d′
$
←− {0,1}n, c := COM(µ,d′),

03. r ∈ Zm← Dm
σ2

, x = F · r ∈ Zn
q u = F ·a + x + K ·b (mod q)

04. Send x to the user 08. e′ = H(u,c) ∈ RH , e := e′+ b
[Go to Phase 2] 09. Output e with probability

Phase 3: min
{

Dm
σ1

(e)
M1·Dm

σ1 , e′ (e) ,1
}

11. z = r + S · e 10. Send e back to the signer
12. Output z with probability [Go to Phase 3]

min
{

Dm
σ2

(z)
M2·Dm

σ2 , S·e(z) ,1
}

Phase 4:

13. Send z to the user 14. z′ = z + a
[Go to Phase 4] 15. Output z′ with probability

Phase 5: min
{

Dm
σ3

(z′)
M3·Dm

σ3 , z(z′) ,1
}

18. if (result , accept): i.e., if (‖z′‖ < σ3
√

m) :
19. Parse result := (a,b,e′,c) result := accept
20. u := F ·a + x + K ·b (mod q) else: result := (a,b,e′,c)

û := F ·a + F · z−K · e′ (mod q) 16. Output: (t,µ, Σ = (d′,e′,z′))
21. if (e−b = e′ = H(u,c) or ⊥ when result , accept

and e′ = H(̂u,c) 17. Send result back to the signer
and ‖z + a ‖ ≥ σ3

√
m): [Go to Phase 5]

restart from Phase 1
22. Output: the viewV = (t,x,e,z)

Figure 3.2: Signing algorithm in the SIS–friendly BS scheme.

rors (LWE) problem nor the SIS problem but the collision problem over ideal lattices.
We emphasise that the Rückert construction based on ideal lattices seems to suffer from
a flaw that has been indicated by Hauck et al. [HKLN20]. To avoid the flaw (as shown
in a discussion given in Section 3.5), we first turn the [Rüc10]’s blind signature into an
SIS–friendly form working with integer matrices and vectors. In the SIS–friendly blind
signature, we generate the key pair as follows. We choose a matrix S via a short distribu-
tion in advance and set it as a secret key. We also sample a matrix F uniformly at random,
then computes K = F ·S (mod q) . Now, the public key is the pair (F,K). We describe
the signing algorithm of the SIS–friendly BS in Figure 3.2. There, we apply rejection
sampling at Steps 09, 12, and 15. COM is a commitment function (See Section 3.2.6) and
H is a hash function (See Section 3.2.2).

However, to equip the above SIS–friendly BS scheme with forward security, we must

61

3.1. Overview

embed the dependence on time points into the scheme and have a key evolution mech-
anism for updating keys. To this end, we do as follows. We use a binary tree structure
whose each node corresponds to a random matrix. Namely, if the total number of time
points is T = 2`, then the tree has a depth of `. The tree’s leaves are labelled from left to
right by consecutive time points t = 0 up to t = T − 1. The public key and initial secret
key are the pair (A0,TA0) generated using the lattice trapdoor algorithms. We also sample
random matrices A(0)

j , A(1)
j for j ∈ [`]. Now, for any node w(i) = (w1, · · · ,wi) ∈ {0,1}i, we

build up a concatenated matrix of form Aw(i) = [A0|A(w1)
1 | · · · |A(wi)

i]. Then, we can com-
pute a trapdoor for Λ⊥q (Aw(i)) using TA0 . If the node w(k) is the ancestor of the node w(i),
then we can obtain a trapdoor for Λ⊥q (Aw(i)) from a trapdoor for Λ⊥q (Aw(k)). However, one
cannot get a trapdoor for Λ⊥q (Aw(k)) from a trapdoor of Λ⊥q (Aw(i)). This is the main idea
behind the key evolution (key update) mechanism.

Overview [Section 3.1]

Related Backkground [Section 3.2]

Binary Tree Structure for Times [Section 3.3]

The FSBS Construction [Section 3.4]

Discussion on the Validity of the Proof of Theorem 3.4.3 [Section 3.5]

Summary [Section 3.6]

Figure 3.3: The roadmap of this chapter.

Particularly, for each time point (i.e., each leaf of the binary tree), say t, we form a
matrix, say F(t). This matrix plays the same role as F of the SIS–friendly BS scheme.
Now, the matrix K is a random matrix sampled in advance. We then use the GPV08
trapdoor algorithms (Section 2.5.3) to generate an ephemeral key, say S(t) using the secret
key TF(t) subject to the condition F(t) ·S(t) = K (mod q). With respect to the time point t,
S(t) plays the same role as S. Note that we have the trapdoor TF(t) for F(t) by applying the
delegation in the GPV08 trapdoor included in the key evolution mechanism. See Steps 01
– 03 of Phase 1 in Figure 3.9 for the mentioned modification. The modification to achieve
forward security is the main technical contribution of our work in this chapter.

To summarise, the core techniques/tools used in this chapter are:

• a binary tree data structure used for representing the time points (see Section 3.4
below),

• a modification of Fiat–Shamir with aborts (see Section 3.2.5), in which aborting is
implemented using the rejection sampling (see Section 3.2.1),

62

3.2. Related Background

• a commitment function (see Section 3.2.6),

• a hash function (see Section 3.2.2), and

• the GPV08 trapdoor (see Section 2.5.3).

In the security analysis, we also need the following tools:

• the witness indistinguishability (Section 3.2.4),

• the oracle replay attack and the forking lemma (see Section 3.2.3).

Figure 3.3 shows the roadmap of this chapter.

3.2 Related Background

In this section, we will recall some functions, tools and techniques useful for our lattice–
based FSBS construction.

3.2.1 Rejection Sampling

Suppose that we are working with two distributions. Suppose that f and g are their density
functions, and that f (x) ≤ M ·g(x) ,∀x with 1 ≤ M <∞. (See Figure 3.4 below.) At first,
one wants to have samples following f . However, suppose further that sampling from f

is much harder than sampling from g. If this is the case, the rejection sampling method
can step in to help. The method allows using the distribution g(x) to get samples that still
follow f (x). The rejection sampling works as follows:

• Repeat (up to at most M times)

– sampling x← g (i.e., x ∼ g), and

– outputting x with probability f (x)
M·g(x)

• Until x is accepted (i.e., x ∼ f).

Particularly, we will need a rejection sampling version for discrete Gaussian distri-
butions presented in Lemma 3.2.1. The lemma says that there is a universal constant
M = O(1) such that instead of sampling from Dm

σ(z) and outputting with 1/M, one can
sample from Dm

w,σ(z) and then output with probability min(Dm
σ(z)

M·Dm
w,σ(z) ,1) for any w sam-

pled from a suitable distribution h.

Lemma 3.2.1 (Rejection Sampling, [Lyu12, Theorem 3.4]). Let δ ∈ R+, and Wδ = {w ∈
Zm : ‖w‖ ≤ δ} ⊂ Zm. Let σ = ω(δ log

√
m) ∈ R+. Let χ : Wδ→ R be a probability distribu-

tion. For any M ∈ R+, define two following distributions X and Y:

63

3.2. Related Background

f M ·g

f (x) ≤ M ·g(x)

Figure 3.4: Rejection sampling.

• (X): w ∼ χ, x← Dm
w,σ, output (x,w) with probability min(Dm

σ(x)
M·Dm

w,σ(x) ,1), and

• (Y): w ∼ χ, x← Dm
σ, output (x,w) with probability 1/M.

Then there is a universal constant M = O(1) satisfying ∆(X,Y) := 2−ω(logm)/M. The

probability for X to output something is not less than (1− 2−ω(logm))/M. Particularly, if

σ = αδ for any α ∈ R+ then M = e12/α+1/(2α2), ∆(X,Y) = 2−100/M.

We will exploit this tool in the lattice–based FSBS construction given in Section 3.4..

3.2.2 Hash Functions

Hash functions are an essential component of a digital signature (and its variants) con-
structions. The functions allow shortening the length of (large) messages to much smaller
ones before, for example, signed. Computationally, a hash function takes a variable–
length input string to return a fixed–length (generally shorter) string. It should run in
polynomial–time. The input string is called preimage, while the output string is called
hash value.

Definition 3.2.1 (Hash Functions). Take λ as security parameter. LetD =D(λ), R =R(λ)
be the space of preimages and the space of hash values, respectively. Suppose additionally

that ∃n ∈ Z+ such that |y| ≤ n, ∀y ∈ R. A hash function is a map HF that works as follows:

HF : D → R

x 7→ y = HF(x), |y| ≤ n� |x|

A collision occurs whenever there are at least two different preimages being mapped
to the same hash value. Formally,

∃x, x′ ∈ D : x , x′ and HF(x) = HF(x′)

64

3.2. Related Background

A hash function is called one–way if computing a hash value from a preimage is easy,
but it is hard to recover the preimage from given a hash value. This is formally defined as
in Definition 3.2.2.

Definition 3.2.2 (One–wayness). Let HF be a hash function defined as in Definition 3.2.1.

We say HF is one–way if, for any hash value y ∈ R, any efficient algorithmA, it holds that

AdvOW
A, HF := Pr[x←A(y) : y = HF(x)] ≤ negl(λ).

We also require a hash function to be collision–resistant. The security property guar-
antees that finding two distinct input strings for the same hash value is computationally
infeasible. The requirement is stated in Definition 3.2.3.

Definition 3.2.3 (Collision–resistance). Let HF be a hash function defined as in Definition

3.2.1. We say HF is collision–resistant if, for any efficient algorithmA, it holds that

AdvCR
A, HF := Pr[x, x′←A(λ) : x, x′ ∈ D, x , x′,HF(x) = HF(x′)] ≤ negl(λ).

Hash functions enjoying the one–way and collision–resistance will be involved in the
lattice–based FSBS construction given in Section 3.4.

3.2.3 Rewinding, Oracle Replay Attack and Forking Lemma

One of the typical diagrams used to give provable security of a specific cryptosystem is
proposing a reduction from a hard algorithmic problem to the desired security property. In
the reduction, assuming an efficient attacker can disrupt the desired security of the cryp-
tosystem, one constructs a solver algorithm for the hard algorithmic problem. In such a
reduction, a popular approach (especially in proofs for digital signatures and their vari-
ants) is the rewinding. The core idea is that the solver rewinds the adversary’s execution
from a fixed point in the protocol multiple times until the solver achieves a favourable
outcome.

In particular, we review, in detail, a version of the rewinding called the oracle replay

attack by Pointcheval and Stern [PS00] implemented in the random oracle model. In the
oracle replay attack, any algorithm (e.g., attackers, adversaries, solvers) is modelled as
a probabilistic polynomial–time Turing machine in which one obtains the “probabilistic”
via a random tape. The oracle replay attack works as follows:

• An attacker is supposed to make up to a predetermined number, say Q, of queries
to a random oracle: each query qi will be responded with a random value hi.

65

3.2. Related Background

• Replaying the attacker on n lists of random oracle queries that are different from
some position, say I + 1,

q1, · · · ,qI−1, qI , q(1)
I+1, · · · ,q

(1)
Q

q1, · · · ,qI−1, qI , q(2)
I+1, · · · ,q

(2)
Q

...

q1, · · · ,qI−1, qI , q(n)
I+1, · · · ,q

(n)
Q

(3.1)

using n lists of corresponding responses which are

h1, · · · ,hI−1, h(1)
I , h(1)

I+1, · · · ,h
(1)
Q

h1, · · · ,hI−1, h(2)
I , h(2)

I+1, · · · ,h
(2)
Q

...

h1, · · · ,hI−1, h(n)
I , h(n)

I+1, · · · ,h
(n)
Q

(3.2)

will result in n outputs, say Σ(1),Σ(2), · · ·Σ(n), respectively. Note here that it is re-
quired that h(1)

I ,h(2)
I , · · · ,h(n)

I are mutually different.

• A solution to the intended hard problem can be extracted from the knowledge of
qI ,h

(1)
I , · · · ,h(n)

I ,Σ(1), · · · ,Σ(n).

The (general) following lemma by Bellare and Neven [BN06] gives a lower bound
on the success probability of (a generalisation of) the oracle replay attack limited to 2
replays. Specifically, let A be an algorithm whose input is a tuple of (x,h1, ...,hQ; rt),

where x
$
←− IG (IG is called the input generator), all the hi’s are chosen randomly from

some set H and rt is a random tape. Here, IG is an input generator. The output of A

is some index I ∈ {0, · · · ,Q}. Assume that A is run twice on the same random tape rt.
Specifically, the algorithm outputs an index I ∈ [Q] along with a side output Σ in the first
run. Its input is (x,h1, · · · ,hQ; rt),. In the second run on input (x,h1, · · · ,hI−1,h′I , · · · ,h

′
Q; rt)

(noting that the input has been changed from the index I), the algorithm outputs an index
I′ ∈ [Q] along with a side output Σ′. The forking lemma assures that the probability that
two indexes are identical (i.e., I = I′) subject to hI , h′I is not too small.

Lemma 3.2.2 (Forking Lemma, [BN06, Lemma 1]). Let Q ∈ Z+ fixed. Let H be a set

such that |H| ≥ 2. Let x← IG be a randomized algorithm whose output is denoted by

x. Let (I,Σ) ← A(x, h1, · · · ,hQ; rt) be a randomized algorithm. Its input are x
$
←− IG,

h1, · · · ,hQ
$
←− H and a random bit–string rt. Its output is a pair (I,Σ), where I ∈ {0, · · · ,Q}

and Σ is a side output. Let p be the accepting probability of A, which is defined as the

probability that the A’s output I ≥ 1 over the randomness of x,h1, · · · ,hQ, and rt.

66

3.2. Related Background

The forking algorithm FA associated to A is the randomized algorithm that takes input

x
$
←− IG and proceeds as in Figure 3.5.

EXPERIMENT FA(x):
01. Pick a random bit–string rt.

02. h1, · · · ,hQ
$
←− H.

03. (I,Σ)
$
←− A(x,h1, · · · ,hQ; rt).

04. If I = 0, return (0, ε, ε).

05. h′I , · · · ,h
′
Q

$
←− H.

06. (I′,Σ′)
$
←− A(x,h1, · · · ,hI−1,h′I , · · · ,h

′
Q; rt).

07. If I = I′ and hI , h′I , return (1,Σ,Σ′).
08. Otherwise, return (0, ε, ε).

Figure 3.5: The forking algorithm FA.

Define

f rk := Pr
x

$
←−IG, (b,Σ,Σ′)←FA(x)

[b = 1].

Then,

f rk ≥ p ·
(

p
Q
−

1
|H|

)
.

We will deploy the oracle replay attack and the forking lemma to give security proof
in ROM for the lattice–based forward–secure blind signatures given in Section 3.4. There,
x is the system’s public key; whilst hi, h′i’s – random values replied to hash queries.

3.2.4 Witness Indistinguishability

Consider an interactive protocol between two parties where a party (the prover) wants to
prove a public statement to the other (the verifier). In this situation, the witness indistin-
guishability [FS90] ensures that the verifier cannot tell which witness is being used by the
prover (even if the verifier knows the set of all witnesses associating to the statement).

We will follow [Lyu08b] to formally review the notion of witness indistinguishability
. For a string str and a relation RL(·, ·), we define a witness set WITRL to be one consisting
of witnesses wit’s such that the statement “RL(str,wit) = 1” holds. In the lattice setting, for

example, str := (A,K), where A
$
←−Zn×m

q and K ∈Zn×m
q , wit := S←Dm×m

σ and RL(str,wit) =

1⇐⇒ A ·S = K (mod q).
Let P(str,wit) and V(str,aux) be randomised interactive algorithms. The former’s

input is a pair of public string and a witness (str,wit). The latter’s input is a pair of public
string and auxiliary input (str,aux). Let (P,V) denote an interactive protocol between the
prover P(str,wit) and the verifier V(str,aux). P(str,wit) wants to prove to V(str,aux) a

67

3.2. Related Background

public statement “RL(str,wit) = 1” associated with which there are several secret witnesses
wit’s. Define byVP(str,wit)(str,aux) the view ofV(str,aux) received from the protocol.

Definition 3.2.4. The protocol (P,V) is witness indistinguishable if for all V∗(str,wit′),
all large enough str, any auxiliary input aux and any two witnesses wit,wit′ ∈WITRL, the

statistical distance of twoV∗(str,aux)’s views is negligible in the length of str, i.e.,

∆(V∗
P(str,wit)(str,aux),V∗

P(str,wit′)(str,aux)) ≤ negl(|str|).

We will employ the witness indistinguishability technique in the proof for the FSUF
of the lattice forward–secure blind signature given in Section 3.4..

3.2.5 Fiat–Shamir with Aborts

Informally speaking, the Fiat–Shamir protocol [FS87] is an identification scheme of three
moves between a prover P and a verifier V. P wants to convince V that P knows a
witness wit for a public statement stm:

• First move: The prover delivers to the verifier a commitment com.

• Second move: The verifier provides the prover with a challenge cha.

• Third move: Having received the challenge cha, the prover replies with a response
res. Basing on the knowledge of the statement stm and the transcript (com, cha, res),
the verifier decides to accept or reject.

An augmented version called the Fiat-Shamir with aborts by Lyubashevsky [Lyu08b,
Lyu09] allows the prover to abort when necessary before replying to the response res

(Steps 3–4 in Figure 3.6). Aborting helps to protect some information about the witness
while still maintaining the witness indistinguishability, as discussed in [Lyu09]. However,
this may hurt the protocol’s efficiency due to repeating the protocol multiple times.

We will design a lattice–based forward–secure blind signature, given in Section 3.4,
exploiting a modified version of the Fiat–Shamir with aborts. In the construction, aborting
occurs in several places, and we implement it using the rejection sampling (Section 3.2.1).

3.2.6 Commitment Functions

A commitment scheme is a cryptographic abstraction of a locked box, in which the sender
can put, say, a message and then lock the box. After the box is locked, the message cannot
be changed and is hidden from the receiver. Instead, the message will only get revealed
if the sender gives the receiver the key. Likewise, a commitment scheme enables hiding

68

3.3. Binary Tree Structure for Times

Prover(stm) Verifier(stm)

1. Generate a commitment com
the 1st
−−−−−→

move

the 2nd
←−−−−−

move
2. Sample a challenge cha

3. Compute a response res′

4. Apply aborting to get res

5. Send the response res
the 3rd
−−−−−→

move
6. Verify on (stm, com, cha, res)

Figure 3.6: Fiat–Shamir with aborts.

a secret thing while keping it unchanged (i.e., binding) with the ability to open that thing
later.

Let n ∈ Z+. More precisely, a commitment scheme acts as a function COM that maps
two strings (ν,x) ∈ {0,1}∗×{0,1}n to a string com ∈ {0,1}n. Furthermore, COM is required
to have the two following properties in this thesis.

• Statistically hiding. Let A be any computationally unbounded algorithm. Let
com = COM(µ,x), com′ = (ν′,d′) and (ν,x) , (ν′,x′). This property ensures that it
is unable forA to statistically distinguish com and com′.

• Computationally binding. This property says that given a commitment string
com := COM(µ,x), no polynomial–time algorithm can find (ν′,x′) with ν′ , ν sub-
ject to com = COM(ν′,x′).

See [HM96, KTX08, Rüc10] for more details. We utilise such a commitment function for
our lattice–based forward–secure blind signature given in Section 3.4.

Next, we will present the binary tree structure for time points. The structure im-
plemented in lattices using lattice trapdoors allows for achieving forward security in our
lattice–based FSBS construction.

3.3 Binary Tree Structure for Times

In this section, we first present a detailed description of the binary tree structure for times.
We then apply the structure to support forward security in the lattice–based forward–
secure blind signature.

Binary Structure for Times. Suppose that we want to represent a time duration T = 2`−1

for some integer ` ∈ Z+ using the structure. To this end, we do the following:

69

3.3. Binary Tree Structure for Times

ε

0

00

000 001

01

010 011

1

10

100 101

11

110 111

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

Level 0

Level 1

Level 2

Level 3

Figure 3.7: Binary tree for 8 time points (of depth ` = 3).

• We partition the time duration T = 2`−1 to 2` time points t’s, each belonging to
{0, · · · ,2` −1}.

• We then build a binary tree of depth `. The root sits at Level 0. The leaves reside at
the highest level of the tree. At the smaller levels are the nodes. Remind that in a
binary tree, each node (including the leaves) is assigned to a binary value with the
following principle: A node at level i + 1 (0 ≤ i ≤ `−1) will be assigned to either 0
if it is placed to the left of its level–i parent node or 1 – if it is placed to the right of
the parent node.

• Each time point is attached to a tree leaf in such order that smaller time points sit to
the left of the bigger ones. The readers can refer to Figure 3.7 for an illustration of
a depth–3 binary tree for eight time points in which the root is denoted by ε. Each
leaf (i.e., a time point) will correspond with a binary vector showing the unique
path from the root ε to the leaf t. We denote the binary vector by bin(t). We can
see that for a leave t, the binary vector is identical to the binary decomposition of t.
Taking the red–coloured leave t = 3 in Figure 3.7 for example, its binary vector is
bin(t) = (0,1,1) as the path going from the root to the leave t is ε→ 0→ 1→ 1.

• Similarly to leaves, each node will correspond with a binary vector showing the
path going from the root to that node. Also, we denote by bin(w(i)) the binary
vector for a level–i node w(i). We sometimes name nodes by their corresponding
binary decomposition for convenience. For example, the orange–coloured node
named 11 in Figure 3.7 corresponds with the path ε→ 1→ 1 and bin(11) =(1,1).

Applying to the Lattice–based FSBS. Suppose that we have built a depth–` binary tree
as above for a time duration T = 2`−1 (for ` ∈ Z+). Now, we show how to apply the
structure for forward security in our lattice–based forward–secure blind signature. We do
as follows:

• We sample (A0,TA0) using the algorithm TrapGen (Lemma 2.5.4). Here TA0 is the
initial secret key for the FSBS system.

70

3.3. Binary Tree Structure for Times

• We also sample 2` random matrices, say A(0)
1 , A(1)

1 , · · · ,A(0)
`
, A(1)

`
. They have the

same dimension as that of A0.

• We then place A0 at the binary tree’s root ε. At level i ∈ [`], we place A(0)
i at the

node assigned to binary value 0 and A(1)
i at the node assigned to binary value 1. See

Figure 3.8 for an illustration for ` = 3.

• For any leave t having bin(t) = (t1, · · · , t`) we form the concatenated matrix F(t) =

[A0|A(t1)
1 | · · · |A

(t`)
`

]) according to the path ε → t1 → ·· · → t`. Similarly, for any
node w(i) that has bin(w(i)) = (w1, · · · ,wi), we assign it to the concatenated ma-
trix A(w(i)) = [A0|A(w1)

1 | · · · |A(wi)
i] according to the path ε → w1 → ·· · → wi. For

example, for the red–coloured leave 011 in Figure 3.7 (i.e., the leave where we
placed the red–coloured matrix A(1)

3 according to t = 3 in Figure 3.8), we form
F(0,1,1) := [A0|A(0)

1 |A
(1)
2 |A

(1)
3] as bin(t) = (0,1,1). With respect to the node 11 in

Figure 3.7 (i.e., the node where we placed the red–coloured matrix A(1)
1 in Figure

3.8), we form A(1) = [A0|A(1)
1].

A0

A(0)
1

A(0)
2

A(0)
3 A(1)

3

A(1)
2

A(0)
3 A(1)

3

A(1)
1

A(0)
2

A(0)
3 A(1)

3

A(1)
2

A(0)
3 A(1)

3

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

Level 0

Level 1

Level 2

Level 3

Figure 3.8: Binary tree of matrices.

For updating secret keys to achieve forward security, one can exploit the trapdoor
delegation mechanism using ExtBasisLeft and RandBasis (Lemma 2.5.4).

• A secret key for some node can be easily computed using the initial secret key skε :=
TA0 . Specifically, the secret key T(w(i))) associated to the node w(i) = (w1, · · · ,wi), is
computed by generating

T′(w(i))← ExtBasisLeft(A(w(i)),TA0), where A(w(i)) =
[
A0|A(w1)

1 | · · · |A(wi)
i

]
,

and then randomising

T(w(i))← RandBasis(A(w(i)),T
′

(w(i)),σ0,i) for some Gaussian parameter σ0,i.

By Lemma 2.5.4, σ0,i ≥ ‖T̃′w(i)‖·ω(
√

log(#col(i))) = ‖T̃A0‖·ω(
√

log(#col(i))), where

71

3.4. The FSBS Construction

#col(i) denotes the number of columns of A(w(i)). For example, if A0, A(w j)
j ∈ Zn×m

q

for all j ∈ [i] then #col(i) = (i + 1) ·m.

• Moreover, one can also update a secret key of a node at a higher level from the key
of its ancestor nodes at a lower level. For example, suppose that T(w(k)) is a known
secret key for the node w(k) = (w1, · · · ,wk). Suppose that w(i) = (w1, · · · ,wk, wk+1, · · · ,wi)
for k < i. The key T′

(w(i))
can be produced by first computing

T′(w(i))←ExtBasisLeft(A(w(i)),T(w(k))), where A(w(i)) =
[
A0|A(w1)

1 | · · · |A(wk)
2 | · · · |A(wi)

i

]
,

then randomising

T(w(i))← RandBasis(A(w(i)), T′(w(i)), σ0,i) for some Gaussian parameter σ0,i.

• Similarly, a secret key for a leaf which corresponds to a time point can also be
derived from any ancestor’s secret key.

3.4 The FSBS Construction

Now, we present the proposed forward–secure blind signature. Before doing that, we
summarise the system parameters and give their descriptions in Table 3.1.

Table 3.1: System parameters in our lattice–based FSBS construction.

Parameters Definition
λ Security parameter
` Depth of binary tree for time points
n # row of matrices A(b)

i
q System modulus
m # column of matrices A(b)

i
k # column of matrices K
κ Maximal Hamming weight of elements in RH

T := 2` Time duration
σ Gaussian parameter used in SampleD
σ0,i Gaussian parameter used in RandBasis
σ1 Gaussian parameter used in Phase 2 of FSBS.Sign
σ2 Gaussian parameter used in Phase 1 of FSBS.Sign
σ3 Gaussian parameter used in Phase 4 of FSBS.Sign
M1 Rejection sampling constant used in Phase 2 of FSBS.Sign
M2 Rejection sampling constant used in Phase 3 of FSBS.Sign
M3 Rejection sampling constant used in Phase 4 of FSBS.Sign
β the bound for the SIS instance

72

3.4. The FSBS Construction

3.4.1 The Construction

The FSBS construction ΠFSBS includes efficient algorithms FSBS.Setup, FSBS.KeyUp,
FSBS.Sign,and FSBS.Verify described as follows.

• (pp,pk,skε)← FSBS.Setup(1λ,1`). On input a security parameter λ and a binary
tree depth `, the algorithm outputs a set of public parameters pp, a public key pk

and an initial secret key skε . Do the following steps.

1. Choose n = n(λ), q = poly(n) prime, m = Θ(n logq), k, κ, `, time duration
T = 2`, Gaussian parameters σ, σ1, σ2, σ3 and σ0,i for i ∈ [`] as shown in
Section 3.4.4.

2. TakeM = {0,1}∗ as the message space.

3. Select a matrix K
$
←− Zn×k

q . Similarly, sample matrices A(0)
1 ,A(1)

1 ,A(0)
2 ,A(1)

2 , · · · ,

A(0)
`
,A(1)

`
from Zn×m

q uniformly at random.

4. Run TrapGen(1n,1m,q) (Lemma 2.5.4) to obtain a pair (A0,TA0), where A0 ∈

Zn×m
q and TA0 ∈ Z

m×m are a matrix and its associated trapdoor.

5. Let H : {0,1}∗ → RH be a collision–resistant and one–way hash function,
where RH := {e′ ∈ {−1,0,1}k : ‖e′‖ ≤ κ}.

6. Let COM : {0,1}∗×{0,1}n→ {0,1}n be a computationally binding and statisti-
cally hiding commitment function (see Section 3.2.6).

7. Output pp := {λ,n,q,m, `,T,k, κ,σ, σ0,σ1,σ2,σ3,M,H,COM}, pk := {A0,A(0)
1 ,

A(1)
1 , · · · , A(0)

`
,A(1)

`
,K}, and skε := TA0 as public parameters, the public key

and the initial secret key, respectively.

• skt+1← FSBS.KeyUp(pp,pk,skt, t). Taking as input a set of public parameters pp,
a public key pk and a secret key skt for a time point t, the algorithm returns a secret
key skt+1 for the time point t + 1. The algorithm needs a key evolution mechanism

to delete all secret keys of internal nodes that can produce past keys. Additionally,
it is required that the key evolution mechanism stores the smallest number of keys
necessary for the signature to work properly. The key evolution mechanism works
as follows.

1. For any leaf t, define the minimal cover Node(t) to be the smallest set of nodes
that contains an ancestor of all leaves in {t, · · · ,T −1} but does not contain any
ancestor of any leaf in {0, · · · , t−1}. For example, in Figure 3.7, Node(0) = {ε},
Node(1) = {(0,0,1), (0,1), (1)}, Node(2) = {(0,1), (1)}, Node(3) = {(0,1,1), (1)}
(i.e., two black circles in the tree), Node(4) = {(1)}, Node(5) = {(1,0,1), (1,1)},
Node(6) = {(1,1)}, Node(7) = {(1,1,1)}.

73

3.4. The FSBS Construction

2. The secret key skt at time point t contains secret keys corresponding to all
nodes (including leaves) in Node(t). For example, for the tree from Figure
3.7, we have sk0 = skε = {TA0}, sk1 = {T(1),T(0,1),T(0,0,1)}, where T1, T(0,1)and
T(0,0,1) are associated trapdoors to F(1) = [A0|A(1)

1], F(0,1) = [A0|A(0)
1 |A

(1)
2] and

F(0,0,1) = [A0|A(0)
1 |A

(0)
2 |A

(1)
3], respectively. Notice that we compute skt by us-

ing ExtBasisLeft and RandBasis.

3. To update skt to skt+1, determine the minimal cover Node(t + 1), then derive
keys for all nodes in Node(t + 1) \Node(t) (if needed) using the keys in skt

as described above. Finally, delete all keys in Node(t) \Node(t + 1). For
example, for the tree in Figure 3.7 we have sk1 = {T(1),T(0,1),T(0,0,1)}, sk2 =

{T(0,1),T(1)} since Node(2) \Node(1) = {(0,1), (1)} and Node(1) \Node(2) =

{(0,0,1)}.

• (Σ,V)← FSBS.Sign(pp,pk,skt, t,µ). On input a set of public parameters pp, a
public key pk, a secret key skt for a time point t (note that skt contains TF(t)), and
a message µ, the algorithm returns a signature Σ and a view V. The algorithm is
an interactive protocol between a user (i.e., the message author) and a signer. Here,
we use a modification of Fiat–Shamir with aborts (Section 3.2.5), in which aborting
is implemented using the rejection sampling (Section 3.2.1). The protocol consists
of five phases: Phases 1, 3 and 5 are done by the signer, while Phases 2 and 4 –
by the user. Figure 3.9 algorithmically details the signing algorithm. We describe
FSBS.Sign in words as follows.

– Phase 1: The signer constructs the matrix F(t) =
[
A0|A(t1)

1 | · · · |A
(t`)
`

]
∈ Zn×(`+1)m

q

for the time point t = (t1, · · · , t`) ∈ {0,1}`. Next, it computes an ephemeral
secret key S(t) using SampleD described in Lemma 2.5.4 satisfying that F(t) ·

S(t) = K (mod q). Note that S(t) can also be computed at Phase 3 instead. The
signer then samples r ∈ Z(`+1)m according to the discrete Gaussian distribution
D(`+1)m
σ2 . It finally computes and sends x = F(t) · r ∈ Zn

q to the user.

– Phase 2: Upon receiving x, the user samples blind factors a← D(`+1)m
σ3 , b←

Dk
σ1

and d′
$
←− {0,1}n. It computes u = x + F(t) · a + K · b and hashes u with

c := COM(µ, d′) ∈ {0,1}n using H to obtain a real challenge e′. The user runs
the rejection sampling technique to get the blinded challenge e, which is then
sent back to the user.

– Phase 3: The key S(t) and r are used to compute z = r + S(t) · e. To make sure
that no information of S(t) is leaked, the signer applies the rejection sampling,
which implies that the distribution of z and r are the same. Finally, the signer
delivers the blinded signature z to the user.

74

3.4. The FSBS Construction

– Phase 4: The user computes the unblinded signature z′ = z+a. Again, the user
calls the rejection sampling to ensure that z′ and z are independent of each
other and z′ is bounded in some desired domain. The user returns (t,µ,Σ =

(d′,e′,z′)) as the final signature if ‖z′‖ ≤ σ3
√

(1 + `)m holds. Otherwise, the
user outputs “⊥”. The user is required to confirm the validity of the final
signature by sending result to the signer: result := accept means the final
signature is good, while result := (a,b,e′,c)) is to ask the signer to restart the
signing protocol.

– Phase 5: Having obtained result, the signer checks whether or not result ,

accept. If not, it returns the viewV = (t,x,e,z). Otherwise, the signer checks
some information before restarting the signing algorithm.

Note that because we use the rejection sampling in Phase 2 locally then it does not
restart the signing algorithm. However, the rejection sampling in Phase 3 and Phase
4 can make the signing algorithm restart.

• 0/1 := FSBS.Verify(pp,pk, t,µ,Σ). The algorithm accepts a signature Σ on the mes-
sage µ for the time point t = (t1, · · · , t`), a set of public parameters pp and public key
pk as its input and performs the following steps:

1. Parse Σ = (d′,e′,z′).

2. Form F(t) :=
[
A0|A(t1)

1 | · · · |A
(t`)
`

]
∈ Zn×(1+`)m.

3. Compute ê := H(F(t) · z′−K · e′(mod q), COM(µ,d′)).

4. If ‖z′‖ ≤ σ3
√

(1 + `)m and ê = e′, then output 1 (Valid), otherwise return 0
(Invalid).

3.4.2 Correctness

Theorem 3.4.1 (Correctness). The correctness of ΠFSBS holds after at most e2 restarts

with probability not smaller than 1−2−100.

Proof. First, we have an observation that: Remark 2.3.1 says that if σ = 12‖c‖, then
Dm
σ(x)/(M ·Dm

σ, c(x)) ≤ e1+1/288/M with probability greater than 1− 2−100. Additionally,
the rejection sampling requires that Dm

σ(x)/(M ·Dm
σ, c(x)) ≤ 1, which implies M ≥ e1+1/288.

Therefore, e1+1/288 is the best choice for M.
Assume that (t,µ,Σ = (d′,e′,z′)) is a signature produced by FSBS.Sign(pp,pk,sk(t),µ)

as shown in Figure 3.9. We first show that H(F(t) · z′ −K · e′ (mod q), COM(µ,d′)) = e′,
which is equivalent to proving F(t) · z′ −K · e′ = x + F(t) · a + K ·b (mod q). Indeed, using

75

3.4. The FSBS Construction

SIGNER S(pp,pk,sk(t), t): USERU(pp,pk, t,µ) :

Phase 1: Phase 2:
01. F(t) :=

[
A0|A(t1)

1 | · · · |A
(t`)
`

]
∈ Zn×(`+1)m

q 05. F(t) :=
[
A0|A(t1)

1 | · · · |A
(t`)
`

]
02. S(t) ∈ Z

(`+1)m×k← SampleD(F(t),TF(t) ,K,σ) 06. a← D(`+1)m
σ3 , b← Dk

σ1

(i.e., F(t) ·S(t) = K (mod q)) 07. d′
$
←− {0,1}n, c := COM(µ,d′),

03. r ∈ Z(`+1)m← D(`+1)m
σ2 , x = F(t) · r ∈ Zn

q u = F(t) ·a + x + K ·b (mod q)
04. Send x to the user 08. e′ = H(u,c) ∈ RH , e := e′+ b

[Go to Phase 2] 09. Output e with probability

Phase 3: min
{

Dm
σ1

(e)
M1·Dm

σ1 , e′ (e) ,1
}

11. z = r + S(t) · e 10. Send e back to the signer
12. Output z with probability [Go to Phase 3]

min
 D(`+1)m

σ2 (z)

M2·D
(`+1)m
σ2 , S(t) ·e

(z)
,1

 Phase 4:

13. Send z to the user 14. z′ = z + a
[Go to Phase 4] 15. Output z′ with probability

Phase 5: min
{

D(`+1)m
σ3 (z′)

M3·D
(`+1)m
σ3 , z (z′)

,1
}

18. if (result , accept): i.e., if (‖z′‖ < σ3
√

(`+ 1)m) :
19. Parse result := (a,b,e′,c) result := accept
20. u := F(t) ·a + x + K ·b (mod q) else: result := (a,b,e′,c)

û := F(t) ·a + F(t) · z−K · e′ (mod q) 16. Output: (t,µ, Σ = (d′,e′,z′))
21. if (e−b = e′ = H(u,c) or ⊥ when result , accept

and e′ = H(̂u,c) 17. Send result back to the signer
and ‖z + a ‖ ≥ σ3

√
(`+ 1)m): [Go to Phase 5]

restart from Phase 1
22. Output: the viewV = (t,x,e,z)

Figure 3.9: Signing algorithm FSBS.Sign(pp,pk,skt, t,µ).

the fact K = F(t) ·S(t) (mod q), we easily have

F(t) · z′−K · e′ (mod q) = F(t) · (z + a)−K · (e−b) (mod q)

= F(t) · z + F(t) ·a−K · e + K ·b (mod q)

= F(t) · (r + S(t) · e) + F(t) ·a−K · e + K ·b (mod q)

= F(t) · r + F(t) ·a + K ·b (mod q)

= x + F(t) ·a + K ·b (mod q).

Now by Lemma 2.3.4, ‖z′‖ ≤ σ3
√

(1 + `)m with overwhelming probability. Furthermore,
in Phases 3 and 4, by applying the observation mentioned above to the rejection sam-
plings, the signing algorithm can successfully produce a valid signature after at most

76

3.4. The FSBS Construction

M2 ·M3 = e1+1/288 · e1+1/288 ≈ e2 repetitions. The proof follows. �

3.4.3 Security Analysis

In this section, we will analyse the security requirements for our FSBS construction
ΠFSBS. These are the blindness and the forward–secure unforgeability (FSUF). For the
details of these requirements, please refer to Section 2.7.2. Roughly speaking, the blind-
ness ensures that even an adversarial signer who knew two messages coming from a user
cannot decide which message he/she has signed on. The forward–secure unforgeability
guarantees that the (malicious) user cannot produce any valid signature for any time point
prior to the corrupted time.

Blindness. The blindness of the proposed FSBS comes from the statistically hiding
and computationally binding properties of the commitment functionCOM and the one–
wayness and the collision–resistance of the hash function H, as shown in Theorem 3.4.2.

Theorem 3.4.2 (Blindness). Let COM be a statistically hiding and computationally bind-

ing commitment and H be a one–way and collision–resistant hash function. Then, the

FSBS system ΠFSBS satisfies the blindness.

Proof. We follow the game FSBSBLIND
S∗

(λ) (Figure 2.6) in proving the blindness of ΠFSBS.
In the game, at Step 2, the adversarial signer S∗ specifies two messages µ0 and µ1. The
signer then sends these messages to the challenger C. The challenger C selects a random

bit b
$
←− {0,1}. The challenger then plays the roles of two usersUb :=U(pp,pk, t,µb) and

U1−b := U(pp,pk, t,µ1−b). After that, each of Ub and U1−b interacts with S∗ to pro-
duce signatures on µb and µ1−b, respectively. From the interaction withUb (respectively,
U1−b), S∗ gets (Vb,Σb) (respectively, (V1−b,Σ1−b)).

It is sufficient to demonstrate the independence of the information of (Vb,Σb) and
(V1−b,Σ1−b) from the underlying messages. We do that by showing thatVb andV1−b are
statistically indistinguishable. Also, we will show the statistical indistinguishability for
Σb and Σ1−b.

Let consider the distributions of Vb = (t,xb,eb,zb) and V1−b = (t,x1−b,e1−b,z1−b).
Since xb, zb and x1−b, z1−b are produced by S∗ itself. Thus, we only need to look at the
distributions of eb and e1−b, which are produced in Phase 2 (See Figure 3.9). We note
that the distributions of both eb and e1−b are the same Dk

σ1
. This is due to the rejection

sampling technique used at Step 09, Phase 2.
Now, we consider Σb = (d′b,e

′
b,z
′
b) and Σ1−b = (d′1−b,e

′
1−b,z

′
1−b). Again, due to the

use of rejection sampling, the distributions of both z′b and z′1−b are identical, which is
D(1+`)m
σ3 (Step 15, Phase 4). Furthermore, d′b, d′1−b are uniformly random. Additionally, e′b

(respectively, e′1−b) is a hash value of the collision–resistant and one–way hash function

77

3.4. The FSBS Construction

H on input (ub, cb := COM(µb,d′b)) (respectively, (u1−b, c1−b := COM(µ1−b,d′1−b))) in
which COM is statistically hiding and computationally binding. This concludes that no
information about the underlying messages is leaked through Σb and Σ1−b.

Finally, note that restarts will occur in Phase 5 in case the user sends S∗ the result :=
(a,b,e′,c). However, because the values d′, a and b are fresh in every repetition, these
restarts will not make the advantage of S∗ better. The theorem follows. �

Forward–secure Unforgeability. We prove the forward secure unforgeability of ΠFSBS

in Theorem 3.4.3. For the FSUF of FSBS, please refer to Figure 2.7. In the theorem, we
assume that the forgerA can make at most QH plain hash queries and at most QS signing
queries. Note that each signing query also needs an additional hash query. Therefore,
there are at most Q := QH + QS hash queries in total.

We need the following lemma, which supports the witness indistinguishability argu-
ment mentioned in Section 3.2.4.

Lemma 3.4.1 (Adapted from [Lyu12, Lemma 4.2], [Lyu11, Lemma 5.2]). Given a matrix

F ∈ Zn×(`+1)m
q , where (`+ 1)m > 64 + n logq/ log(2d + 1) and s

$
←− {−d, · · · ,0, · · · ,d}(`+1)m.

Then, there exists another s′
$
←− {−d, · · · ,0, · · · ,d}(`+1)m such that F · s = F · s′ (mod q) with

probability at least 1−2−100.

Notice that Lemma 2.4.5 also states the same result as Lemma 3.4.1 above. However,
the condition in Lemma 2.4.5 (which is d � q(`+1)m/n) is not so clear as the condition
(which is (`+ 1)m > 64 + n logq/ log(2d + 1)) in Lemma 3.4.1.

Lemma 3.4.2 (Witness Indistinguishability). Consider the signing protocol in Figure 3.9.

For any public parameters pp, any public key pk, any secret key skt, any time point t
and any message µ, and for any S(t), S∗(t) ← D(1+`)m×k

σ such that F(t) · S(t) = F(t) · S∗(t) =

K (mod q), the resulting viewsV = (t,x,e,z) (with respect to S(t)) andV∗ = (t,x∗,e∗,z∗)
(with respect to S∗(t)) are indistinguishable.

Proof. To prove the lemma, we can do the same way as the proof for the blindness.
Specifically, we consider the distribution of V = (t,x,e,z) and V∗ = (t,x∗,e∗,z∗). First,
we remark that x and x∗ are produced independently of S(t), S∗(t). Next, we consider the
distribution of e, and e∗, which are produced in Phase 2 (see Figure 3.9). The distribu-
tion is the same Dk

σ1
, due to the rejection sampling technique used at Step 09, Phase 2.

Moreover, the distribution of e and e∗ is independent of choosing S(t), S∗(t).
Again, due to the rejection sampling technique used at Step 12, Phase 3, the distri-

bution of z and z∗ is the same, hiding the real ephemeral key of S(t) and S∗(t) that is being
used. The lemma follows. �

78

3.4. The FSBS Construction

Theorem 3.4.3 (Forward–secure Unforgeability). Suppose that the commitment function

COM used in ΠFSBS is computationally binding and that there exists a forgerA, who can

break the forward–secure unforgeability of ΠFSBS with success probability succA, using

at most QH plain hash queries and at most QS signing queries. Let γ be the probability

of a restart in FSBS.Sign. Then, one can construct a polynomial–time algorithm B that

solves a (q,n, (1 + 2`)m,β)–SIS instance with

β = max{(2σ3 + 2σ ·
√
κ) ·

√
(1 + `) ·m, (2σ3 +σ2) ·

√
(1 + `) ·m}

with the success probability succB such that

succB ≥

(
1−

1
T

)
·min

(1−γ) ·
(
succA−

1
|RH |

)succA−
1
|RH |

Q
−

1
|RH |

 ,succA ·

(
1−

1
|RH |

) ,
where Q := QS + QH .

Proof. We prove the theorem through a reduction from an instance of the SIS problem
exploiting the oracle replay attack and the forking lemma (Section 3.2.3) in ROM. Specif-
ically, let A be a forger that can break the FSUF security of ΠFSBS. Now, the SIS solver
B, given an SIS instance, uses the instance to simulate the environment of the game
FSBSFSUF

A
(λ) and plays as the challenger with the forgerA. The solver B runsA twice,

each of which produces a forgery. Combining these two forgeries allows extracting a
solution to the SIS instance. The details are below.

Instance. The solver B is given an instance F
$
←− Zn×(1+2`)m

q of the (q,n, (1 + 2`)m,β)–SIS

problem. Specifically, the instance requires to find v ∈ Z(1+2`)m such that ‖v‖ ≤ β with
β = max{(2σ3 + 2σ

√
κ)
√

(1 + `)m, (2σ3 +σ2)
√

(1 + `)m} and that

F ·v = 0 (mod q). (3.3)

Moreover, F can be split as F =
[
A0|U(0)

1 |U
(1)
1 | · · · |U

(0)
`
|U(1)
`

]
with A0, U(b)

i
$
←− Zn×m

q for all
i ∈ [`] and for all b ∈ {0,1}.

Guessing the target. B guesses the target time point t∗ thatAwants to attack by choosing

randomly t∗ = (t∗1, · · · , t
∗
`
)

$
←− {0, · · · ,T −1}. The probability of guessing a correct t∗ is 1− 1

T .

Initialise. B simulates the environment of the FSUF game by setting public parameters
pp as in the FSBS.Setup algorithm. Nevertheless, the public key pk = {A0,A(0)

1 , A(1)
1 , · · · ,

A(0)
`
,A(1)

`
,K} is set accordingly to the target t∗ = (t∗1, · · · , t

∗
`
) via the following:

• Set A(t∗i)
i ← U(t∗i)

i for all i ∈ [`]. For all i ∈ [`] and for each bit b ∈ {0,1} such that
b , t∗i , run TrapGen(1n,1m,q) to generate (A(b)

i ,TA(b)
i

), where TA(b)
i

is a short basis

of Λ⊥q (A(b)
i).

79

3.4. The FSBS Construction

• To set matrix K,B first sets F(t∗) =

[
A0|A

(t∗1)
1 | · · · |A

(t∗
`
)

`

]
∈Zn×(1+`)m

q then samples S∗←

D(1+`)m×k
σ and finally assigns K := F(t∗) ·S∗ (mod q). Let d := σ

√
(1 + `)m. Here,

we should choose σ to fulfil Lemma 2.3.3 (i.e., σ ≥ ω(
√

log((1 + `)m))), Lemma
2.4.5 (i.e., d� q(1+`)m/n) and Lemma 3.4.1 (i.e., (1+`)m> 64+n logq/ log(2d+1)).
Notice that Lemma 2.3.4 says ‖S∗‖ ≤ d with overwhelming probability. According
to Lemma 2.3.3, matrix K is statistically close to uniform over Zn×k

q .

SupposeAmakes up to QH plain hash queries and QS signing queries, each signing query
in turn needs one hash query. Then the number of hash queries in total is Q := QH + QS .
Then, B also prepares the list of replies for Q hash queries L1 := {r1, · · · ,rQ}, where each

ri
$
←−RH . B then chooses a random tape ρ and runsA twice on (pp, pk, ρ) in a black–box

manner.

First execution ofA. B plays the role of signer and interacts withA as follows:

• Setup. The public parameters pp, and public key pk←{A0,A(0)
1 ,A(1)

1 , · · · ,A(0)
`
,A(1)

`
,

K} will be given toA, while TA(b)
i

’s and S∗ are kept secret.

In order to respond A’s queries in ROM, B also creates and maintains a list LH

with
LH = {(u,c,e′) ∈ Zn

q×{0,1}
n×RH : e′ := H(u,c)}.

That is, LH comprises random oracle queries (u,c)
$
←− Zn

q × {0,1}
n and their corre-

sponding hash values e′ ∈ RH .

• Queries. B responds toA’s queries as follows:

– Queries to Key Update Oracle KQ(t), t = (t1, · · · , t`) ∈ {0,1}`: The query is
aborted if t ≤ t∗. Suppose that t > t∗ and that k ≤ ` is the minimum index such
that tk , t∗k . Then, use T

A(tk)
k

to compute the key Ttk for the node corresponding
to bit tk. Precisely, compute

T′tk ← ExtBasisLeft([E|A(tk)
k],T

A(tk)
k

), where E =
[
A0|A(t1)

1 | · · · |A
(tk−1)
k−1

]
,

and
Ttk ← RandBasis([E|A(tk)

k],T′tk ,σ0).

Using Ttk , compute all keys in skt as in FSBS.KeyUp.

– Queries to Hashing Oracle HQ(u,c): Being queried with (u,c), B checks if
the list LH has the query already. If it does, B references to the corresponding
hash value e′ and forwards the value to the forger. If it does not, B takes a
ri ∈ L1 that has not been used so far. B then assigns e′ := ri and add the tuple
(u,c,e′) into the list LH . Finally, B responds the forgerA with e′.

80

3.4. The FSBS Construction

– Queries to Signing Oracle SQ(t,µ), t = (t1, · · · , t`) ∈ {0,1}`: B constructs the
matrix F(t) :=

[
A0|A(t1)

1 | · · · |A
(t`)
`

]
. In order to jointly sign on µ withA, B needs

to generate S(t) as in Step 02, Phase 1. This is done depending on whether
t = t∗.

* If t , t∗, i.e., there exists a minimum index k ≤ ` such that tk , t∗k . Then, B
can compute T′F(t)

← ExtBasisLeft(F(t),TA(tk)
k

), TF(t) ← RandBasis(F(t),

T′F(t)
,σ0), and then S(t) ← SampleD(F(t),TF(t) ,K,σ) (i.e., it holds that

F(t) ·S(t) = K (mod q)).

* If t = t∗, B sets S∗ to S(t∗) because F(t∗) ·S∗ = K (mod q).

– Query to Break–in Oracle BQ(t0): If t0 ≤ t∗, then the query is aborted. If
t0 > t∗, then the break–in time, say t, can be set to t0 (i.e., t := t0). Note that
because t = t0 > t∗ then B can compute the secret key sk(t) in the same way as
when replying to KQ(t) described earlier.

• Forge. Eventually, the forger A outputs a forgery (t′1,µ
∗
1,Σ
∗
1). B aborts the game if

t′1 , t∗. Otherwise, B accepts the forgery, which is valid in the following sense:

(i) Σ∗1 = (d′1,e
′
1,z
′
1).

(ii) e′1 := H(F(t∗) · z′1−K · e′1(mod q), COM(µ∗1,d
′
1)), where

F(t∗) :=
[
A0|A

(t∗1)
1 | · · · |A

(t∗
`
)

`

]
∈ Zn×(1+`)m.

(iii) ‖z′1‖ ≤ σ3
√

(1 + `)m.

Let I ∈ [Q] be the index such that e′1 = rI .

Second execution of A. B runs A again on the same input pp, pk, ρ and the same
hash queries as in the first execution. However, this time B samples new fresh {r′I , · · · ,r

′
Q}

$
←−RH and uses the listL2 := {r1, · · · ,rI−1,r′I , · · · ,r

′
Q} to reply toA’s hash queries. Suppose

that in this execution, A eventually outputs a new valid signature (t′2,µ
∗
2,Σ
∗
2), where Σ∗2 =

(d′2,e
′
2,z
′
2). Same as before, if t′2 , t∗, then B aborts. Otherwise, B accepts the signature.

That is, we have

(i) Σ∗2 = (d′2,e
′
2,z
′
2).

(ii) e′2 := H(F(t∗) · z′2−K · e′2(mod q), COM(µ∗2,d
′
2)), where

F(t∗) :=
[
A0|A

(t∗1)
1 | · · · |A

(t∗
`
)

`

]
∈ Zn×(1+`)m.

(iii) ‖z′2‖ ≤ σ3
√

(1 + `)m.

It is easy to see that B is statistically perfect in playing the role of the real challenger
in the FSUF game. In fact, this is because that B interacts with A almost following the
real FSUF game with some exceptions as follows:

81

3.4. The FSBS Construction

1. The public key generated by B has some matrices A(b)
i that are not truly random but

are generated by the algorithm TrapGen. However, Lemma 2.5.4 guarantees that
the distribution of such A(b)

i ’s is negligibly far from uniform. This means that at
this point,A is unable to distinguish the simulated game from the real one.

2. Again, in the public key of the real game, the matrix K is uniformly random. In-
stead, K := F ·S∗ (mod q), where S∗ is sampled from D(1+`)m×m

σ . However, Lemma
2.3.3 claims that the distribution of such a K is close to uniform with a careful
choice of σ. Notice that the choice of σ does not affect (iii) above. This again
means that at this point, A is unable to distinguish the simulated game from the
real one.

3. When responding to query to Signing Oracle with t = t∗, the matrix S(t∗) is set to S∗,
which is not computed using SampleD but is sampled from D(1+`)m×k

σ . However,
the point is that the forger A does not know any S(t) (hence S∗). Additionally, z
generated in Step 12 at Phase 3 is outputted through the rejection sampling, which
makes sure that z ∼ D(`+1)m

σ2 and that z is independent of any S(t) and S∗. There-
fore, the view of A is independent of S∗ in this case. As a result, A is unable to
distinguish the simulated game from the real one.

Now, we are going to show the way for B to extract the solution to the SIS instance
given in Equation (3.3). Notice that after two executions of A on the same random tape
and the same hash queries, if e′2 = e′1, then B has to rerun A(pp, pk, ρ′) using different
random tapes ρ′ and different hash queries. Fortunately, the forking lemma (Section 3.2.3)
asserts that the probability that e′1 = rI , e′2 = r′I and e′2 , e′1 using the same hash query as
in the first execution (i.e., the I–th hash query) is at least

(1−γ) ·
(
succA−

1
|RH |

)succA−
1
|RH |

Q
−

1
|RH |

 .
Here the factor 1−γ is due to the probability of a restart.

Now, B returns the pairs

((F(t∗) · z′1−K · e′1, COM(µ∗1,d
′
1)), (F(t∗) · z′2−K · e′2, COM(µ∗2,d

′
2)). (3.4)

Because the pair in Equation (3.4) are truly the same hash query and COM is computa-
tionally binding, we have µ∗2 = µ∗1, d′1 = d′2 and

F(t∗) · z′1−K · e′1 = F(t∗) · z′2−K · e′2 (mod q),

82

3.4. The FSBS Construction

or equivalently,
F(t∗) · (z′1− z′2−S∗ · (e′1− e′2)) = 0 (mod q).

Set v̂ := z′1− z′2−S∗ · (e′1− e′2).
At this point, we follow [Lyu11, Proof of Lemma 5.4] to show that v̂ := z′1− z′2−S∗ ·

(e′1− e′2) , 0. In fact, if z′1− z′2−S∗ · (e′1− e′2) = 0 then we can replace S∗ by another one,
say S′, as follows. Let j be the index at which e′1[j] , e′2[j]. By Lemma 3.4.1, there exists
another vector, say s′, such that F(t∗) ·S∗[j] = F(t∗) ·s′ (mod q). Recall that S∗[j] is the j–th
column of S∗. Now, we form the matrix S′ from S∗ by replacing S∗[j] with s′. This way
guarantees that F(t∗) ·S∗ = F(t∗) ·S′ (mod q), where S∗ and S′ have all the same columns
except the j–th column. Further, this way also ensures that if z′1 − z′2 −S∗ · (e′1 − e′2) = 0,
then v̂′ := z′1 − z′2 −S′ · (e′1 − e′2) , 0. This is because if z′1 − z′2 −S′ · (e′1 − e′2) = 0, then
it must be S′ = S∗. This will be discussed in detail in Section 3.5 below. Stress that
the view of A is independent of both S∗ and S′ by Lemma 3.4.2. We have shown that
v̂ , 0 and F(t∗) · v̂ = 0 (mod q). We can easily check that ‖̂v‖ ≤ 2(σ3 +σ

√
κ)
√

(1 + `)m, as
‖S∗‖ ≤ σ

√
(1 + `)m, ‖z′i‖ ≤ σ3

√
(`+ 1)m, and ‖e′i‖ ≤

√
κ for i ∈ {1,2}.

Particularly, we prove that ifA can produce a forgery by restarting the signing inter-
action (with B), then B is able to find a solution to the SIS problem given by Equation
(3.3). Indeed, to restart the signing interaction, A delivers result:= (a,b,e′,c) to B. Now
B with its viewV = (t,x,e,z), will check whether all the following equations

e−b = e′ = H(x + F(t∗) ·a + K ·b (mod q),c), (3.5)

e′ = H(F(t∗) ·a + F(t∗) · z−K · e′ (mod q),c), (3.6)

‖z + a‖ > σ3
√

(1 + `)m (3.7)

hold or not. If yes, B restarts the interaction with A. Let assume that afterwards A
successfully produces a valid signature Σ̂ = (̂d′, ê′, ẑ′). Let b̂ ∈ Dm

σ1
be such that e = ê′+ b̂.

Then, the following relations have to hold

e− b̂ = ê′ = H(x + F(t∗) ·a + K · b̂ (mod q),c), (3.8)

ê′ = H(F(t∗) · ẑ′−K · ê′ (mod q), COM(µ∗, d̂′)), (3.9)

‖̂z′‖ ≤ σ3
√

(1 + `)m. (3.10)

If ê′ = e′, then Equations (3.6)–(3.9) give F(t∗) · a + F(t∗) · z (mod q) = F(t∗) · ẑ′ (mod q).
Let v̂ := a + z− ẑ′, then v̂ , 0. This is true as otherwise a + z = ẑ′, which implies that
‖z + a‖ ≤ σ3

√
(1 + `)m (by Equation (3.10)). This contradicts Equation (3.7). Again, we

have F(t∗) · v̂ = 0 (mod q), v̂ , 0 and ‖̂v‖ ≤ ‖a‖+ ‖z‖+ ‖̂z′‖ ≤ (2σ3 +σ2)
√

(1 + `)m.
Now, if ê′ , e′, then A may hide ê′ in e. Then e = e′ + b = ê′ + b̂′ for a b̂′ , b. The

83

3.4. The FSBS Construction

success probability for this case is at least

succA ·

(
1−

1
|RH |

)
,

becauseA had to predict the output of H to prepare b.
Note that F(t∗) =

[
A0|A

(t∗1)
1 | · · · |A

(t∗
`
)

`

]
=

[
A0|U

(t∗1)
1 | · · · |U

(t∗
`
)

`

]
. We can get F from F(t∗) by

inserting into the gap between two sub–matrices in F(t∗) the remaining matrices {U(1−t∗i)
i }i

at relevant positions. We insert zeros into the corresponding position of v̂ to get the
desired solution v to the problem given by Equation (3.3). Obviously, F · v = 0 (mod q),
and ‖v‖ = ‖̂v‖.

To summarise, we have shown that B can solve the (q,n, (1 + 2`)m,β)–SIS problem,
with

β = max{(2σ3 + 2σ
√
κ)

√
(1 + `)m, (2σ3 +σ2)

√
(1 + `)m}.

�

3.4.4 Setting Parameters

Parameters for the FSBS system ΠFSBS are set heuristically as follows:

• First, we set λ as the security parameter, ` as the highest depth of the binary tree
representing time points, T = 2` as the number of time points.

• Choose n,q,m and Gaussian parameters σ, σ0, σ1, σ2, σ3 such that TrapGen (Item
1, Lemma 2.5.4), ExtBasisLeft (Item 3, Lemma 2.5.4), SampleD (Item 4, Lemma
2.5.4), RandBasis (Item 5, Lemma 2.5.4) can work well. Specifically, we should
choose σ ≥ ‖T̃A0‖ ·ω(

√
log((`+ 1) ·m)), σ1 = 12‖e′‖ = 12

√
κ, σ2 = 12‖S∗ · e‖ =

12σσ1
√

(1 + `)mk and σ3 = 12‖z‖ = 12σ2
√

(1 + `)m (via Remark 2.3.1). Also,
we choose σ0,i ≥ ‖T̃A0‖ ·ω(

√
log((i + 1) ·m)). Note that m = d6n logqe, ‖T̃A0‖ =

O(
√

n logq) = O(
√

m).

• Due to Lemma 3.4.1, we should choose (`+ 1)m > 64 + n logq/ log(2d + 1). Here
d = σ

√
(1 + `)m by Lemma 2.3.4.

• To make sure the cardinality |RH | ≥ 2ζ for a desired positive integer ζ, we should
choose positive integers k and κ such that

2κ ·
(
k
κ

)
≥ 2ζ .

• Section 3.4.2 suggests setting Mi := e1+1/288 for all i ∈ [3].

84

3.5. Discussion on the Validity of the Proof of Theorem 3.4.3

• For (q,n, (1 + `)m,β)–SIS to be hard by Lemma 2.4.4, we set m poly–bounded, β =

poly(n) and q ≥ β ·ω(
√

n logn), where β = max{(2σ3 + 2σ
√
κ)
√

(1 + `)m, (2σ3 +

σ2)
√

(1 + `)m}.

3.5 Discussion on the Validity of the Proof of Theorem
3.4.3

Hauck et al. in [HKLN20] have mentioned subtle flaws in existing lattice blind signature
schemes including [Rüc10] and the paper [LSK+19]. The main problem that [HKLN20]
showed is as follows. Rückert [Rüc10] reduces the one–more unforgeability security to
the hardness of a collision problem, which is denoted as Col(H(R,m),D) in the Rückert’s
work. We omit its notational detail here. To prove the one–more unforgeability of the
lattice–based blind signature, [Rüc10] applies the general forking lemma (see Section
3.2.3) to rewind the forger to get χ and χ′ such that h(χ) = h(χ′) and applies the witness
indistinguishability following [PS00, Lemma 8] to assure χ , χ′. Here h is an instance of
Col(H(R,m),D). Obviously, χ , χ′ leads to a collision of h. In the lattice setting (e.g., in
our work [LDS+20] and in this chapter), the collision implies a non–trivial solution to the
SIS problem.

However, [HKLN20] reckons that using the witness indistinguishability and [PS00,
Lemma 8] is insufficient to prove χ , χ′. Instead, [HKLN20] argued that one must apply
[PS00, Lemma 9] and subsequent parts of Pointcheval and Stern’s to prove χ , χ′. They
also discussed that Lemma 8 and Lemma 9 of [PS00] only apply to the Okamoto–Schnorr
scheme, not directly to other schemes. They concluded that the security proof for the
OMUF of [Rüc10] (hence [LSK+19]a) is not valid.

Fortunately, even though [LDS+20] (hence this chapter) follows the framework of
[Rüc10], our argument for the forward–secure unforgeability security is quite different
and much simpler. We deploy Lemma 3.4.1 and follow an argument by Lyubashevsky
[Lyu11, Proof of Lemma 5.4]. We, therefore, do not rely on the argument of [PS00]. For
ease of following, we summarise the idea below.

Suppose that the matrix F is an (q,n,m,β)–SIS instance. (F may be a part of a larger
SIS instance.) Suppose further that after rewinding and from two forgeries, one gets
χ1 := z1 −S · c1, χ2 := z2 −S · c2 with c1 , c2 satisfying that F ·χ1 = F ·χ2 (mod q). The
main goal is to prove χ1 , χ2 (with some probability), which implies a non-trivial of the
SIS instance by choosing parameters such that ‖χ1 −χ2‖ ≤ β. What we should do is as
follows:

aHowever, we saw that [LSK+19] is free from the flaw because its proof does not apply the approach of
[Rüc10]. We omit the detail because it is irrelevant to this thesis’ content.

85

3.6. Summary

• Let j ∈ [m] be the index at which c1 , c2, i.e., c1[j] , c2[j].

• Of course, if χ1 , χ2 then everything is done.

• However, if χ1 = χ2, i.e.,
z1−S · c1 = z2−S · c2 (3.11)

then replace the matrix S by another matrix S′. Here, S′ is the same as S at all
columns but the column j. We can do this by: (i) first choosing another vector
s′ , S[j] subject to F ·s′ = F ·S[j] (mod q) (owing to Lemma 3.4.1); (ii) then setting
S′ to be S with the replacement the column S[j] of S by s′. Now, let χ′1 := z1−S′ ·c1,
χ′2 := z2−S′ ·c2. Notice that the forger is not aware of either S or S′ being used due
to the WI property (presented in Lemma 3.4.2).

• Prove χ′1 , χ
′
2 by contradiction: If χ′1 = χ′2 then we would get

z1−S′ · c1 = z2−S′ · c2. (3.12)

Subtracting Equations (3.11) and (3.12) side by side, we get (S−S′) · (c1− c2) = 0,
which is equivalent to

0 =

... · · ·

...
...

... · · ·
...

0 · · · 0 S[j]−S′[j] 0 · · · 0
... · · ·

...
...

... · · ·
...

 ·

c1[1]− c2[1]
c1[2]− c2[2]

...

c1[j]− c2[j]
...

c1[m−1]− c2[m−1]
c1[m]− c2[m]

= (S[j]−S′[j]) · (c1[j]− c2[j]).

Since c1[j]− c2[j] , 0, then it must be S[j] = S′[j], hence S = S′. This contradicts
to the fact that S , S′.

To conclude, we have demonstrated that the proof for the forward–secure unforge-
ability in the paper [LDS+20] and Theorem 3.4.3 of this thesis does not suffer from the
flaw shown in [HKLN20].

3.6 Summary

We have proposed the first forward–secure blind signature (FSBS) over lattices. The
introduced FSBS’s security relies on the short integer solution assumption. The main

86

3.6. Summary

tools used for the construction are the binary tree data structure used in representing the
time periods, a modification of Fiat–Shamir with aborts, in which aborting is implemented
using the rejection sampling, a commitment functions, a hash function, and the GPV08
trapdoor. We show that the proposed signature satisfies the blindness and the forward
security unforgeability. The latter is proven in the random oracle model by exploiting the
witness indistinguishability, the oracle replay attack and the forking lemma. We leave a
lattice–based FSBS secure in the standard model for future research.

In Chapter 4, we will revisit the LVV19 trapdoor and develop a trapdoor delegation
algorithm. Basing on that, we propose the first hierarchical identity–based encryption
(Section 2.7.4) from the degree–parameterised middle–product learning with errors prob-
lem (Section 2.4).

87

Chapter 4

Hierarchical IBE from
Degree–parameterised
Middle–product LWE

Part of the content in this chapter appeared in Le et al. [LDSP20]. The author of this

thesis is the first, and one of the corresponding authors of [LDSP20]. Having received the

topic from his supervisors, he contributed to developing the main method, the design of the

cryptosystem, the security analysis of the cryptosystem and the writing of the manuscript.

4.1 Overview

Identity– based encryption (IBE) [Sha85] is a kind of public–key encryption. An IBE has
a mechanism that generates users’ private keys from their identities (e.g., email addresses)
which behave as public keys. There exists a hierarchical variant of IBE called hierarchical
identity–based encryption (HIBE) [HL02, GS02b]. User identities in a HIBE are placed in
a directed tree. In a HIBE, one can use a private key for an identity to produce a private key
for its child identity. However, the reverse direction (i.e., computing a key for an identity
from its child identity’s private key) is impossible. One can deploy HIBE to construct
broadcast encryption [DF03, YFDL04] and forward–secure encryption [CHK03].

In [LVV19], Lombardi et al. introduced the LVV19 trapdoor, which was reviewed
in Section 2.5.3. The LVV19 trapdoor [LVV19] is essentially an adaptation of the MP12
trapdoor [MP12] to polynomials, which are involved in the degree–parameterised middle–
product learning with errors (DMPLWE) problem. In more detail, the authors of [LVV19]
used Toeplitz representation to represent a family of polynomials in such a way that
they can apply the MP12 trapdoor to Toeplitz representations (that are concatenations of

88

4.1. Overview

Toeplitz matrices). [LVV19] introduced two algorithms called LVVGenTrap and LVVSam-

Trap in this thesis. The former helps generate a family of polynomials aε together with
a trapdoor tdε . The latter allows sampling a family of polynomials r satisfying that
〈aε ,r〉 :=

∑t+γτ
i=1 ai · ri = u. for a given polynomial u using the trapdoor tdε . (Parameters

will be described below.) Employing the trapdoor, Lombardi et al. [LVV19] also gave the
first identity–based encryption (IBE) scheme relied on DMPLWE. However, the LVV19
trapdoor still lacks a delegation technique that helps derive a trapdoor for an expanded
polynomial family. Therefore, a hierarchical identity–based encryption (HIBE) construc-
tion from DMPLWE has not been available in the literature.

In this chapter, we fill the above gap by introducing a delegation method for the
LVV19 trapdoor, thanks to which we can construct the first HIBE scheme based on DM-
PLWE, which is provably secure in the standard model (SDM). See Figure 4.1 for an
overview of our work in comparison with the [LVV19] work. For the formal definition of
HIBE, please refer to Section 2.7.4.

[LVV19]:

LVV19 trapdoor
• LVVGenTrap: Generate a family of polynomials aε

with its trapdoor tdε
• LVVSamTrap: Given (aε , tdε) and a polynomial u

sample r such that 〈aε ,r〉 :=
∑t+γτ

i=1 ai · ri = u.

DMPLWE–based IBE

Our work:

LVV19 trapdoor delegation DMPLWE–based HIBE

Figure 4.1: Overview of our work in comparison with [LVV19].

The primary technical point in delegating a trapdoor in the LVV19 trapdoor mech-
anism is to exploit the idea of MPDelTrap (Lemma 2.5.5) on Toeplitz representations.
However, this should be done in a subtle (and not straightforward) way. We have to much
care about the quantity and the form of Toeplitz matrices of polynomials in families that
will be added to a given family. More intuitively, suppose that our goal is, given a trapdoor
for a, to derive a trapdoor for f := (a|h) provided an added family h. Then, we will dis-
cuss, along the way, to see that in the base case, the number of polynomials in h should
be equal to that in the gadget family g (given in Equation (4.2) below). Additionally,
the Toeplitz representations for h and for g should be the same form. The cases that the
number of polynomials in h is a multiple of g then can be handled recursively with some
modifications to related algorithms.

Before jumping to the next sections, we define some common parameters for this
chapter. We will work with parameters n ∈ Z+, a prime modulus q = poly(n), d, t, γ,τ,k,
m ∈ Z+ satisfying that d ≤ n, m≥ 1, k ≥ 1, dt/n = Ω(logn), τ := dlogqe, dγ = n+2d−2, and
β := d logn

2 e. Throughout this chapter, we consider the following gadget family consisting

89

4.1. Overview

of γτ polynomials
g = (g1, · · · ,gγτ), with g j = 2ηxdζ , (4.1)

for j = ζτ+η+ 1 and η ∈ {0, · · · , τ−1}, ζ ∈ {0, · · · ,γ−1}. Remember that

G = [Tpn+d−1,d(g1)| · · · |Tpn+d−1,d(gγτ)] ∈ Z
dγ×dγτ
q (4.2)

is a Toeplitz representation for g.
The primary contributions presented in this chapter are:

• proposing a delegation algorithm for the LVV19 trapdoor, given in Section 4.2, and

• introducing the first HIBE from the DMPLWE problem, presented in Section 4.3.

We exploit the main following technical tools at the core of our work:

• the MP12 trapdoor and the LVV19 trapdoor (Section 2.5.3),

• a delegation algorithm for the LVV19 trapdoor (will be proposed in Section 4.2).

In the following, we detail our contributions and techniques/tools.

LVV19 Trapdoor Delegation. Let a = (a1, · · · ,at′) be a t′–family of polynomials. We
can interpret any polynomial as a structured matrix, e.g. Toeplitz matrix [Pan01], and
hence a can be represented as a concatenated structured matrix, say A. The trapdoor from
[LVV19] is a modification for a family of polynomials of the trapdoor used in [MP12].
More specifically, in [LVV19], a trapdoor for the family a is a collection tda of short

polynomials (here short means small coefficients) from which we form a matrix R such
that A ·

[R
I
]
= G,where G is the concatenated structured matrix of g = (g1, · · · ,gγτ), namely

g j = 2ηxdζ for j = ζτ+η+1 with η ∈ {0, · · · , τ−1}, ζ ∈ {0, · · · ,γ−1}. We call g the primitive

family. The trapdoor tda is used to search for a t′–family of polynomials r := (r1, · · · ,rt′)
(following some distribution that is close to uniform) such that 〈a,r〉 :=

∑t′
i=1 ai · ri = u for

any given polynomial u of appropriate degree.

DMPLWE–based HIBE. For the construction of DMPLWE–based HIBE, we need to de-
rive a trapdoor for an extended family of polynomials, say f = (a|h) = (a1, · · · ,at′ |h1, · · · ,ht′′),
from a trapdoor for a. To this end, we first proceed with the case t′′ = γτ, i.e., the number
of polynomials in h has to be the same as the number in g. We transform h into a matrix
H, and then apply the idea of trapdoor delegation from [MP12] to obtain the trapdoor td f

for f. We generalize the trapdoor delegation to the case t′′ = mγτ, a multiple of γτ for
m ≥ 1.

Using the proposed polynomial trapdoor delegation, we build the first HIBE based on
DMPLWE, which is provably IND–sID–CPA secure in the standard model. To produce

90

4.2. Main Technique: Delegation for LVV19 Trapdoor

a private key for an identity id = (id1, · · · , id`) at depth `, we form an extended family
f id = (a,h

(1,id1)
, · · · ,h

(`,id`)) in which each h
(i,bit)

= (h(i,bit)
1 , · · · ,h(i,bit)

t′) is a family of random
polynomials. Then our trapdoor delegation helps to get a trapdoor for f id, which plays the
role of the private key concerning the identity id. Deriving a private key for a child identity
id|id`+1 = (id1, · · · , id`, id`+1) from a parent identity id = (id1, · · · , id`) is done in similar way
by appending h

(`+1,id`+1)
to f id so we get f id|id`+1 = (a,h

(1,id1)
, · · · ,h

(`,id`)
,h

(`+1,id`+1)
). Then

we use the trapdoor delegation to get its private key from the private key (trapdoor) of f id.
For the security proof to work, we need to put a condition on t′ such that t′ is a multiple
of γτ. Indeed, the condition ensures that the simulator can simulate an answer to a private
key query of the adversary. The answer is generated using a trapdoor for some h

(i,idı),
which is not chosen randomly but produced by a trapdoor.

Figure 4.2 shows the roadmap of this chapter.

Overview [Section 4.1]

Main Technique: Delegation for LVV19 Trapdoor [Section 4.2]

DMPLWE–based HIBE in Standard Model [Section 4.3]

Summary [Section 4.4]

Figure 4.2: The roadmap of this chapter.

4.2 Main Technique: Delegation for LVV19 Trapdoor

In this section, we will be developing algorithms of delegating a g–trapdoor td (in the
sense of Definition 2.5.6) for (a|h) given a g–trapdoor tda for a = (a1, · · · ,at1) and given
h = (h1, · · · ,ht2), all polynomials ai’s and hi’s defined over Zq. Here t1 and t2 are two
positive integers. Along the way, we will discuss to see what the values of t1 and t2 are
and what the degrees of polynomials ai’s and h j’s should be.

Table 4.1: A description and comparison of Base Case, Middle Case and More Gen-
eral Case.

Case Main Algorithm Input Output

Base Case BasicLVVDelTrap
(aε = (a1, · · · ,at+γτ), , tdε ,

h = (h1, · · · ,hγτ))
trapdoor td f

for f := (aε |h)

Middle Case GenLVVDelTrap
(a = (a1, · · · ,at+kγτ), tda,

h = (h1, · · · ,hγτ))
trapdoor td f

for f := (a|h)

More General Case MoreGenLVVDelTrap
(a = (a1, · · · ,at+kγτ), tda,

h = (h1, · · · ,hmγτ))
trapdoor td f

for f := (a|h)

91

4.2. Main Technique: Delegation for LVV19 Trapdoor

For ease of presentation, we will consider three cases that we call Base Case, Middle

Case and More General Case.

• In Base Case, we come up with an algorithm named BasicLVVDelTrap that takes
as input (aε , tdε), h = (h1, · · · ,hγτ) to output a g–trapdoor for f := (aε |h). Here
the pair (aε , tdε), is directly generated by LVVGenTrap and remember that aε =

(a1, · · · ,at+γτ). This algorithm uses LVVSamTrap as a procedure, which calls MP-

SamTrap in its course.

• We name the resulting algorithm in Middle Case by GenLVVDelTrap. Our goal
is to use the algorithm to find a g–trapdoor td f for f := (a|h) on the input of (a =

(a1, · · · ,at+kγτ), tda, h = (h1, · · · ,hγτ)). Remark that (a = (a1, · · · ,at+kγτ), tda) may
be the direct output of either the algorithm BasicLVVDelTrap (if k = 2) or the al-
gorithm GenVVDelTrap itself (if k > 2). This algorithm uses GenLVVSamTrap, a
generalised version of LVVSamTrap, as a sub–procedure. GenLVVSamTrap in turn
calls MPSamTrap in its course. In this case, we will also describe GenLVVSam-

Trap.

• In More General Case, we generalise GenLVVDelTrap to get MoreGenLVVDel-

Trap whose input is the tuple of (a = (a1, · · · ,at+kγτ), tda, h = (h1, · · · ,hmγτ)). This
algorithm calls GenLVVDelTrap as a procedure in its course.

We can see that BasicLVVDelTrap and GenVVDelTrap differ in the nature and the
quantity of (a, tda), while GenLVVDelTrap and MoreGenVVDelTrap differ in the the
quantity of h. Please see Table 4.1 for the description and comparison of those cases.
We present the flow of algorithms in Figure 4.3. The figure also shows the relation among
Base Case (the blue rectangle), Middle Case (the orange rectangle) and More General
Case (the red rectangle).

MPSamTrap

LVVSamTrap GenLVVSamTrap

BasicLVVDelTrap GenLVVDelTrap

MoreGenLVVDelTrap

Base Case Middle Case

More General Case

k = 1

Figure 4.3: Flow of algorithms in our LVV19 trapdoor delegation.

We start with the base case in which a := a(1)
= aε , and tda := td(1) := tdε , with

(aε , tdε)← LVVGenTrap(1n).

92

4.2. Main Technique: Delegation for LVV19 Trapdoor

Base Case. Let (aε , tdε)← LVVGenTrap(1n). Suppose that h = (h1, · · · ,ht2). Let σ1 be a
Gaussian parameter to be determined. We will be discussing on a way to find a g–trapdoor
tda for a(2) := (aε |h) = (a1, · · · ,at+γτ|h1, · · · ,ht2).

Recall that by description of LVVGenTrap in Lemma 2.5.9, we have aε = (a1, · · · ,

at+γτ) where ai ∈ Z
<n
q [x] for i ∈ [t], ai ∈ Z

<n+d−1
q [x] for t + 1 ≤ i ≤ t + γτ; and tdε :=

(w(1), · · · ,w(γτ)) in which w(j)
= (w(j)

1 , · · · ,w(j)
t)← (Γd[x])t with Γ = U({−β, · · · ,β}), sat-

isfying that
Aε ·

[Tε
Idγτ

]
= G,

where

Aε := [Tpn,2d−1(a1)| · · · |Tpn,2d−1(at)|Tpn+d−1,d(at+1)| · · · |Tpn+d−1,d(at+γτ)]

is a Toeplitz representation for aε ,

Tε :=

Tpd,d(w(1)

1) · · · Tpd,d(w(γτ)
1)

...
...

Tpd,d(w(1)
t) · · · Tpd,d(w(γτ)

t)

 ∈ Z(2d−1)t×dγτ
q (4.3)

is a Toeplitz representation for tdε , and the dγτ–dimensional unit matrix

Idγτ =

Tp1,d(1) · · ·
· · · · · ·

· · · Tp1,d(1)

 ∈ Zdγτ×dγτ
q .

Let call R(1) := Tε . Suppose that matrix H is a Toeplitz representation for h. Define
A(2) := [Aε |H]. Then, we have A(2) as Toeplitz representation for a(2). Now, by definition,
the trapdoor tda will have a Toeplitz representation R(2) such that A(2) ·

[R(2)

It3

]
= G, for

some integer t3 > 0. We can easily determine that t3 := dγτ, too. Thus

Aε ·R(2) = G−H, (4.4)

provided a trapdoor R(1) (i.e., Tε) for Aε and that H has the same dimension as G.
The task of finding R(2) satisfying Equation (4.4) can be done using MPDelTrap in

Lemma 2.5.5. However, in our setting, the Toeplitz matrix H should be such that the
matrix U := G−H is still a Toeplitz representation of some polynomials, from which
we can correctly recover these polynomials. Moreover, the matrix R(2) should also be
structured so that we can easily convert it into appropriate polynomials ri’s. In comparison
with the matrix G, and by the basic properties of Toeplitz matrices (Lemmas 2.5.6–2.5.8),
we see that H should be

93

4.2. Main Technique: Delegation for LVV19 Trapdoor

H = [Tpn+d−1,d(h1)| · · · |Tpn+d−1,d(hγτ)] ∈ Z
dγ×dγτ
q .

Thus, t2 := γτ and polynomials h1, · · · ,hγτ should have deg(hi) < n + d − 1 for all
i ∈ [γτ]. Therefore,

G−H = [Tpn+d−1,d(g1−h1)| · · · |Tpn+d−1,d(gγτ−hγτ)].

Now, for i = 1, · · · ,γτ, letting ui = gi−hi, we have

G−H =[Tpn+2d−2,1(u1)| · · · |Tpn+2d−2,1(xd−1 · (u1))|

· · · |Tpn+2d−2,1(uγτ)| · · · |Tpn+2d−2,1(xd−1 · (uγτ))]

= [Tpn+2d−2,1(v1)| · · · |Tpn+2d−2,1(vdγτ)],

(4.5)

where vi = xαuψ for i = α+d(ψ−1)+1, with α ∈ {0, · · · ,d−1}, ψ ∈ {1, · · · ,γτ}. Note that the
last equality in Equation (4.5) is due to Lemma 2.5.7, helping to transform a concatenation
of Toeplitz matrices of γτ polynomials ui’s into that of dγτ polynomials vi’s.

Recall that the Toeplitz representation for aε = (a1, · · · ,at,at+1, · · · ,at+γτ) ∈ (Z<n
q [x])t×

(Z<n+d−1
q [x])γτ is

Aε = [Tpn,2d−1(a1)| · · · |Tpn,2d−1(at)|Tpn+d−1,d(at+1)| · · · |Tpn+d−1,d(at+γτ)].

By letting v(i) := Tpn+2d−2,1(vi), by Equation (4.4) and Equation (4.5), we have to find
R(2) := [r(1)| · · · |r(dγτ)] such that Aε[r(1)| · · · |r(dγτ)] = [v(1)| · · · |v(dγτ)], which is equivalent
to Aεr(i) = v(i) for 1 ≤ i ≤ dγτ. By the description of LVVSamTrap in Lemma 2.5.9, we
see that r(i) is generated by MPSamTrap(Tε ,Aε ,v(i),σ1), where r(i) ∈ Z(2d−1)t+dγτ is a
vector sampled fromD

Λv(i)
q (A),σ1

, where

σ1 ≥ ω(
√

log(dγ)) ·
√

7((2d−1)t · (dγτ) ·β2 + 1)

following Equations (2.8)–(2.9). Moreover, r(i) is a Toeplitz representation (in column)
for r(i)

= (r(i)
1 , · · · ,r

(i)
t+γτ), with deg(r(i)

j) < 2d−1, ∀ j ∈ [t], deg(r(i)
t+ j) < d ∀ j ∈ [γτ] and ∀i ∈

[dγτ]. Equivalently speaking, we can say that r(i)
← LVVSamTrap(aε , tdε ,v(i),σ1).

Putting all r(i)’s for i ∈ [dγτ] in td(2) = (r(1), · · · ,r(dγτ)), we have a trapdoor for a, and

94

4.2. Main Technique: Delegation for LVV19 Trapdoor

its corresponding matrix representation is

R(2) = (R(2)[i, j])i, j =

Tp2d−1,1(r(1)
1) · · · Tp2d−1,1(r(dγτ)

1)
...

...

Tp2d−1,1(r(1)
t) · · · Tp2d−1,1(r(dγτ)

t)
Tpd,1(r(1)

t+1) · · · Tpd,1(r(dγτ)
t+1)

...
...

Tpd,1(r(1)
t+γτ) · · · Tpd,1(r(dγτ)

t+γτ)

∈ Z((2d−1)t+dγτ)×dγτ. (4.6)

By properties of Toeplitz matrices, we can check that A(2) ·
[R(2)

Idγτ

]
= G. Remark that

by Lemma 2.3.5,

|R(2)[i, j]| ≤ ω(logn) ·σ1 with probability 1−negl(n). (4.7)

Hence, from Lemma 2.1.2

s1(R(2)) ≤
√

((2d−1)t + dγτ) · (dγτ) ·ω(logn) ·σ1, (4.8)

where σ1 satisfies Equation (2.8).
The procedure for Base Case that we have discussed above is formally called Basi-

cLVVDelTrap. We algorithmically show it in Algorithm 1.

Algorithm 1 BasicLVVDelTrap(aε ,h, tdε ,σ1)

Input: A (t + γτ)–family of polynomials aε = (a1, · · · ,at,at+1, · · · ,at+γτ) ∈ (Z<n
q [x])t ×

(Z<n+d−1
q [x])γτ, and its trapdoor tdε , and a γτ–family of polynomials h =

(h1, · · · ,hγτ) ∈ (Z<n+d−1
q [x])γτ, and (implicitly) g = (g1, · · · ,gγτ) ∈ (Z<n+d−1

q [x])γτ as
in Equation (4.1).

Output: The trapdoor td(2) for a(2)
= (a1, · · · ,at+γτ,h1, · · · ,hγτ).

1: Compute u = (u1, · · · ,uγτ)← g−h = (g1−h1, · · · ,gγτ−hγτ).
2: Define vi = xαuψ for i = α+ d(ψ−1) + 1, with α ∈ {0, · · · ,d−1}, ψ ∈ [γτ].
3: For i ∈ [dγτ], call LVVSamTrap(aε , tdε ,vi,σ1) to get r(i)

= (r(i)
1 , · · · ,r

(i)
t+γτ), where

deg(r(i)
j) < 2d−1 for j ∈ [t], deg(r(i)

t+ j) < d for j ∈ [γτ].

4: Return td(2) = (r(1), · · · ,r(dγτ)).

Middle Case. Now, we generalise Base Case to the case in which a = (a1, · · · ,at1) and
h = (h1, · · · ,ht2), with t1 := t + kγτ (for k ≥ 2), and again t2 = γτ. We choose such a t2
following discussion Base Case via which the matrix H has the same dimension as G.
The reason that we consider such t1 comes from the following observation. Suppose that
we delegate up to (k−1) times. We begin with a(1) := aε = (a1, · · ·at,at+γτ), and td(1) := tdε .
For the first delegation, we add γτ–family of polynomials h

(1)
:= (h1, · · · ,hγτ) to a(1) then

95

4.2. Main Technique: Delegation for LVV19 Trapdoor

get a(2) := (a(1)
|h

(1)
) = (a1, · · ·at,at+1, · · · ,at+γτ,h1, · · · ,hγτ) which can be rewritten as

a(2) := (a1, · · ·at,at+1, · · · ,at+2γτ),

if we set at+γτ+1 := h1, · · · ,at+2γτ := hγτ. This way, at the (k− 1)–th delegation we will
have

a(k) := (a(k−1)
|h

(k−1)
) = (a1, · · ·at,at+1, · · · ,at+kγτ).

Accordingly to the expansion of trapdoors, we will have to do sampling using some
trapdoor td(k) for a(k) for any k ≥ 2 (instead of k = 1 as in Base Case), then we slightly
modify LVVSamTrap in Lemma 2.5.9 and call it GenLVVSamTrap. If we execute the
algorithm GenLVVSamTrap on input (a(k)

= (a1, · · · ,at+kγτ), td(k) = (r(1), · · · ,r(dγτ)),u,σk),
where r(i)

= (r(i)
1 , · · · , r(i)

t+(k−1)γτ) (with k ≥ 2), then td(k) should be interpreted as matrix
R(k) given in Equation (4.9) of which the last row’s index is t + (k−1)γτ. Remind that the
Toeplitz representation R(1) = Tε for td(1) := tdε is of form in Equation (4.3).

R(k) =

Tp2d−1,1(r(1)
1) · · · Tp2d−1,1(r(dγτ)

1)
...

...

Tp2d−1,1(r(1)
t) · · · Tp2d−1,1(r(dγτ)

t)
Tpd,1(r(1)

t+1) · · · Tpd,1(r(dγτ)
t+1)

...
...

Tpd,1(r(1)
t+(k−1)γτ) · · · Tpd,1(r(dγτ)

t+(k−1)γτ)

∈ Z((2d−1)t+(k−1)dγτ)×dγτ, (4.9)

where each entry |R(k)[i, j] of R(k) satisfies that (by Lemma 2.3.5)

|R(k)[i, j]| ≤ ω(logn) ·σk−1 with probability 1−negl(n). (4.10)

We describe GenLVVSamTrap right below.

• r← GenLVVSamTrap(a(k)
= (a1, · · · ,at+kγτ), td(k) = (r(1), · · · ,r(dγτ)),u,σk). Do the

following:

1. Construct (implicitly) Toeplitz representation

A(k) = [Tpn,2d−1(a1)| · · · |Tpn,2d−1(at)|Tpn+d−1,d(at+1)| · · · |Tpn+d−1,d(at+kγτ)]

for a(k), Toeplitz representation G for g as in Equation (4.2), and Toeplitz
representation R(k) for td(k) as in Equation (4.9).

2. Compute Toeplitz matrix for u: u = Tpn+2d−2,1(u) ∈ Zn+2d−2
q .

96

4.2. Main Technique: Delegation for LVV19 Trapdoor

3. Sample vector r ∈ Z(2d−1)t+kdγτ from DΛu
q(A(k)),σk

by calling the algorithm r←
MPSamTrap(R(k),A(k),u,σk) mentioned in Lemma 2.5.5, with choosing

σk ≥ ω(
√

log(dγ)) ·
√

7(s1(R(k))2 + 1), (4.11)

where

s1(R(k)) ≤
√

((2d−1)t + (k−1)dγτ) · (dγτ) · |R(k)[i, j]|. (4.12)

4. Split r into r(k) = [r>1 | · · · |r
>
t+kγτ]

>, and rewrite it (in column) as a Toeplitz rep-
resentation of polynomials r1, · · · ,rt+kγτ. Namely, r j = Tp2d−1,1(r j), deg(r j) <
2d−1, ∀ j ∈ [t], r j = Tpd,1(r j), deg(rt+ j) < d,∀ j ∈ t + 1, · · · , t + kγτ.

5. Output r(k) := (r1, · · · ,rt+kγτ). Note that

〈a(k),r(k)
〉 =

t+kγτ∑
i=1

ai · ri = u.

Algorithm 2 GenLVVDelTrap(a(k),h, td(k),σk)

Input: A (t + kγτ)–family of polynomials a(k)
= (a1, · · · ,at,at+1, · · · ,at+kγτ) ∈ (Z<n

q [x])t ×

(Z<n+d−1
q [x])γτ, and its trapdoor td(k), and a γτ–family of polynomials h =

(h1, · · · ,hγτ) ∈ (Z<n+d−1
q [x])γτ, (implicitly) g = (g1, · · · ,gγτ) ∈ (Z<n+d−1

q [x])γτ as in
Equation (4.1), and a Gaussian parameter σk.

Output: The trapdoor td(k+1) for a(k+1)
= (a1, · · · ,at+kγτ,h1, · · · ,hγτ).

1: Compute u = (u1, · · · ,uγτ)← g−h = (g1−h1, · · · ,gγτ−hγτ).
2: Define vi = xαuψ for i = α+ d(ψ−1) + 1, with α ∈ {0, · · · ,d−1}, ψ ∈ [γτ].
3: For i ∈ [dγτ], call GenLVVSamTrap(a(k), td(k),vi,σk) to get r(i)

= (r(i)
1 , · · · ,r

(i)
t+kγτ),

where deg(r(i)
j) < 2d−1 for j ∈ [t], deg(r(i)

t+ j) < d for j ∈ [kγτ] .

4: Return td(k+1) = (r(1), · · · ,r(dγτ)).

We are back to the delegation. We present GenLVVDelTrap in Algorithm 2 in which
we delegate a trapdoor for a(k+1)

= (a(k+1)
|h), with h = (h1, · · · ,hγτ) ∈ (Z<n+d−1

q [x])γτ from a
trapdoor for a(k)

= (a1, · · · ,at,at+1, · · · ,at+kγτ) ∈ (Z<n
q [x])t× (Z<n+d−1

q [x])γτ. The algorithm
GenLVVDelTrap is quite the same as BasicLVVDelTrap but calling GenLVVSamTrap

instead of LVVSamTrap.

More General Case. Now, we are ready to come up with the main algorithm for the
LVV19 trapdoor delegation called MoreGenLVVDelTrap presented in Algorithm 3. This
is a more general algorithm than GenLVVDelTrap involving a multiple of γτ polynomials
in h, i.e., h = (h1, · · · ,hmγτ) ∈ (Z<n+d−1

q [x])mγτ for some m ∈ Z+.

97

4.2. Main Technique: Delegation for LVV19 Trapdoor

Let us make few observations for MoreGenLVVDelTrap. The output td f of this al-
gorithm is (r(1), · · · ,r(dγτ)) in which for i ∈ [dγτ], r(i)

= (r(i)
1 , · · · ,r

(i)
t+(k+m−1)γτ) and r(i)

j ∈

Z<n+d−1
q [x] for j ∈ [t], and r(i)

t+ j ∈ Z
<d
q [x] for j ∈ [(k + m− 1)γτ]. The Toeplitz representa-

tion R(k+m−1) for the trapdoor td f has the form (4.13) below.

R(k+m) =

Tp2d−1,1(r(1)
1) · · · Tp2d−1,1(r(dγτ)

1)
...

...

Tp2d−1,1(r(1)
t) · · · Tp2d−1,1(r(dγτ)

t)
Tpd,1(r(1)

t+1) · · · Tpd,1(r(dγτ)
t+1)

...
...

Tpd,1(r(1)
t+kγτ) · · · Tpd,1(r(dγτ)

t+kγτ)
...

...

Tpd,1(r(1)
t+(k+m−1)γτ) · · · Tpd,1(r(dγτ)

t+(k+m−1)γτ)

. (4.13)

Algorithm 3 MoreGenLVVDelTrap(a,h, tda,σ
(k,m))

Input: A (t + kγτ)–family of polynomials a = (a1, · · · ,at,at+1, · · · ,at+kγτ) ∈ (Z<n
q [x])t ×

(Z<n+d−1
q [x])kγτ, and its trapdoor tda, and a mγτ–family of polynomials h =

(h1, · · · ,hmγτ) ∈ (Z<n+d−1
q [x])mγτ, (implicitly) g = (g1, · · · ,gγτ) ∈ (Z<n+d−1

q [x])γτ, and
a list of Gaussian parameters σ(k,m) = (σk+1, · · · ,σk+m)).

Output: The trapdoor td f for f = (a1, · · · ,at+kγτ,h1, · · · ,hmγτ).

1: Split h = (h
(1)
, · · · ,h

(m)
) where each h

(i)
is a γτ–family of polynomials.

2: td(1)← tda, a(1)
← a.

3: for i = 1 up to m do
4: td(i+1)← GenLVVDelTrap(a(i),h

(i)
, td(i),σk+i).

5: a(i+1)
← (a(i),h

(i)
).

6: end for
7: Return td f = td(m+1).

Formally, we state the following theorem.

Theorem 4.2.1 (Main Trapdoor Delegation). Let n be a positive integer, q = poly(n)
be a prime, and d, t, γ,τ,k, m be positive integers such that d ≤ n, dt/n = Ω(logn),
dγ = n+2d−2, k ≥ 1, m≥ 1. Let τ := dlogqe and β := d logn

2 e. Let g be γτ–family of polyno-

mials as in Equation (4.1). Let a = (a1, · · · ,at+kγτ) be a (t+kγτ)–family of polynomials and

its associated trapdoor tda, where ai ∈ Z
<n
q [x] for i ∈ [t] and ai ∈ Z

<n+d−1
q [x] for t +1 ≤ i ≤

t +kγτ. Suppose that h = (h1, · · · ,hmγτ) is a mγτ–family of polynomials in Z<n+d−1
q [x] and

σ(k,m) = (σk+1, · · · ,σk+m) is Gaussian parameters to be determined. Then, there exists a

probabilistic polynomial–time algorithm, MoreGenLVVDelTrap(a,h, tda,σ
(k,m)) that out-

puts a trapdoor td f for f = (a1, · · · ,at+kγτ|h1, · · · ,hmγτ).

98

4.3. DMPLWE–based HIBE in Standard Model

Here, we set Gaussian parameters σ(k,m) = (σk+1, · · · ,σk+m) for any integers k,m > 0.
Note that the Gaussian parameter σk in algorithm GenLVVSamTrap(a, tda,u,σk) has to
satisfy Equation(4.11). From Equation (4.13), we can see that σk+i should satisfy

σk+i ≥ ω(
√

log(dγ)) ·
√

7(s1(R(k+i−1))2 + 1),

with

s1(R(k+i−1)) ≤
√

((2d−1)t + (k + i−1)dγτ) · (dγτ) ·ω(logn) ·σk+i−1, where i ∈ [m].

Remind that σ1 and s1(R(1)) follows Equations (2.8)–(2.9).

4.3 DMPLWE–based HIBE in Standard Model

We will specify a concrete HIBE system from DMPLWE (Section 2.4.2). The proposed
HIBE construction is IND–sID–CPA secure in SDM. We follow the IBE of [AB09] to
get our HIBE. Even though, the authors of [LVV19] also exploited the same approach,
the private key skid (with respect to an identity id) in IBE of [LVV19] is actually not a
g–trapdoor. One thus cannot perform delegation on identities. Therefore, it is unable
to construct a HIBE using the IBE of [LVV19]. Instead, our HIBE construction uses a
g–trapdoor as the private key (with respect to a identity).

Specifically, in our HIBE construction, we represent an identity as a binary vector,
e.g., id := (id1, · · · , id`) ∈ {0,1}` is an depth–` identity. We will then correspond each
entry id j to a (t + γτ)–family of polynomials h

(j,id j) sampled uniformly at random. For
example, if id := (0,1,1) ∈ {0,1}3 then id corresponds to {h

(1,0)
,h

(2,1)
,h

(3,1)
}. The pro-

posed HIBE’s master secret key is the root trapdoor tdε generated together with the root

family aε by LVVGenTrap. For each identity, says id := (id1, · · · , id`), we set the family
f id = (aε ,h

(1,id1)
, · · · ,h

(`,id`)). To compute the identity id’s private key, we delegate a trap-
door for f id from the root trapdoor tdε . Similarly, from the private key for an identity
id := (id1, · · · , id`), i.e., trapdoor for f id = (aε ,h

(1,id1)
· · · ,h

(`,id`)), we can derive a trap-
door for f id|id`+1 = (aε ,h

(1,id1)
, · · · ,h

(`,id`)
,h

(`+1,id`+1)
) with respect to the expanded identity

id|id`+1 := (id1, · · · , id`, id`+1).

4.3.1 The Construction

First, we summarise the system parameters and give their descriptions in Table 4.2. The
proposed construction ΠHIBE ={HIBE.Setup, HIBE.Ext, HIBE.Der, HIBE.Enc, HIBE.Dec}

works as below.

99

4.3. DMPLWE–based HIBE in Standard Model

Table 4.2: System parameters in our DMPLWE–based HIBE construction.

Parameters Definition
n security parameter
λ maximum depth of binary tree for identities
q system modulus
γ,τ # polynomials in g

t, t′ := t +γτ indicate # polynomials generated by LVVGenTrap
m t′ = mγτ

d,k used to define the middle–product in DMPLWE
α = (α1, · · · ,αλ) Gaussian parameter used in HIBE,Enc

Σ = (σ(1), · · · ,σ(λ)), Gaussian parameter used in HIBE.Ext and HIBE.Der
Ψ = (Ψ1, · · · ,Ψλ) ∈ (R+)λ Gaussian parameter used in Phase 2 of HIBE.Dec

• (pp,msk)← HIBE.Setup(1λ,1n). HIBE.Setup is a PPT algorithm. It takes as input
a security parameter n, a maximum depth λ to output public parameters pp, and a
master secret msk. To do that, HIBE.Setup performs the following:

1. Set common parameters as follows:

– q = q(n) ∈ Z+ be a prime; d,k ∈ Z+ such that 2d + k ≤ n and γ := n+2d−2
d ∈

Z+, i.e., dγ = n + 2d− 2; β := d logn
2 e , τ := dlogqe, t is a positive integer.

Let t′ = t +γτ, and plaintext spaceM := {0,1}<k+2[x]. Later, we will see
that t should also be a multiple of γτ. Suppose that t′ = t +γτ = mγτ for
some m ≥ 2.

– For Gaussian parameters used in HIBE.Enc: choose α = (α1, · · · ,αλ) ∈
(R+)λ; for Gaussian parameters used in HIBE.Ext and HIBE.Der: choose
Σ = (σ(1), · · · ,σ(λ)), where σ(`) = (σ(`)

1 , · · · , σ(`)
m) ∈ (R+)m. For ` ∈ [λ], let

Σ
(`)

= (σ(1), · · · ,σ(`)); for Gaussian parameters used in HIBE.Dec: choose
Ψ = (Ψ1, · · · ,Ψλ) ∈ (R+)λ.

They all are set heuristically in Section 4.3.4.

2. For ` ∈ [λ], let χ` := bDα`·qe be the rounded Gaussian distribution.

3. Use LVVGenTrap(1n) to get a root family aε = (a1, · · · ,at′) and its associated
root trapdoor tdε , where ai ∈ Z

<n
q [x] for i ∈ [t] and ai ∈ Z

<n+d−1
q [x] for t + 1 ≤

i ≤ t +γτ.

4. Select uniformly a random polynomial u0 ∈ Z
<n+2d−2
q [x].

5. Take family g given in Equation (4.1) into account.

6. For each i ∈ [λ], bit ∈ {0,1}, sample randomly h
(i,bit)

= (h(i,bit)
1 , · · · ,h(i,bit)

t′), where
each h(i,bit)

j ∈Z<n
q [x] for j ∈ [t], and each h(i,bit)

j ∈Z<n+d−1
q [x] for j ∈ {t+1, · · · , t+

γτ}. Note that if h(i,bit)
j ∈ Z<n

q [x] then also h(i,bit)
j ∈ Z<n+d−1

q [x] for any d ≥

100

4.3. DMPLWE–based HIBE in Standard Model

1. This is why we will be able to well perform the delegation (presented in
Section 4.2) on such a family h

(i,bit)
. Let HList = {(i,bit,h

(i,bit)
) : i ∈ [λ],bit ∈

{0,1}} be the ordered set of all h
(i,bit)

’s.

7. Set the master secret key msk := tdε .

8. The remaining are included in the public parameters pp.

9. Output (pp,msk).

We denote id = (id1, · · · , id`) ∈ {0,1}` as an identity of depth ` ≤ λ. All following
algorithms will always work on aε = (a1, · · · ,at′) and HList.

• skid ← HIBE.Ext(pp, id,msk). HIBE.Ext is a PPT algorithm. It takes as input an
identity id = (id1, · · · , id`), master secret key msk = tdε . It extracts and returns a key
skid for identity id by executing:

1. Build hid = (h
(1,id1)

, · · · ,h
(`,id`)).

2. Output skid←MoreGenLVVDelTrap(aε ,hid,msk,Σ
(`)

).

• skid|id`+1 ← HIBE.Der(pp, id|id`+1,skid). HIBE.Der is a PPT algorithm. It takes as
input identities id = (id1, · · · , id`), id|id`+1 = (id1, · · · , id`, id`+1), private key skid :=
tdid which is a g–trapdoor for f id = (aε ,h

(1,id1)
, · · · ,h

(`,id`)). It outputs a key skid|id`+1

for id|id`+1 by executing:

1. Output skid|id`+1 ←MoreGenLVVDelTrap(f id,h
(`+1,id`+1)

, tdid,Σ
(`+1)

).

• CT←HIBE.Enc(pp, id,µ,u0,α`). HIBE.Enc is a PPT algorithm. It takes as input an
identity id = (id1, · · · , id`), a plaintext µ ∈M, a polynomial u0, a Gaussian parameter
α`. It returns ciphertext CT by executing:

1. Parse (f1, · · · , ft′(`+1))← f id = (aε ,h
(1,id1)

· · · ,h
(`,id`)).

2. Sample polynomial s
$
←− Z<n+2d+k−1

q [x].

3. Sample polynomial e0← χk+1
`

[x], then compute: CT0 = u0�k+2 s + 2e0 +µ.

4. For i = 0 to ` do:

– For j ∈ [t], sample error polynomial ei·t′+ j← χ2d+k
`

[x], and compute:

cti = fi·t′+ j�2d+k s + 2ei·t′+ j.

– For t + 1 ≤ j ≤ t + γτ, sample error polynomial ei·t′+ j ← χd+k+1
`

[x], and
compute:

cti = fi·t′+ j�d+k+1 s + 2ei·t′+ j.

101

4.3. DMPLWE–based HIBE in Standard Model

5. Set CT1 = (ct1, · · · ,ctt′(`+1)).

6. Output ciphertext CT = (CT0,CT1).

• µ/⊥ := HIBE.Dec(pp, id,skid,CT,u0,Ψ`). HIBE.Dec is a DPT algorithm. It takes
as input an identity id = (id1, · · · , id`), the trapdoor skid := tdid for f id = (aε ,h

(1,id1)
,

· · · ,h
(`,id`)), a ciphertext CT = (CT0,CT1 = (ct1, · · · ,ctt′(`+1))), polynomial u0, and

Gaussian parameter Ψ`. It returns either a plaintext µ or a failure symbol by per-
forming:

1. Parse (f1, · · · , ft′(`+1))← f id = (aε ,h
(1,id1)

, · · · ,h
(`,id`)).

2. Sample family of polynomials

r = (r1, · · · ,rt′(`+1))← GenLVVSamTrap(fid, tdid,u0,Ψ`),

i.e., 〈fid,r〉 =
∑t′(`+1)

1 ri · fi = u0.

3. If succeeds, it outputs µ = (CT0 −
∑t′(`+1)

i=1 cti �k+2 ri mod q) mod 2. Other-
wise, it outputs ⊥.

4.3.2 Correctness

Lemma 4.3.1 (Correctness). The ΠHIBE construction described in Section 4.3.1 is correct

with probability 1−negl(n) if

α` <
1
4

[
t′(`+ 1) · (k + 1) ·ω(logn) ·Ψ` +ω(

√
logn)

]−1
, (4.14)

for all ` ∈ [λ].

Proof. Suppose that CT := (CT0,CT1 = (ct1, · · · ,ctt′(`+1)))← HIBE.Enc(pp, id,µ,u0,α`).
Over the randomness of HIBE.Setup, HIBE.Der, HIBE.Ext, HIBE.Enc, we will show that

HIBE.Dec(pp, id,skid,HIBE.Enc(pp, id,µ,u0,α`),u0,Ψ`) = µ,

with probability 1− negl(n). By the property of the middle–product given in Lemma
2.4.2, we have

CT0 = µ+ (
t∑
1

ri · fi)�k+2 s + (
t′(`+1)∑

t+1

ri · fi)�k+2 s + 2e0

= µ+

t∑
1

ri�k+2 (cti−2ei) +

t′(`+1)∑
t+1

ri�k+2 (cti−2ei) + 2e0.

(4.15)

102

4.3. DMPLWE–based HIBE in Standard Model

Thus, CT0 −
∑t′(`+1)

i=1 cti �k+2 ri = µ+ 2(e0 −
∑t′(`+1)

1 ri �k+2 ei). Hence, if we choose
parameters such that ∥∥∥∥∥∥∥∥e0−

t′(`+1)∑
1

ri�k+2 ei

∥∥∥∥∥∥∥∥
∞

< q/4 (4.16)

then the plaintext µ can be correctly recovered. To give a good choice of parameters,
we evaluate the left–hand side of Equation (4.16) by bounding the size of coefficients of
e0−

∑t′(`+1)
1 ri�k+2 ei. First, we see that

• for i ∈ [t]: deg(ri) < dr := 2d−1, deg(ei) < de := k + 1.

• for i ∈ {t + 1, · · · , t′(`+ 1)}: deg(ri) < dr := d, deg(ei) < de := d + k + 1.

Hence, de +dr−1 = 2(d−1)+ (k+2). Letting ri = (ri,0, · · · ,ri,dr−1),ei = (ei,0, · · · ,ei,de−1) be
the vectors of coefficients of ri and ei, respectively, by definition of the middle–product,
it holds that

ri�k+2 ei =

d+k∑
j+w=d−1

ri, j · ei,w · x j+w.

Lemma 2.3.5 guarantees that

Pr[‖ri‖∞ > ω(
√

logn) ·Ψ`] = negl(n),

Pr[‖ei‖∞ > ω(
√

logn) ·α` ·q] = negl(n),

both of which imply that ‖ri�k+2 ei‖∞ < (k + 2) ·ω(logn) ·Ψ` ·α` ·q. As a result,∥∥∥∥∥∥∥∥e0−

t′(`+1)∑
1

ri�k+2 ei

∥∥∥∥∥∥∥∥
∞

≤ [t′(`+ 1) · (k + 2) ·ω(logn) ·Ψ` +ω(
√

logn)] ·α` ·q.

Following Equation (4.16), we should choose parameters to satisfy Equation (4.14).
The proof follows. �

4.3.3 Security Analysis

Theorem 4.3.1. Assuming the hardness of the DMPLWE assumption, the ΠHIBE system

presented in Section 4.3.1 is INDr–sID–CPA secure in the standard model. Specifically,

if there exists an adversary A that breaks the NDr–sID–CPA security of ΠHIBE, then one

can build a solver B that solves the (q,n′,d,χ)−DMPLWE instance, where n′ = n+2d +k

103

4.3. DMPLWE–based HIBE in Standard Model

and d = (d0,d1, · · · ,dt′(`+1)) with

d0 := k + 2,

di·t′+ j :=

2d + k, if j ∈ [t],

d + k + 1, if j ∈ {t + 1, · · · , t +γτ},

for i ∈ {0, · · · , `}.

Proof. We proceed the proof with a sequence of games: Game 0 through Game 4. We
will show that two consecutive games, Game i and Game (i + 1), are indistinguishable
by an INDr–sID–CPA adversary. Particularly, the indistinguishability of Game 3 and
Game 4 are due to the hardness of the DMPLWE assumption. In other words, if the
INDr–sID–CPA adversary can distinguish Game 3 and Game 4, then one can deploy the
adversary to construct a DMPLWE solver. The games are described as follows.

Game 0. This is the original INDr–sID–CPA game between the adversary A and the
challenger C as described in Section 2.7.4. Here, we focus only on the selective
version via which at the beginning of the game, A must release his target identity
id∗ = (id∗1, · · · , id

∗
θ). Using the information, C then runs HIBE.Setup to generate sys-

tem parameters. Specifically, C chooses randomly a family of polynomials aε =

(a1, · · · ,at′) together with an associated trapdoor tdε using LVVGenTrap. The chal-
lenger randomly samples a set of polynomial families h

(i,bit)
= (h(i,bit)

1 , · · · ,h(i,bit)
t′),

and stores them in the list HList0, where each h(i,bit)
j ∈ Z<n

q [x] for j ∈ [t], and each

h(i,bit)
j ∈ Z<n+d−1

q [x] for j ∈ {t + 1, · · · , t +γτ}. The challenger C also takes randomly
a polynomial u0 from ∈ Z<n+2d−2

q [x]. Finally, the challenger sets pp := {aε ,HList0}

and sends it to the adversaryA, while it keeps msk := tdε as the master secret key.
Notice that at the Challenge phase, a challenge ciphertext CT

∗
will be generated

for the identity id∗ by the challenger.

Game 1. This game is kept almost the same as Game 0. The modification is that in-
stead of HList0, the challenger C uses LVVGenTrap to create two lists HList1 :=
{(i,bit,h

(i,bit)
) : i ∈ [λ],bit ∈ {0,1}} and TList1 := {(i,bit, td(i,bit)) : i ∈ [λ],bit ∈ {0,1}} re-

spectively containing h
(i,bit)

’s and the corresponding trapdoor td(i,bit)’s for 0 ≤ i ≤ λ,
bit ∈ {0,1}. The challenger C will then use the list HList1 instead of HList0. (The
list TList1 is not used in this game but the next game.)

Game 2. This game is the same as Game 1, with a change in responding private key
queries on id = (id1, · · · , id`)’s where ` ≤ λ. (Note that each of id’s is not prefix of
the target id∗.) Namely, the challenger C chooses aε = (a1, · · · ,at+γτ) uniformly at
random from (Z<n

q [x])t × (Z<n+d−1
q [x])γτ. (The challenger thus does not have trap-

door tdε .) Accordingly, C also builds a new algorithm PolyExtTrap which is shown

104

4.3. DMPLWE–based HIBE in Standard Model

below to respond to each query from the adversary. Remark that PolyExtTrap does
not require all of TList1 but only one td(j,id j) ∈ TList1 for any j ∈ [`].

• skid← PolyExtTrap(aε , HList1, id, j, td(j,id j)). On input the root family aε ,
list HList1, identity id = (id1, · · · , id`), an index j and trapdoor td(j,id j) ∈ TList1,
execute:

1. Build f id = (aε ,h
(1,id1)

, · · · ,h
(j−1,id j−1)

,h
(j+1,id j+1)

, · · · ,h
(`,id`)).

2. skid←MoreGenLVVDelTrap(h
(j,id j)

, f id, td(j,id j),Σ
(`)

).

Also note that the algorithm PolyExtTrap in this game is the reason why we require
that the number of polynomials of each h

(j,id j) is the same as that of aε and that t is
a multiple of γτ as we claimed in HIBE.Setup in order for MoreGenLVVDelTrap

to work well. In fact, this is because any h
(j,id j) and its corresponding td(j,id j) will

play the role of aε and tdε , respectively, for responding to the adversary’s queries.

Game 3. This game is slightly modified from Game 2 as follows. Specifically, the
challenger C respectively replace the lists HList1, TList1 with the lists HList3 :=
{(i,bit,h

(i,bit)
) : i ∈ [λ],bit ∈ {0,1}} and TList3 := {(i,bit, td(i,bit)) : i ∈ [λ],bit ∈ {0,1}}

created as follows:

• For each j ∈ [λ] and bit ∈ {0,1} such that bit , id∗j , C calls LVVGenTrap(1n) to

generate h
(j,bit)

and its associated trapdoor td(j,bit).

• For each j ∈ [λ] and bit ∈ {0,1} such that bit = id∗j , C simply samples h
(j,bit)

uniformly at random and set td(j,bit) = ⊥.

Now, getting a private key query on identity id = (id1, · · · , id`) which is not a prefix
of the target identity id∗, the challenger first finds an index j† such that id j† , id∗

j†
.

then answers the query with

skid← PolyExtTrap(aε ,HList3, id, j†, td(j†,id j†)),

where td(j†,id j†)
∈ TList3.One more thing is that the challenge ciphertext is produced

as CT
∗
← HIBE.Enc(id∗,µ∗,u0,α) over HList3.

Game 4. This game is similar to Game 3, except that the challenger chooses the chal-
lenge ciphertext CT

∗
= (CT∗0,CT∗1) uniformly at random.

One can easily show that the view of the INDr–sID–CPA adversary is identical in each
pair of two consecutive games Game 0 and Game 1, Game 1 and Game 2, Game

2 and Game 3. However it needs more work to prove the indistinguishability of the
two games Game 3 and Game 4. This can be done using the following reduction.

105

4.3. DMPLWE–based HIBE in Standard Model

Reduction from DMPLWE. We proceed by contradiction. Suppose that the adversary
A can distinguish between Game 3 and Game 4 with non–negligible probability.
FromA, we construct an adversary B which can solve DMPLWE problem with the
same probability. More specifically,

• (q,n′,d,χ)–DMPLWE Instance: The adversary B are given 1+ t′(`+1) sam-
ples (fz,ctz) for z ∈ {0, · · · , t′(`+ 1)}. B has to decide whether (fz,ctz) follows
(i)

∏t′(`+1)
z=0 U(Zn′−dz

q [x]×Rdz[x]
q), or

(ii) DMPq,n′,d,χ(s), where n′ = n + 2d + k and d = (d0,d1, · · · ,dt′(`+1)) is inter-
preted as follows:

d0 := k + 2,

di·t′+ j :=

2d + k, if j ∈ [t],

d + k + 1, if j ∈ {t + 1, · · · , t +γτ},

for i ∈ {0, · · · , `}, and fz’s are random in Z<n′−dz
q [x] for z ∈ {0, · · · , t′(`+ 1)}.

In other words, B is required to distinguish whether
(i) all ctz are random polynomials, or

(ii) ctz = fz�dz s + 2ez in Z<dz
q [x], for some s

$
←− Z<n′−1

q [x] and ez← χdz[x], for
all z ∈ {0, · · · , t′(`+ 1)}.

• Targeting: B gets the target identity id∗ from the adversaryA.

• Setup: B creates the lists HListB and TListB in the same way as HList3 and
TList3 in Game 3 and Game 4. Precisely,

– For each j ∈ [λ] and bit ∈ {0,1} such that bit, id∗j : B calls LVVGenTrap(1n)

to generate h
(j,bit)

and its associated trapdoor td(j,bit).

– For each j ∈ [λ] and bit ∈ {0,1} such that bit = id∗j : B simply samples

h
(j,bit)

uniformly at random and sets td(j,bit) = ⊥.

The list HListB contains all h
(j,bit)

and TListB contains all td(j,bit).

• Queries: When answering the private key queries, B acts similarly to the way
in Game 3 or in Game 4 and it can use one of trapdoors td(j,bit) , ⊥.

• Challenge: In this phase, B produces the challenge ciphertext by choosing

randomly b
$
←− {0,1} and then setting

CT
∗

:= (CT∗0 := ct0 +µ,CT∗1 := (ct1, · · · ,ctt′(`+1))).

• Guess: A guesses the value of b. At this time, B outputs what A have
guessed.

106

4.3. DMPLWE–based HIBE in Standard Model

Analysis. Obviously, from what A can see, B behaves almost identically in both
Game 3 and Game 4. However, the challenge ciphertexts in these two games are pro-
duced differently. In fact, if ctz’s follow DMPLWE then CT

∗
are generated similarly to

that in Game 3, whereas if ctz’s are randomly chosen then CT
∗

are generated via the same
way as in Game 4. This is the reason why B can solve the DMPLWE instance assuming
thatA can distinguish between Game 3 and Game 4. It is also easy to see that the success
probability of B and that ofA are the same. This argument completes the proof. �

4.3.4 Setting Parameters

We choose the parameters involved in the ΠHIBE construction as below:

• Set n to be a security parameter.

• Choose q,d, t,γ,β,k, τ to be such that: q = poly(n) prime, β := d logn
2 e � q/2, γ :=

n+2d−2
d ∈ Z+, τ := dlogqe, t′ := t + γτ = mγτ (for some m ≥ 2), d ≤ n, 2d + k < n,

dt/n = Ω(logn), and dγ = n + 2d−2 ≤ 3n.

• Set Gaussian parameters used in HIBE.Ext and HIBE.Der: Because the maximum
depth of identities is λ, then it suffices to consider the longest series of Gaussian pa-
rameters Σ := Σ

(λ)
= (σ(1), · · · ,σ(λ)). Recall that each σ(i) = (σ(i)

1 , · · · ,σ
(i)
m) ∈ (R+)m

consists of m elements. For convenience, we renumber Σ as (σ1, · · · ,σmλ) keep-
ing their original order. According to the maximal identity id = (id1, · · · , idλ), we
build hid = (h

(1,id1)
, · · · ,h

(λ,idλ)
) in which each h

(i,idi) consists of mγτ polynomi-
als. We now use a “regrouping technique” to split hid into (h

(1)
, · · · ,h

(mλ)
), each

h
(i)

consists of γτ polynomials. Let a(i+1)
= (aε |h

(1)
| · · · |h

(i)
) with a(1)

= aε . Then,
MoreGenLVVDelTrap calls GenLVVDelTrap(a(i),h

(i)
, td(i),σi) up to mλ times, each

time for one i ∈ [mλ]. Remember that td(1) = tdε and

td(i+1)← GenLVVDelTrap(a(i),h
(i)
, td(i),σi),

for 1 ≤ i ≤mλ. All σi’s thus are set following Section 4.2, that is, for 1 ≤ i ≤mλ−1,

σi+1 ≥ ω(
√

log(dγ)) ·
√

7(s1(R(i))2 + 1),

and
s1(R(i)) ≤

√
((2d−1)t + i ·dγτ) · (dγτ) ·ω(logn) ·σi.

Here, R(i) is the Toeplitz representation of the private key (the trapdoor) for a(i) :=
(aε |h

(1)
| · · · |h

(i−1)
). The formula for R(i) was given in Equation (4.9) with noting that

107

4.4. Summary

the last row is indexed by t + (i−1)γτ. Also, remark that σ1 and R(1) are exactly σ
and Tε in Equations (2.8)–(2.9).

• Now, it is the turn for Gaussian parameters Ψ = (Ψ1, · · · ,Ψλ) used in HIBE.Dec.
Consider the case involving the identity id = (id1, · · · , id`) (for ` ∈ [λ]). Stress that
for ` ∈ [λ], since Ψ` is involved in GenLVVSamTrap(fid,skid,u0,Ψ`) where skid =

tdid is a trapdoor for f id = (aε ,h
(1,id1)

, · · · ,h
(`,id`)) which can be seen as a(`m+1) :=

(aε |h
(1)
| · · · |h

(`m)
) (via the above “regrouping technique”). We should thus set Ψ` =

σ`m, for ` ∈ [λ− 1]. In particular, for the case involving the maximal identity id =

(id1, · · · , id`),

Ψλ ≥ ω(
√

log(dγ)) ·
√

7(s1(R(mλ))2 + 1),

s1(R(mλ)) ≤
√

((2d−1)t + (mλ)dγτ) · (dγτ) ·ω(logn) ·σmλ,

in which R(mλ) is the Toeplitz representation for the private key (the trapdoor) for
a(mλ)

= (aε |h
(1)
| · · · |h

(mλ)
).

• Finally, the Gaussian parameters α = (α1, · · · ,αλ) used in HIBE.Enc should be cho-
sen to fulfil Equation (4.14).

4.4 Summary

In this chapter, we have developed a delegation mechanism for the LVV19 trapdoor, which
was presented in Section 2.5.3. Given a trapdoor for a polynomial family, this delegation
method enables delegating a trapdoor for an expanded polynomial family. As an appli-
cation, the delegation allows us to realize the first HIBE system from DMPLWE. Fur-
thermore, we achieve the INDr–sID–CPA security of the proposed HIBE construction in
SDM.

Regarding the trapdoor in the polynomial setting, we have some interesting open
issues. First, the delegation technique requires that the number of polynomials in the
added family (i.e., h = (h1, · · · ,hmγτ) in Theorem 4.2.1) should be a multiple of the number
of polynomials in the gadget family g (i.e., γτ in the text). The question here is that
if we could find a new trapdoor delegation method that would be applied well to h =

(h1, · · · ,ht2) for arbitrary t2 ≥ 1. Second, we follow the [AB09] for HIBE construction,
which results in a quite large ciphertext in size. Thus, it is better if we could develop a
mechanism allowing to delegate a trapdoor for f

′

id = (a, 〈h
(1,id1)

,b〉, · · · , 〈h
(`,id`)

,b〉), given
random b and its trapdoor tdb. This way, we might be able to apply the HIBE framework
of [ABB10] for the DMPLWE–based HIBE construction. This framework might offer a
better ciphertext size than that of our work here. Finally, the existing trapdoor method for
polynomials exploits the Toeplitz matrices, which results in a complicated and heavy in

108

4.4. Summary

representation as well as in computation. It would therefore be fruitful if there could be a
trapdoor (and delegation) method for polynomials involved in DMPLWE, which does not
need Toeplitz representation.

In Chapter 5, an advanced cryptosystem called puncturable encryption (PE) will be
taken into consideration. We will introduce a new primitive from which we can generi-
cally attain a PE. Also, we instantiate them based on a hard lattice problem.

109

Chapter 5

Puncturable Encryptions over
Lattices

Part of the content in this chapter appeared in Susilo et al. [SDLP20]. The author of

this thesis is one of the corresponding authors of [SDLP20]. Having received the topic

from his supervisors, he contributed to finding an appropriate theoretical framework, the

design of the cryptosystems, the security analysis of the cryptosystems and the writing of

the manuscript.

5.1 Overview

This chapter dedicates to puncturable encryption (PE). The notion of PE has been intro-
duced by Green and Miers [GM15] involving some tags embedded in ciphertexts (termed
ciphertext tags) as well as in decryption keys (termed punctures or key tags). PE offers
the ability to revoke individual plaintexts using the puncturing mechanism. Roughly, the
puncturing mechanism says that if a key is embedded with a puncture already contained
in a ciphertext, the key cannot decrypt the ciphertext; otherwise, one can use the key to
regain the underlying plaintext. For the formal definition of PE, please refer to Section
2.7.5. Asynchronous messaging system, forward–secret zero round–trip time protocol,
forward–secret proxy re–encryption and public–key watermarking scheme are several in-
teresting applications of PE.

The puncturing mechanism is beneficial in various situations. One situation could be
when the present decryption key of the cryptosystem is leaked. If this is the case, one can
merely update the key using the puncturing mechanism on the current time, which plays
as a puncture. Another situation where the puncturing mechanism could be applied is a
system with multiple users. Assume that some users had breached the system’s policy,
and we want to revoke their decryption capacity. Here, tags are user identities. To keep

110

5.1. Overview

(respectively, to revoke) decryption capacity from some users, we do not (respectively, do)
puncture their identities. Alternatively, if we want to hide some sensitive documents from
some user, then a possible way is to puncture the user’s decryption key on the document’s
identification.

The above–mentioned situations suggest that PE can provide forward security at a
fine–grained level. By contrast, the forward–secure encryption (FSE) cryptosystem pro-
posed by Canetti et al. [CHK03] guarantees forward security but not at a fine–grained
level. For example, in FSE, if we revoke a user’s decryption capability for a given time,
we also remove the user’s access to all plaintexts regarding prior periods.

In [SDLP20] and this chapter, we consider PE under an observation that it is possible
to use the family of equality test functions to implement the puncturing property. Namely,
such a function compares a ciphertext tag with a puncture to see if they are identical. More
importantly, one can implement the functions as arithmetic circuits, which suggests we
apply the idea of using the lattice homomorphic evaluations mentioned in Section 2.5.4.
Specifically, we put forward the notion of delegatable fully key–homomorphic encryption

(DFKHE). The notion is an augmented version of the fully key–homomorphic encryp-
tion (FKHE) proposed by Boneh et al. at Eurocrypt 2014 [BGG+14]. We then present
a generic construction framework for PE from DFKHE. Using the framework, we in-
stantiate a PE construction over lattices. This is the first concrete PE construction in the
lattice setting, The construction is selective secure under chosen plaintext attacks (CPA)
in the standard model (SDM), and its security relies on the decision learning with errors
(DLWE) problem.

In the following, we will give more detail about the contributions and techniques
presented in this chapter.

DFKHE. We begin with a description of FKHE and DFKHE. At high-level description,
an FKHE system possesses a mechanism that allows converting a ciphertext ctx associated
with a public variable x into the evaluated one ct f , on the same plaintext, associated with
the pair (y, f), where f is an efficiently computable function and f (x) = y. To support this,
FKHE offers a key–homomorphic evaluation algorithm named Eval. Roughly, we have
ct f ← Eval(f ,ctx). Accordingly, to successfully decrypt such an evaluated ciphertext, the
decryptor needs to evaluate the initial secret sk to get sk f . The FKHE system has an
algorithm named Hom to do that, i.e., sk f ← Hom(sk, (y, f)). The drawback of FKHE is
that it supports only one function f each evaluation time. In some cases, we would like to
do the key-homomorphic evaluation for a list of functions { f1, · · · , fk} belonging to some
function family F . Therefore, we generalise FKHE by endowing it with two algorithms
ExtEval and Del such that: (i) ct f1,··· , fk←ExtEval(f1, · · · , fk,ctx), transforming (ctx,x) into
(ct f1,··· , fk , (y, f1, · · · fk)) with f1(x) = · · · = fk(x) = y; (ii) sk f1,··· , fk ← Del(sk f1,··· , fk−1 , (y, fk))
that allows delegating the secret key for one more function each time from the evaluated

111

5.1. Overview

secret key sk f1,··· , fk−1 . Doing that, we come up with the notion of DFKHE. At this point,
the DFKHE can be viewed as the FKHE endowed with the two algorithms ExtEval and
KDel.

FKHE [BGG+14]:

Enc

+(y, f)
−−−−−→ HomSetup

+(y, f)
−−−−−→ Eval

ct f
−−→ Dec

µ

x

f (x) = y?

(Yes/No)

Yes⇒ µ

No⇒⊥

ctx

sk f

sk

pk

DFKHE [Our work]:

Enc

+(y, f1,··· , fη)
−−−−−−−−−→[Hom, Del]Setup

+(y, f1,··· , fη)
−−−−−−−−−→ ExtEval

cty, f1,··· , fη
−−−−−−−→ Dec

µ

x

fi(x) = y,∀i ∈ [η]?

(Yes/No)

Yes⇒ µ

No⇒⊥

ctx

sky, f1 ,··· , fη

sk

pk

Figure 5.1: Pictorial description of DFKHE in comparison with FKHE.

Generic PE framework. Our generic PE framework is inspired by a simple but subtle ob-
servation that the requirements for the puncturing property (i.e., the equality of ciphertext
tags and punctures) in a PE can be formalised through functions that arithmetic circuits
can efficiently compute. We call such functions the equality test functions. We can see that
in PE, the ciphertext tags play the role of variables x’s, and the equality test functions act
as the functions f ’s described in the FKHE system. Moreover, in FE, one more puncture
added will define one more equality test function, which needs a delegation mechanism to
take the function into account. This need can be easily met using the same idea as the key
delegation Del mentioned above. In our work, in order to be able to employ the idea of
DFKHE for (y0,F) to PE construction, we define an efficiently computable family F of
equality test functions ft∗(t) allowing us to compare the puncture t∗ with ciphertext tags
t = (t1, · · · , td) under the definition that ft∗(t) = y0 iff t∗ , t j,∀ j ∈ [d], for some fixed value
y0.

Lattice–based DFKHE and Lattice–based PE. For a concrete DHKHE and PE con-
struction, we exploit the LWE-based FKHE proposed in [BGG+14]. Specifically, we
deploy the dual Regev encryption framework (Section 2.7.3). In this system, the ci-
phertext is ct = (cin,c1, · · · ,cd,cout), where ci = (tiG + Bi)T s + ei for i ∈ [d]. Here the
gadget matrix G is a special one, whose associated trapdoor TG (i.e., a short basis for
the q-ary lattice Λ⊥q (G)) is publicly known (see [MP12] for details). Also, there ex-
ist three evaluation algorithms named Evalpk, Evalct, and Evalsim [BGG+14] (Section

112

5.2. Delegatable Fully Key–homomorphic Encryption

2.5.4) which help us to homomorphically evaluate a circuit (function) on the cipher-
text ct. More specifically, from ci := [tiG + Bi]T s + ei, where ‖ei‖ < δ for all i ∈ [d],
and a function f : (Zq)d → Zq, we get c f = [f (t1, · · · , td)G + B f]T s + e f ,‖e f ‖ < ∆, where
B f ← Evalpk(f , (Bi)d

i=1), c f ← Evalct(f , ((ti,Bi,ci))d
i=1), and ∆ < δ · β for some β suffi-

ciently small. Then, the algorithm ExtEval mentioned above can be implemented call-
ing many times Evalpk,Evalct, each time for each function. Meanwhile, Evalsim is only
useful in the simulation for the security proof. In the LWE–based DFKHE construc-
tion, secret keys are the GPV08 trapdoors (Section 2.5.3) for q–ary lattices of form
Λ⊥q ([A|B f1 | · · · |B fk]). For the key delegation Del, we can utilize the trapdoor delegation
[GPV08, ABB10, CHKP10]. The leftover hash lemma (Section 2.5.1) is used to argue
the indistinguishability of hybrids.

For the LWE–based PE instantiation, we employ the equality test function with y0 :=
0 (mod q). Namely, for a puncture t∗ and a list of ciphertext tags t1, · · · , td we define
ft∗(t1, · · · , td) := eqt∗(t1)+ · · ·+eqt∗(td), where eqt∗ :Zq→Zq satisfying that ∀t ∈Zq, eqt∗(t) =

1 (mod q) iff t = t∗, otherwise eqt∗(t) = 0 (mod q). Such functions have also been em-
ployed in [BKM17] to construct a privately puncturable pseudorandom function. It fol-
lows from generic construction that our PE instantiation is selective CPA–secure.

Figure 5.2 shows the roadmap of this chapter.

Overview [Section 5.1]

Delegatable Fully Key–homomorphic Encryption [Section 5.2]

Generic PE from DFKHE [Section 5.3]

DFKHE Construction over Lattices [Section 5.4]

Lattice–based PE Construction from DFKHE [Section 5.5]

Summary [Section 5.6]

Figure 5.2: The roadmap of this chapter.

5.2 Delegatable Fully Key–homomorphic Encryption

We first present the delegatable fully key–homomorphic encryption (DFKHE) primitive.
The primitive generalises the notion of fully key–homomorphic encryption (FKHE), which
has been introduced in [BGG+14]. Informally, FKHE is a kind of public–key encryption
that allows transforming a ciphertext ctx with respect to a public variable x into a new
one ct f with respect to a function f . A special value y is also involved in such a way that

113

5.2. Delegatable Fully Key–homomorphic Encryption

x, (y, f) satisfy the following relation: the secret key which is produced associatively with
(y, f) is able to decrypt the ciphertext ct f as long as f (x) = y.

The key idea of DFHKE is quite the same but allowing more functions to be involved,
i.e., f1, · · · , fk instead of only one f , and decryption is successful only if f1(x) = · · · =

fk(x) = y.

5.2.1 Syntax

Let λ, d = d(λ) ∈ Z+. Let T = T (λ) and Y = Y(λ) be two finite sets. Let F = F (λ)
:= { f | f : T d →Y} be a family of efficiently computable functions. Let sp be the set that
contains system parameters including d,T ,Y and F .

Then (λ,sp)–DFKHE is a collection ΠDFKHE of the main algorithms DFKHE.Setup,

DFKHE.Hom, DFKHE.Eval, DFKHE.ExtEval, DFKHE.Del, DFKHE.Dec, DFKHE.Enc.
We specify them right below.

• (pp,pk,sk)← DFKHE.Setup(1λ,sp). DFKHE.Setup is the key setup algorithm. It
is PPT. Its inputs are a security parameter λ and a set of system parameters sp. Its
outputs are public parameters pp, a public key pk and a secret key sk.

• sky, f ← DFKHE.Hom(pp,pk,sk, (y, f)). DFKHE.Hom is the homomorphic key
generation algorithm. It is PPT. Its inputs are public parameters pp, a public key
pk, a secret key sk and a pair (y, f) ∈ Y×F . Its output is a secret homomorphic key
sky, f .

• sky, f1,··· , fk+1 ← DFKHE.Del(pp,pk,sky, f1,··· , fk , (y, fk+1)). DFKHE.Del is the key del-
egation algorithm. It is PPT. Its inputs are public parameters pp, a public key pk,
a function fk+1 ∈ F and a secret key sky, f1,··· , fk . Its output is a delegated secret
key sky, f1,··· , fk+1 . Furthermore, sky, f1,··· , fk can be produced either by DFKHE.Hom if
k = 1, or iteratively by DFKHE.Del if k > 1.

• (ct, t)← DFKHE.Enc(pp,pk,µ, t). DFKHE.Enc is the encryption algorithm. It is
PPT. Its inputs are public parameters pp, a public key pk, a plaintext µ and a variable
t ∈ T d. Its output is a ciphertext ct. We call ct an encryption of µ under the variable
t.

• ct f1,··· , fk←DFKHE.ExtEval(pp,pk, f1, · · · , fk, (ct, t)). DFKHE.ExtEval is the cipher-
text evaluation algorithm. It is DPT. Its input are public parameters pp, public key
pk, ciphertext ct and the associated variable t ∈T d. Its output is an evaluated cipher-
text ct f1,··· , fk . Note that if f1(t) = · · · = fk(t) = y, then we call ct f1,··· , fk an encryption
of µ under the public key (y, f1, · · · , fk).

114

5.2. Delegatable Fully Key–homomorphic Encryption

• µ/⊥ := DFKHE.Dec(pp,pk,sky, f1,··· , fk , (ct, t)). DFKHE.Dec is the decryption algo-
rithm. It is DPT. Its inputs are a delegated secret key sky, f1,··· , fk and a ciphertext ct

associated with t ∈ T d. Its output is either a plaintext µ (if it succeeds) or a failure
symbol ⊥ (otherwise). Note that DFKHE.Dec succeeds in regaining a plaintext µ if
fi(t) = y for all i ∈ [k].

To regain µ, the algorithm first calls DFKHE.ExtEval(pp,pk, f1, · · · , fk, (ct, t)) and
gets ct f1,··· , fk . It then uses sky, f1,··· , fk and opens ct f1,··· , fk .

5.2.2 Correctness

The system ΠDFKHE is correct if for any λ ∈ Z+, any µ ∈M, any k ∈N, any f1, · · · , fk ∈ F ,
any t ∈ T d, and any y ∈ Y, over the randomness of (pp,pk,sk)← DFKHE.Setup(1λ,sp),
(ct, t)← DFKHE.Enc(pp,pk,µ, t), sky, f1 ← DFKHE.Hom(pp,pk,sk, (y, f1)) and sky, f1,··· , fi

← DFKHE.Del(pp,pk,sky, f1,··· , fi−1 , (y, fi)), ct f1,··· , fk ← DFKHE.ExtEval (pp,pk, f1, · · · , fk,

(ct, t)) for all i ∈ {2, · · · ,k}, the following holds:

• Pr[DFKHE.Dec(pp,pk,sk,DFKHE.Enc(pp,pk,µ, t)) = µ] ≥ 1−negl(λ),

• Pr[DFKHE.Dec(pp,pk,sk, (ct f1,··· , fk , t)) = µ] ≥ 1−negl(λ),

• If y = f1(t) = · · · = fk(t), then

Pr[DFKHE.Dec(pp,pk,sky, f1,··· , fk , (ct, t)) = µ] ≥ 1−negl(λ).

• If there exists i ∈ [k] such that y , fi(t), then

Pr[DFKHE.Dec(pp,pk,sky, f1,··· , fk , (ct, t)) = µ] ≤ negl(λ).

5.2.3 Security Notions

Similarly to PE, we can define the security notions of indistinguishability of cipher-
texts under selective/adaptive variables against chosen plaintext/ciphertext attacks (IND–
(s)VAR–ATK) for DFKHE, where ATK can be one of CPA, CCA1, CCA2. In the security
notion IND–sVAR–ATK, the adversary has to release his target variable at the beginning
of the game. Having received the public key from the challenger, the adversary accesses
an oracle that outputs delegated secret keys. Using the information received from the ora-
cle, the adversary challenges the challenger by submitting two plaintexts. The challenger,
in turn, chooses randomly one of these two plaintexts to produce the challenge ciphertext
then sends it to the adversary. Finally, the adversary has to guess which plaintext has been

115

5.3. Generic PE Construction from DFKHE

encrypted. Depending on what ATK is, the adversary is allowed to query to the decryption
oracle before challenging and/or after challenging.

The IND–VAR–ATK is quite the same as IND–sVAR–ATK. The difference is that in
IND–VAR–ATK, the adversary does not need to announce his target variable in advance.
Instead, the adversary attaches the target variable with the two challenge plaintexts.

We define the IND–sVAR–ATK security in the game DFKHEIND-sVAR-ATK
A

(λ,sp) (Fig-
ure 5.3) and then in Definition 5.2.1 below.

GAME DFKHEIND-sVAR-ATK
A

(λ,sp)⇒ 1/0:
(where ATK ∈ {CPA,CCA1,CCA2})

1. t̂ = (̂t1, · · · , t̂d)←A(λ,sp);
3. (pp,pk,sk)← DFKHE.Setup(1λ,sp);
4. (̂µ0, µ̂1)←ADKQ(·,·), DQ1(·,·)(pp,pk);

6. b
$
←− {0,1}, ĉt← DFKHE.Enc(pp,pk,̂ t, µ̂b);

7. b′←Aĉt, DKQ(·,·), DQ2(·,·)(pp,pk); // NOTE: DQ2(ĉt,̂ t) is not allowed
8. If b′ = b, return 1. Otherwise, return 0.
Queried Oracles:
• Delegated Key Oracle DKQ(y, (f1, · · · , fk)): Return ⊥ if all f j(̂t) = y.

Otherwise, return sky, f1,··· , fk which is computed as follows:
Compute sky, f1 ← DFKHE.Hom (pp,pk,sk, (y, f1))
and sky, f1,··· , fi ← DFKHE.Del(pp,pk,sky, f1,··· , fi−1 , (y, fi)), ∀i ∈ {2, · · · ,k}.

• Decryption Oracle DQ1(ct, t) (allowed only if ATK ∈ {CCA1,CCA2}): Return
the output of DFKHE.Dec(pp,pk,sky, f1,··· , fk , (ct, t)) using the most recent
key sky, f1,··· , fk .

• Decryption Oracle DQ2(ct, t) (allowed only if ATK = CCA2): Return the output
of DFKHE.Dec(pp,pk,sky, f1,··· , fk , (ct, t)) using the most recent key sky, f1,··· , fk .

Figure 5.3: Security game for DFKHE.

Definition 5.2.1 (IND–sVAR–ATK security for DFKHE). Define the advantage of the

adversaryA in the game DFKHEIND–sVAR–ATK
A

(λ) as

AdvIND–sVAR–ATK
A, DFKHE (λ) :=

∣∣∣∣∣Pr[DFKHEIND–sVAR–ATK
A

(λ,sp)⇒ 1]−
1
2

∣∣∣∣∣ .
We say that a DFKHE is IND–sVAR–ATK secure if, for any polynomial–time adversary

A, it holds that

AdvIND–sVAR–ATK
A, DFKHE (λ) ≤ negl(λ).

5.3 Generic PE Construction from DFKHE

Suppose that a ciphertext produced in the PE scheme is associated with tags t := (t1, · · · , td),
and a secret key can be punctured on puncture t∗. Recall that the puncturing property of

116

5.3. Generic PE Construction from DFKHE

PE says that if t∗ is different from all elements of t. The underlying plaintext of the ci-
phertext embedded with t can be recovered utilising the key punctured by t∗. Otherwise,
the secret key cannot recover the underlying plaintext from the ciphertext.

The generic construction stems from the observation that the puncturing property of
PE can be implemented through a family of functions that can check “equality”. More
specifically, we can implement ciphertext tags as an input vector of dimension d, say t :=
(t1, · · · , td). Also, for each puncture t∗, we can define a function indexed by the puncture,
say ft∗ , in such a way that the returned value of ft∗(t) will depend on the equality of t∗ and
each element of t. Formally, let λ,d = d(λ) ∈ Z+. Let T =T (λ) be a finite set representing
the tag space and Y =Y(λ) be also a finite set. Additionally, we fix a special element y0

in Y. We consider equality test functions over the tag space T which are included in a
family F defined as:

F = F (λ) :=
{
ft∗ |t∗ ∈ T ,∀t = (t1, · · · , td), ft∗ : T d→Y

}
, (5.1)

where

ft∗(t) =

y0 t∗ , ti,∀i ∈ [d],

yt∗,t ∈ Y\ {y0} otherwise.
(5.2)

Here, yt∗,t is a value varied via t∗ and t. We will run DFKHE on the family to have PE.

5.3.1 The Generic Construction

Given a (λ,sp)–DFKHE system ΠDFKHE consisting of the algorithms DFKHE.Setup,
DFKHE.Hom, DFKHE.Enc, DFKHE.ExtEval, DFKHE.Del and DFKHE.Dec, where sp

contains system parameters including d,T ,Y and F which are defined earlier in Section
5.3.

From ΠDFKHE, we build a PE system ΠPE = (PE.Setup,PE.Enc,PE.Pun, PE.Dec)
whose both tags and punctures belong to the space T . The scheme ΠPE is described
below:

• (pk,sk0)← PE.Setup(1λ,sp). For input a security parameter λ and the maximum
number d of tags per ciphertext, run (pk,sk) ← DFKHE.Setup(1λ,sp), and return
pk := pk, and sk0 := sk.

• ct←PE.Enc(pk,µ, t = (t1, · · · , td)). For a public key pk, a plaintext µ, and ciphertext
tags t = (t1, · · · , td), return ct← DFKHE.Enc(pk,µ, t).

• ski← PE.Pun(pk,ski−1, t∗i). For input pk, ski−1 and a punctured tag t∗i ,

– If i = 1: Output sk1← DFKHE.Hom(pk,sk0, (y0, ft∗1)).

117

5.3. Generic PE Construction from DFKHE

A

B

C

target t̂ target t̂
DFKHE.Setuppp, pk pp, pk

PQ(t∗1)...
PQ(t∗k)

t∗1, · · · , t
∗
kCQ() DKQ(y0, ft∗1 , · · · , ft∗k)

PE Avdersary DFKHE Avdersary ≡ PE Challenger DFKHE Challenger

µ0,µ1 µ0,µ1 b
$
←− {0,1}

DFKHE.Enc(pp,pk,µb ,̂ t)ĉtĉt

b′

b′
b′

Figure 5.4: Reduction from DFKHE to PE.

– If i ≥ 2: Output ski← DFKHE.Del(pk,ski−1, (y0, ft∗i)).

• µ/⊥ := PE.Dec(PE.pk, (ski, (t∗1, · · · , t
∗
i)), (ct, t)). For input the public key pk, a punc-

ture key ski together with punctures (t∗1, · · · , t
∗
i), a ciphertext ct and its associated

tags t = (t1, · · · , td), the algorithm first checks whether or not ft∗1(t) = · · · = ft∗i (t) = y0.
If not, the algorithm returns ⊥. Otherwise, it returns µ/⊥← DFKHE.Dec(ski,ct).

5.3.2 Correctness

By the generic construction, it is easy to check that the correctness of ΠPE is guaranteed
by that of ΠDFKHE.

5.3.3 Security

Theorem 5.3.1. Assume that the underlying ΠDFKHE is selectively secure against chosen

plaintext attacks. Then so is the ΠPE. described in Section 5.3.1.

Proof. We prove by give a reduction from ΠDFKHE to ΠPE. Suppose thatA is an adversary
that can win the security game for the ΠPE with probability δ. We can construct an
adversary B that wins the security game for the ΠDFKHE with probability at least the
same.

The adversary B will take the role of the PE challenger. It gets the target tag from
the PE adversary A and treats the target as its own target. It will also change the queries
made by A into a form that is compatible with the DFKHE security game, and then
forwards these reproduced queries to the DFKHE challenger C. This way, B can simulate
the responses for the queries coming from A. Finally, B can make A output the guessed
value of bit b. We visualise the reduction and the relation among A, B and C in Figure
5.4. In more detail, the reduction is as follows:

Initialise. The goal of B is to win the security game for (λ,sp)–DFKHE ΠDFKHE =

118

5.4. DFKHE Construction over Lattices

{DFKHE.Setup, DFKHE.Hom, DFKHE.Enc, DFKHE.Dec, DFKHE.ExtEval, and
DFKHE.Del}.

Targeting. B simply uses the target t̂ = (̂t1, · · · , t̂d) that A released in the game for PE
ΠPE as B’s own. B then sends the target to C.

Setup. B initializes pT∗←∅ and cT∗←∅. Here pT∗ (respectively, cT∗) is a set contain-
ing punctured tags (respectively, all punctured tags at the time of the first corruption
query). Once B gets the public key pk sent from C in the DFKHE security game, B
givesA pk as the public key for the PE security game.

Query 1. Recall that for the PE security game,A can adaptively make puncture queries
PQ(t∗k), and it must make a corruption query CQ(·) before challenging.

Every time, A makes a puncture query PQ(t∗k), B does not have to reply the query.
Instead, it just simply appends t∗k to pT∗ which will be updated as pT∗ := {t∗1, t

∗
2, · · · , t

∗
k}.

Whenever A makes the corruption query CQ(pT∗), B sets cT∗ ← pT∗ and check
whether or not

{̂t1, · · · , t̂d}∩cT∗ , ∅. (5.3)

If not, B returns⊥. Otherwise, B sends the query DKQ(y0, ft∗1 , · · · , ft∗k) to Cwho will
return the answer. Notice that the condition for a query DKQ(y0, ft∗1 , · · · , ft∗k) to be
accepted is that there is at least one j ∈ [k] satisfying ft∗j (̂t) , y0. This is guaranteed
by the condition in Equation (5.3).

Challenge. B will forward to C two plaintexts µ0,µ1 thatA has submitted to B.

Query 2. Same as Query 1.

Guess. At this phase, A returns a bit b′ for the PE security game. B just takes b′ as its
guess for the DFKHE security game.

We claim that the simulated PE environment for A is perfect in its view as B plays
the role of PE challenger very well. Of course, B is also communicating well with the
DFKHE challenger. What B gets from and what B sends back to A are what it forwards
to and gets from C. That is, the information they are getting and sending is the same.
Therefore, the successful probability of A in the PE game and that of B in the DFKHE
game are the same. The proof follows. �

5.4 DFKHE Construction over Lattices

5.4.1 The Construction

First, we summarise the system parameters and give their descriptions in Table 5.1.

119

5.4. DFKHE Construction over Lattices

Table 5.1: System parameters in our lattice–based DFKHE construction.

Parameters Definition
λ Security parameter
η maximum number functions to be delegated
n # row of matrices A,G,Bi,U
q System modulus

σ1, · · · ,ση Gaussian parameters used in RandBasis
ε ∈ (0,1) control the trade–off of efficiency and security level

m bit–length of plaintexts, # column of matrices A,G,Bi,U
d maximum number of tags

(B, ν) parameters for the bounded distribution χ used in DLWE

We construct the lattice–based DFKHE using the lattice trapdoor recalled in Section
2.5.3 and the lattice homomorphic evaluations in Section 2.5.4. We also involve the gadget
matrix G defined in Section 2.5.2. In Section 5.4.3, we also involve the basis TG for
Λ⊥q (G). We will briefly describe the lattice–based DFKHE right below.

In the construction of lattice–based DFKHE ΠDFKHE, the plaintext will be encrypted
under the public key pk = {A,G,B1, · · ·Bd,U}, where (A,TA)←TrapGen(1n,1m,q), B1, · · · ,

Bd
$
←− Zn×m

q , U
$
←− Zn×m

q and under a list of at most d ciphertext tags t1, · · · td ∈ Zq as well.
Note that TA will be kept as the initial secret key sk, which can decrypt any ciphertext
and it can also be used to produce any delegated key. To encrypt a plaintext µ ∈ {0,1}m,
we construct

H := [A|t1G + B1| · · · |tdG + Bd]

and then compute c = H>s + e using a random vector s
$
←− Zn

q as a ephemeral secret key,

while e is obtained by choosing ein ← DZm
q ,σ1 , sampling S1, · · · ,Sd

$
←− {−1,1}m×m and

assigning e to (ein,e1, · · · ,ed) := (Im|S1| · · · |Sd)>ein. This way, we have a ciphertext of the
form (ct = (cin,c1, · · · ,cd,cout), (t1, · · · , td)), where cin = A>s+ein, cout←U>s+eout +µd

q
2e,

eout←DZm
q ,σ1 , and ci = (tiG + Bi)>s + ei for i ∈ [d]. Obviously, the size of the ciphertext

is proportional to the number of ciphertext tags.
The key sky, f1,··· , fi delegated on the value y and functions (f1, · · · , fi) consists of a

short basis (i.e., trapdoor) Ty, f1,··· , fi for the certain matrix [A|yG+B f1 | · · · |yG+B fi], where
for all j ∈ [i], B f j is computed by evaluating B f j ← Evalpk(ft∗j , (Bk)d

k=1). This way, we can
compute Ty, f1 from sk = TA, compute Ty, f1, f2 from Ty, f1 and so on, using ExtBasisRight.
For instance, to compute Ty, f1,··· , fi using Ty, f1,··· , fi−1 , we just compute and append B fi to
[A|yG + B f1 | · · · |yG + B fi−1], and then run

Ty, f1,··· , fi ← ExtBasisRight([A|yG + B f1 | · · · |yG + B fi−1 |B fi],Ty, f1,··· , fi−1 ,σ2).

The size of the delegated key is proportional to the number of functions fi’s.

120

5.4. DFKHE Construction over Lattices

For decryption, on input a ciphertext ctt associated with ciphertext tags t = (t1, · · · , td),
we consider two cases:

• Case 1: Using the key sk = TA, directly compute a short basis T for [A|t1G +

B1| · · · |tdG + Bd], then use T to sample R such that R>[A|t1G + B1| · · · |tdG + Bd] =

U (mod q). The plaintext is recovered as

µ̄ := (µ̄1, · · · , µ̄m)← cout−R>(cin|c1| · · · |cd).

• Case 2: Using the key sky, f1,··· , fi delegated on functions { f1, · · · , fi}, compute c f j ←

Evalct(ft∗j , ((tk,Bk,ck))d
k=1) for j ∈ [i]. At this point, we can set up the matrix [A|yG+

B f1 | · · · |yG+B fi] and take Ty, f1,··· , fi to sample a short matrix R such that R>[A|yG+

B f1 | · · · |yG + B fi] = U (mod q).

In this case, the plaintext is calculated as µ̄ := cout−R>(cin|c f1 | · · · |c fi). Thanks to the
properties of evaluation algorithms, decryption is successful if and only if f j(t) = y,
meaning that t∗j , tk for all (j,k) ∈ [i]× [d] as required.

Table 5.2 below shows the sizes of the public key, the initial secret key, delegated
secret key and ciphertext in the LWE–based DFKHE construction.

Table 5.2: Sizes in our lattice–based DFKHE.

Public key size
(G not included)

Initial secret key size
(TA)

Delegated secret key size
(sky, f1,··· , fk ,k ∈ [η])

Ciphertext size
(ct)

(d + 1) ·Zn×m
q 1 ·Zm×m 1 ·D(k+1)m×(k+1)m

Z,σk
(d + 2) ·Zm

q

Formally, the DFKHE system ΠDFKHE consists of DFKHE.Setup, DFKHE.Hom,
DFKHE.Del, DFKHE.Enc, DFKHE.ExtEval and DFKHE.Dec presented below.

• (pk,sk)← DFKHE.Setup(1λ,sp). On a security parameter λ ∈ N and system pa-
rameters sp (which includes d = d(λ)), do the following:

1. Choose n = n(λ), q = q(λ) to be positive integers such that d < q.

2. Let η ∈ N be the maximum number of functions that can be delegated in the
system.

3. Let σ1, · · · ,ση be Gaussian parameters.

4. Let ε ∈ (0,1) be a constant that helps determine the trade–off between the
efficiency and the security level of the system, as mentioned in Lemma 2.4.1.

5. The function family F := { f | f : (Zq)d → Zq} of functions over Zq that can be
evaluated by lattice evaluation algorithms (Evalpk, Evalct, Evalsim). Take the
constant βF defined for F via Lemma 2.5.11.

121

5.4. DFKHE Construction over Lattices

6. Choose m.

7. The plaintext space isM := {0,1}m, the tag space is T := Zq.

8. Let χ be a (B, ν)–bounded noise distribution for which the (n,2m,q,χ)–DLWE
is hard.

9. Generate (A,TA)← TrapGen(1n,1m,q), sample U,B1, · · · ,Bd
$
←− Zn×m

q .

10. Take the gadget matrix G ∈ Zn×m
q .

11. Output the public key pk = {A,G,B1, · · ·Bd,U} and the initial secret key sk :=
TA.

• sky, f1 ← DFKHE.Hom(sk, (y, f1)). On input the initial secret key sk and a pair
(y, f1) ∈ Zq×F , the algorithm peforms the following:

1. B f1 ← Evalpk(f1, (Bk)d
k=1), Ey, f1 ← ExtBasisLeft([A|yG + B f1],TA).

2. Ty, f1 ← RandBasis([A|yG + B f1],Ey, f1 ,σ1).

3. Output the secret key sky, f1 := Ty, f1 .

Here, we set σ1 = ω(βF ·20
√

m ·
√

log(2m)) for the security proof to work.

• sky, f1,··· , fη←DFKHE.Del(sky, f1,··· , fη−1 , (y, fη)). Taking key sky, f1,··· , fη−1 := Ty, f1,··· , fη−1

and a pair (y, fη) ∈ Zq×F as input, DFKHE.Del does the following:

1. B fη ← Evalpk(fη, (Bk)d
k=1).

2. Ey, f1,··· , fη ← ExtBasisLeft([A|yG + B f1 | · · · |yG + B fη−1 |yG + B fη],Ty, f1,··· , fη−1).

3. Ty, f1,··· , fη ← RandBasis([A|yG + B f1 | · · · |yG + B fη−1 |yG + B fη],Ey, f1,··· , fη ,ση).

4. Output the secret key sky, f1,··· , fη := Ty, f1,··· , fη .

We set ση = σ1 ·ω(
√

m logm)η−1 and discuss on setting parameters in detail later.

• ctt←DFKHE.Enc(µ,pk, t). For the input consiting of (a plaintext µ= (µ1, · · · ,µm) ∈
M, the public key pk and ciphertext tags t = (t1, · · · , td) ∈T d), perform the following
steps:

1. Sample s
$
←− Zn

q, eout,ein← χm, and S1, · · · ,Sd
$
←− {−1,1}m×m.

2. Compute e← (Im|S1| · · · |Sd)>ein = (e>in|e
>
1 | · · · |e

>
d)>.

3. Form H← [A|t1G + B1| · · · |tdG + Bd]

4. Compute c = H>s+e ∈ Z(d+1)m
q , c = (c>in|c

>
1 | · · · |c

>
d)>, where cin = A>s+ein and

ci = (tiG + Bi)>s + ei for i ∈ [d].

5. Compute cout← U>s + eout +µd
q
2e.

122

5.4. DFKHE Construction over Lattices

6. Output the ciphertext (ctt = (cin,c1, · · · ,cd,cout), t).

• c f1,··· , fη ← DFKHE.ExtEval(f1, · · · , fη,ctt). For the input (a ciphertext ctt = (cin,c1,

· · · ,cd,cout) and its associated tags t = (t1, · · · , td), and a list of functions f1, · · · , fη ∈

F), execute the following steps:

1. Evaluate c f j ← Evalct(f j, ((tk,Bk,ck))d
k=1) for j ∈ [η].

2. Output the evaluated ciphertext c f1,··· , fη := (c f1 , · · · ,c fη).

• µ/⊥ := DFKHE.Dec(pp,ctt,sky, f1,··· , fη). For the input (a ciphertext ctt = (cin,c1,

· · · ,cd,cout), the associated tags t = (t1, · · · , td), and a delegated key sky, f1,··· , fη :=
Ty, f1,··· , fη), execute the following steps:

1. If η = 0 (i.e., sky, f1,··· , fη = sk = TA):

(a) Compute E← ExtBasisLeft([A|t1G + B1| · · · |tdG + Bd],TA).

(b) Compute T← RandBasis([A|t1G + B1| · · · |tdG + Bd],E,σd).

(c) Sample R← SampleD([A|t1G + B1| · · · |tdG + Bd],T,U,σd).

(d) Compute µ̄ := (µ̄1, · · · , µ̄m)← cout−R>(c>in|c
>
1 | · · · |c

>
d).

2. If η > 0:

(a) If ∃ j ∈ [η] s.t. f j(t) , y, then output ⊥. Otherwise, go to Step (b).

(b) For i ∈ [η], compute B fi ← Evalpk(fi, (Bk)d
k=1).

(c) Sample R← SampleD([A|yG + B f1 | · · · |yG + B fη],Ty, f1,··· , fη ,U,ση).

(d) Evaluate (c f1 , · · · ,c fη)← DFKHE.ExtEval(f1, · · · , fη, ctt).

(e) Compute µ̄ := (µ̄1, · · · , µ̄m)← cout−R>(c>in|c
>
f1
| · · · |c>fη).

3. For ` ∈ [m], if |µ̄`| < q/4 then output µ` = 0; otherwise, output µ` = 1.

5.4.2 Correctness

The following theorem states the correctness of the DFKHE system ΠDFKHE.

Theorem 5.4.1 (Correctness of ΠDFKHE). Let

M := 1 +σd
√

m(d + 1) ·
√

m + 400dm2,

N := 1 +ση
√

m(η+ 1) ·
√

m + 400ηm2β2
F
.

The DFKHE system ΠDFKHE is correct if the condition

max{M,N} <
1
4

(q/B) (5.4)

holds, assumming that f j(t) = y for all j ∈ [η].

123

5.4. DFKHE Construction over Lattices

Proof. We consider the first case in DFKHE.Dec where η = 0 and sky, f1,··· , fη = sk = TA.
Then, we have:

µ̄ = cout−R>(c>in,c
>
1 , · · · ,c

>
d)>

= U>s + eout +µd
q
2
e−R>[A>|(t1 ·G + B1)>| · · ·

|(td ·G + Bd)>]s−R>(ein|e1| · · · |ed)

= U>s−R>[A>|(t1G + B1)>| · · · |(tdG + Bd)>]s

+µd
q
2
e+ eout−R>(e>in,e

>
1 , · · · ,e

>
d)>

= µd
q
2
e+ eout−R>(e>in,e

>
1 , · · · ,e

>
d)>.

Recall that ‖eout‖∞ ≤ B,‖ein‖ ≤
√

m‖ein‖∞ ≤
√

mB. Furthermore, for i ∈ [d], by Lemma
2.1.3, we have

‖ei‖ = ‖S>i ein‖ ≤ s1(S>i)‖ein‖ ≤ 20
√

m ·
√

m‖ein‖∞ ≤ 20mB.

This implies that
‖(e>in,e

>
1 , · · · ,e

>
d)>‖ ≤

√
m + 400dm2 ·B.

And as R ∈ Zm×m(d+1) then s1(R>) ≤ σdm
√

d + 1 by Lemma 2.3.8. Therefore,

‖eout−R>(e>in,e
>
1 , · · · ,e

>
d)>‖∞ ≤ ‖eout‖∞+ s1(R>) · ‖(e>in,e

>
1 , · · · ,e

>
d)>‖

≤

(
1 +σd

√
m(d + 1) ·

√
m + 400dm2

)
·B := M.

(5.5)

Now, we consider the second case in DFKHE.Dec where η > 0. Then we have

µ̄ = cout−R>(c>in|c
>
f1 | · · · |c

>
fη)
>

= U>s + eout +µd
q
2
e−R>[A>|(f1(t) ·G + B f1)>| · · ·

|(fη(t) ·G + B fη)
>]s−R>(e>in|e

>
f1 | · · · |e

>
fη)
>

= U>s−R>[A>|(yG + B f1)>| · · · |(yG + B fη)
>]s

+µd
q
2
e+ eout−R>(e>in|e

>
f1 | · · · |e

>
fη)
>

= µd
q
2
e+ eout−R>(e>in|e

>
f1 | · · · |e

>
fη)
>.

Remark that the third equality holds only if f j(t) = y for all j ∈ [η]. Therefore, if there
exists j ∈ [η] such that f j(t) , y, then the equality (hence the decryption) fails. Here as
R ∈ Zm×m(η+1) then s1(R>) ≤ σηm ·

√
η+ 1 by Lemma 2.3.8. By Lemma 2.5.10, ‖e f j‖ <

‖ei‖ ·βF = 20mBβF , for all j ∈ [η]. Then

124

5.4. DFKHE Construction over Lattices

‖(e>in,e
>
f1 , · · · ,e

>
fη)
>‖ ≤

√
m + 400ηm2β2

F
·B.

Therefore,

‖eout−R>(e>in,e
>
f1 , · · · ,e

>
fη)
>‖∞ ≤ ‖eout‖∞+ s1(R>) · ‖e>in,e

>
f1 , · · · ,e

>
fη)
>‖

≤

(
1 +ση

√
m(η+ 1) ·

√
m + 400ηm2β2

F

)
·B := N.

(5.6)

From Equations (5.5)–(5.6), choosing parameters such that

max{M,N} < q/4

will ensure the success of decryption. �

5.4.3 Security Analysis

We will show that the proposed DFKHE is indistinguishably secure under selective vari-
ables against chosen plaintext attacks (IND–sVAR–CPA). The security relies on the hard-
ness of the DLWE assumption. Formally, we state the following theorem:

Theorem 5.4.2 (IND–sVAR–CPA of ΠDFKHE). Assuming the hardness of (n,2m,q,χ)–
DLWE, the proposed DFKHE ΠDFKHE is IND–sVAR–CPA. Specifically, if there exists an

adversary A that breaks the NDr–sVAR–CPA security of ΠDFKHE, then one can build a

solver B that solves the (n,2m,q,χ)−DLWE instance.

Proof. The proof consists of sequences of four hybrid games, which we will prove to be
indistinguishable from the view of an adversary. Specifically, the first in the sequence is
the original IND–sVAR–CPA game. Our goal is to show that the adversary’s advantage
in the original one is negligible. Whereas in the last game, the adversary’s advantage
is restricted to zero. We base the indistinguishability of the third and last games on the
DLWE assumption. We describe these games in detail as follows:

Game 0. This game is the original game DFKHEIND–sVAR–ATK
A

(λ) defined in Section 5.2.3.
Recall that at the beginning of the game, the adversary A lets the challenger know
a target variable t̂ = (t̂1, · · · , t̂d) that it wants to challenge later. After that, the chal-
lenger produces the public key and the secret key (pk,sk), where pk = {A,G,B1,

· · ·Bd,U}, and sk = TA, with (A,TA) ← TrapGen(1n,1m,q), B1, · · ·Bd
$
←− Zn×m

q ,

U
$
←− Zn×m

q . Only pk is sent toA.

The adversaryA can make delegate key queries DKQ(y, f1, · · · , fk) to the challenger.
If (y, (f1, · · · , fk)) ∈ Zq×F

k such that f1(̂t) = · · · = fk (̂t) = y then the query is aborted.
Otherwise, the query will be responded with a key sky, f1,··· , fk .

125

5.4. DFKHE Construction over Lattices

When challenged, the challenger produces the challenge ciphertext ĉt. By doing
that, Ŝ1, · · · , Ŝd are sampled uniformly from {−1,1}m×m at Step 1 of DFKHE.Enc.

Game 1. This game keeps almost things the same as Game 0, except some slight changes.
Namely, Ŝ1, · · · , Ŝd ∈ {−1,1}m×m are generated before challenging. Furthermore, for
i ∈ [d], matrix Bi can be computed as Bi := AŜi− t̂iG .

Game 2. This game just modifies Game 1 in the point that matrix A is sampled uni-
formly at random from Zn×m

q instead of being generated via TrapGen.

Having no TA, the challenger now uses the public basis TG for Λ⊥q (G) as the key
sk.

The challenger replies to a delegated key query DKQ(y, f1, · · · , fk) as follows:

1. First, the challenger checks if f1(̂t) = fk (̂t) = y. If yes, it aborts the query. If
not, i.e., there is some j with f j(̂t) , y, the challenger will go to next step.
Suppose that j = k, that is, fk (̂t) , y.

2. Now the challenger uses evaluation algorithms to compute Ŝ fi’s and B fi’s.
Specifically, for all i ∈ [k], Ŝ fi←Evalsim(fi, ((t̂ j, Ŝ j))d

j=1,A), B f i = AŜ fi− fi(̂t)G.
Notice that B fi = Evalpk(fi, (B j)d

j=1). Here, by Item 3 of Lemma 2.5.10, we can

bound s1(̂S fi) ≤ βF .

3. Compute Ey, f1,··· , fk ← ExtBasisRight([A|AŜ f1 + (y− f1(̂t))G| · · · | AŜ fk +(y−
fk (̂t))G],TG). We can bound ‖Ey, f1,··· , fk‖ ≤ ‖T̃G‖(1+ s1(̂S fk)) =

√
5(1+βF) for

all k ∈ [η] by Item 2 of Lemma 2.5.4.

4. Now, re–randomise Ey, f1,··· , fk to get Ty, f1,··· , fk ← RandBasis([A|AŜ f1 + (y −
f1(̂t))G| · · · |AŜ fk + (y− fk (̂t))G], Ey, f1,··· , fk ,σk).

5. The challenger will return sky, f1,··· , fk := Ty, f1,··· , fk back to the adversary.

Game 3. In this game the advantage of the adversary A is zero, because the two com-
ponents ĉin, ĉout in the challenge ciphertext ĉt is chosen randomly at random over
the ciphertext space. Whereas, computing remaining components ĉ1, · · · , ĉd of the
challenge ciphertext and everything else in Game 2 are unchanged in this game.
Hence, it is independent of the challenge plaintext.

Let Wi be the event that the adversaryA wins Game i. Then∣∣∣∣∣Pr[W3]−
1
2

∣∣∣∣∣ = 0.

Now, we claim and prove the indistinguishability of the above games through the follow-
ing lemmas.

126

5.4. DFKHE Construction over Lattices

Lemma 5.4.1. Game 0 and Game 1 are indistinguishable under the view of the adversary

A. That is,

|Pr[W1]−Pr[W0]| ≤ negl(λ).

Proof. This is simply thanks to the leftover hash lemma (i.e., Lemma 2.5.1). In fact,
Game 0 and Game 1 are just different in these two tuples (A,Bi, Ŝ

>

i ein) and (A,AŜi −

tiG, Ŝ
>

i ein). However, Lemma 2.5.1 ensures that their joint distributions are statistically
close. Therefore, the adversary cannot distinguish them. �

Lemma 5.4.2. Game 1 and Game 2 are indistinguishable under the view of the adversary

A. That is,

|Pr[W2]−Pr[W1]| ≤ negl(λ).

Proof. These two games are different in the way the challenger replies DKQ(y, f1, · · · , fk).
However, we can see that, the returned key sky, f1,··· , fk := Ty, f1,··· , fk produced using the
trapdoor TA and the one produced using the trapdoor TG have the same distribution. This
is because they both are also the output of the algorithm RandBasis. �

Lemma 5.4.3. Game 2 and Game 3 are indistinguishable under the view of the adversary

A. That is,

|Pr[W3]−Pr[W2]| ≤ negl(λ).

Proof. We prove this lemma using a reduction from the DLWE problem. By contradic-
tion, suppose that A is able to distinguish Game 2 from Game 3 and its advantage is
non–negligible. The reduction constructs a DLWE solver B employing the distinguisher
A. More specifically, the reduction works as follows:

(n,2m,q,χ)–DLWE instance. The solver B is given a matrix F := [A|U]
$
←− Zn×m

q ×Zn×m
q ,

and a vector c := (c>in|c
>
out)
> ∈ Zm

q ×Z
m
q . Here, there are only two possibilities for c.

Namely,

• Case 1: c is random in Z2m
q ; or

• Case 2: c is LWE samples, c = F>s + e, for some random vector s ∈ Zn
q and

e := (e>in|e
>
out)
>← χ2m.

The solver B wants to know which case c belongs to. Note that if c belongs to Case
2, then one can parse it as

cin = A>s + ein, cout = U>s + eout. (5.7)

Initialise. B receives fromA the target variable t̂ = (t̂1, · · · , t̂d).

127

5.4. DFKHE Construction over Lattices

Setup. B follows Game 2 to generate the public key and secret key. Namely, it samples

Ŝ1, · · · , Ŝd
$
←− {−1,1}m×m and sets Bi := AŜi− t̂iG for i ∈ [d]. The public key is pk =

(A,G,B1, · · · ,Bd,U) will be sent toA. The secret key is sk = TG.

Query. For delegated key queries ofA, B responds following Game 2.

Challenge. Having received two plaintexts µ0 and µ1, B chooses a bit b
$
←− {0,1} uni-

formly at random , then computes ĉout← cout +µbd
q
2e ∈Zq and ĉ← [Im |̂S1| · · · |̂Sd]>cin

∈ Z(d+1)m
q .

• If c belongs to Case 2, i.e., cin, cout satisfy Equation (5.7), then

ĉ = [Im |̂S1| · · · |̂Sd]>(A>s + ein),

ĉout = U>s + êout +µbd
q
2
e ∈ Zq,

which are computed as in Game 2.

• If c belongs to Case 1; i.e., cin, cout are random, then ĉ is random (by Lemma
2.5.1 again). Because, in this case ĉout is also random, then ĉt := (̂c, ĉout) is
random in Z(d+2)m

q which are computed as in Game 3.

Guess. A guesses which game between Game 2 and Game 3 that he has interacted with.
At this point, B decide the DLWE instance.

Of course, the difference of Game 2 and Game 3 depends only on which case c belongs
to. Thus, the advantage ofA and B are the same. �

From Lemmas 5.4.1–5.4.3, we have∣∣∣∣∣Pr[W0]−
1
2

∣∣∣∣∣ = |Pr[W0]−Pr[W3]|+
∣∣∣∣∣Pr[W3]−

1
2

∣∣∣∣∣
≤ |Pr[W1]−Pr[W0]|+ |Pr[W2]−Pr[W1]|

+ |Pr[W3]−Pr[W2]|+
∣∣∣∣∣Pr[W3]−

1
2

∣∣∣∣∣
≤ negl(λ).

This completes the proof. �

Remark 5.4.1. We can prove the proposed DFKHE to be fully secure through the follow-

ing reduction: Suppose that there is an adversary A that can break the fully security of

the proposed DFKHE system with some advantage ε. UsingA, we can build an adversary

B that breaks the selective security.of the system . To do that, B has to guess the target

variable t̂ = (t̂1, · · · , t̂d) ∈ Zd
q to be challenged by A. Obviously, guessing t̂ = (t̂1, · · · , t̂d)

128

5.5. Lattice–based PE Construction from DFKHE

incurs a loss of qd in advantage following the proof for [BB11, Theorem 7.1]. That is, the

advantage of B is only ε ·q−d.

5.4.4 Setting Parameters

We will heuristically present parameters for our construction:

• Let λ be a security parameter.

• By Lemma 2.4.1, the hardness of (n,2m,q,χ)–DLWE (in Lemma 5.4.3) is ensured
by choosing ε,n,q,χ, such that n = n(λ), q = q(n) ≤ 2n, m = Θ(n logq) = poly(n),
and the distribution χ = χ(n) is a (B, ν)–bounded for some B = B(n) satisfying that
q/B ≥ 2nε . Note that to choose practical parameters, the “core–SVP hardness”
methodology (e.g., see in [ABDo20, Section 5.2.1]) is usually used.

• Set Gaussian parametersσ1, · · · ,ση such that TrapGen (Item 1, Lemma 2.5.4, ExtBa-

sisRight (Item 2, Lemma 2.5.4 (called in Game 2), ExtBasisLeft (Item 3, Lemma
2.5.4, SampleD (Item 4, Lemma 2.5.4 and RandBasis (Item 5, Lemma 2.5.4 can
work well.

• By Lemma 2.5.11, βF = (pd−1
p−1 ·m)τ. Remind that τ is the depth of circuits that

compute the functions in the family F and p < q is the upper bound for input values
to the multiplication gates of these circuits.

• Parameters have also to fulfil Equation (5.4) for the correctness of the construction.

5.5 Lattice–based PE Construction from DFKHE

We specific a family of functions that will be used to construct puncturable encryption
from DFKHE. First, we define a function eqt∗ : Zq→ Zq, satisfying that

eqt∗(t) =

0 t∗ , t,

1 otherwise.
(5.8)

and define
ft∗(t) := eqt∗(t1) + · · ·+ eqt∗(td), for t = (t1, · · · , td) ∈ Zd

q.

Then,

ft∗(t) =

0 t∗ , ti,∀i ∈ [d],

some z such that 0 < z ≤ d < q otherwise.
(5.9)

129

5.5. Lattice–based PE Construction from DFKHE

The family we will be working on is F := { ft∗ : Zd
q → Zq | t∗ ∈ Zq}. By applying the

generic framework in Section 5.3.1 to the lattice–based DFKHE given in Section 5.4.1 and
modifying the resulting PE, we come up with the lattice–based PE construction ΠPE =

{PE.Setup, PE.Enc, PE.Pun,PE.Dec} presented below:

• (pk,sk0)← PE.Setup(1λ). For the input security parameter λ, do the following:

1. Choose n = n(λ), q = q(λ) prime, and the maximum number of tags d = d(λ)
per a ciphertext such that d < q.

2. Choose m = Θ(n logq). The plaintext space isM := {0,1}m, T := Zq.

3. Let χ be a (B, ν)–bounded noise distribution for which the (n,2m,q,χ)–DLWE
is hard. Set σ1 = ω(βF ·

√
logm).

4. Sample (A,TA)← TrapGen(1n,1m,q), U,B1, · · · ,Bd
$
←− Zn×m

q .

5. Take the gadget matrix G ∈ Zn×m
q .

6. Output pk = {A,G,B1, · · ·Bd,U} and sk0 := TA.

• ct← PE.Enc(µ,pk, {t1, · · · , td}). For the input consisting of (a plaintext µ, the public
key pk and ciphertext tags (t1, · · · , td) ∈ T d), perform the following steps:

1. Sample s
$
←− Zn

q, eout,ein← χm, S1, · · · ,Sd
$
←− {−1,1}m×m.

2. Compute e← (Im|S1| · · · |Sd)>ein = (e>in,e
>
1 , · · · ,e

>
d)>.

3. Form H← [A|t1G + B1| · · · |tdG + Bd] and compute c = H>s + e ∈ Z(d+1)m
q ,

c = (c>in,c
>
1 , · · · ,c

>
d)>, where cin = A>s+ein and ci = (tiG+Bi)>s+ei for i ∈ [d].

4. Compute cout←U>s+eout +µd
q
2e, output (ct = (cin,c1, · · · ,cd,cout), (t1, · · · , td)).

• skη← PE.Pun(skη−1, t∗η). For the input (a puncture key skη−1 and a punctured tag
t∗η ∈ T), do:

1. Evaluate B ft∗η
← Evalpk(ft∗η , (Bk)d

k=1).

2. Compute E ft∗η
← ExtBasisLeft([A|B ft∗1

| · · · |B ft∗
η−1
|B ft∗η

],T ft∗
η−1

).

3. Compute T ft∗η
← RandBasis([A|B ft∗1

| · · · |B ft∗
η−1
|B ft∗η

],E ft∗η
,ση).

4. Output skη := T ft∗η
.

• µ/⊥:= PE.Dec(ct, t, (skη, {t∗1, · · · , t
∗
η})). For the input (a ciphertext ct = (cin,c1, · · · ,cd,

cout), the associated tags t = (t1, · · · , td), a puncture key skη := T ft∗η
and the associated

punctured tags {t∗1, · · · , t
∗
η} ⊂ T), execute the following steps:

1. If there exists j ∈ [η] such that ft∗j (t) , 0, then output ⊥. Otherwise, go to Step
2.

130

5.6. Summary

2. Evaluate B ft∗i
← Evalpk(ft∗i , (Bk)d

k=1) for all i ∈ [η].

3. Sample R← SampleD([A|B ft∗1
| · · · |B ft∗η

],T ft∗η
,U,ση).

4. Evaluate c ft∗j
← Evalct(ft∗j , (tk,Bk,ck)d

k=1), for j ∈ [η].

5. Compute µ̄ = (µ̄1, · · · , µ̄m)← cout−R>(cin|c ft∗1
| · · · |c ft∗η

).

6. For ` ∈ [m], if |µ̄`| < q/4 then output µ` = 0; otherwise, output µ` = 1.

Remark that the analysis has been done for the lattice–based DFKHE in Section 5.4.3
can be applied well to the lattice–based PE. For completeness, we state two main theorems
for the lattice–based PE without proof as follows.

Theorem 5.5.1 (Correctness of ΠPE). The proposed ΠPE is correct if Equation (5.4) holds

assuming that t∗j , tk for all (j,k) ∈ [η]× [d].

Theorem 5.5.2 (Security of ΠPE). The proposed PE ΠPE scheme is IND–sPUN–CPA

secure thanks to the IND–sVAR–CPA of the underlying ΠDFKHE.

5.6 Summary

This chapter revisited the notion of puncturable encryption (PE). We begin with the con-
cept of delegatable fully key–homomorphic encryption (DFKHE). We design a DFKHE
scheme from DLWE using some popular lattice tools. The construction enjoys selec-
tive indistinguishability against chosen plaintext attacks (IND–sVAR–CPA) security. We
showed that one can construct puncturable encryption from the new primitive through a
generic framework. We also developed a puncturable encryption construction from the
generic framework offering the same security level as the underlying DFKHE.

For further research, we list here some works that are worthwhile to pursue: (1) de-
signing puncturable ABE as in [PNXW18], but its security based on lattices, (2) construct-
ing efficient puncturable forward–secure encryption schemes as proposed in[GM15], (3)
investigating to build PE schemes offering constant puncture key size, and (4) developing
PE schemes supporting an unlimited number of punctures.

In Chapter 6, we will concentrate on spatial encryption, which subsumes PE and
others as its subclasses.

131

Chapter 6

Spatial Encryption over Lattices
and More

Part of the content in this chapter appeared in Le et al. [LDSP22b]. The author of this

thesis is the first and the corresponding author of [LDSP22b]. He contributed to finding

the topic, the design of the cryptosystems, the security analysis of the results and the

writing of the manuscript.

6.1 Overview

Spatial encryption (SE) is a sort of public–key encryption introduced by Boneh and Ham-
burg [BH08] at Asiacrypt 2008. In an SE system, encryption and decryption involve affine
and vector objects such as affine points, vectors, affine subspaces and vector subspaces.
For the formal definition of SE, please refer to Section 2.7.6. One has found several
versatile applications of SE in constructing, e.g., (hierarchical) identity–based encryp-
tion ((H)IBE), broadcast (H)IBE, attribute–based encryption (ABE) and forward–secure
cryptosystems (see, e.g., [BH08], [Ham11]).

In the literature, a generic framework for constructing SE is shown by Chen et al.

[CLLW14]. The framework transforms hierarchical inner product encryption (HIPE)
(Okamoto and Takashima [OT09] at Asiacrypt 2009), which is a variant of inner prod-
uct encryption (IPE), into an SE. Applying the framework, one can achieve an SE sys-
tem over lattices thanks to some existing lattice–based HIPE proposals. However, such
lattice–based SE systems suffer from shortcomings, as shown in Section 1.2.1.

This chapter and [LDSP22b] revisit SE over lattices, aiming for a better construc-
tion than previous ones. We start with introducing a new primitive called delegatable

multiple inner product encryption (DMIPE). Even though this primitive is also a dele-
gatable variant of inner product encryption (IPE), HIPE and DMIPE are not the same.

132

6.1. Overview

In particular, a DMIPE ciphertext is produced together with an attribute vector, while
a DMIPE decryption key can be generated from the master secret key. Alternatively, a
DMIPE decryption key can also be obtained from other secret keys by delegating more
predicate vectors. We show the equivalence of DMIPE and SE by presenting security–
preserving conversions between them. As a proof of concept, we instantiate a DMIPE
system whose security relies on the hardness of the decision learning with errors (DLWE)
problem. Moreover, it enjoys the selective payload–hiding security in the standard model
(SDM). At a high–level description, our lattice–based DMIPE construction utilises the
lattice trapdoors and the lattice homomorphic evaluation on a family of inner product
functions. Using the DLWE–based DMIPE design, we can achieve an SE system over
lattices which is more compact in terms of sizes than those over lattices converted from
HIPE (e.g., [ADCM12, Xag15]). We see that our (d–dimensional) lattice SE construc-
tion (from the lattice DMIPE) is more efficient, in terms of sizes, than SE obtained from
∆(d)–HIPEs [ADCM12, Xag15] using the Chen et al. framework [CLLW14].

As a side product, we formally define allow–/deny–list encryption (ADE), which
subsumes many advanced primitives, e.g., PE [GM15]. Furthermore, we show that we
can implement some variants of ADE through SE.

To summarise, our main contributions in this chapter includes:

• a primitive, named delegatable multiple inner product encryption (DMIPE), pre-
sented in Section 6.2,

• an security–preserving equivalence of DMIPE and SE, demonstrated in Section 6.3
and Section 6.5;

• A construction of DMIPE (and hence SE) over lattices, given in Section 6.4,

• a formal definition and security notions for the allow–/deny–list encryption (ADE),
included in Section 6.6; and

• a transformation from some ADE variants to SE, given in Section 6.6.2.

The primary technical tools used in this chapter are the dual Regev encryption frame-
work (Section 2.7.3), the leftover hash lemma (Section 2.5.1), the lattice trapdoor (Section
2.5.3) (that will be merged in a general framework), the lattice homomorphic evaluations
(Section 2.5.4) and some tools in Algebra (Section 6.3.1).

In the following, we give more details about the contributions and techniques/tools
that will be presented later in this chapter.

DMIPE. Formally, DMIPE is defined by main algorithms DMIPE.Setup, DMIPE.Derive,
DMIPE.Del, DMIPE.Enc, and DMIPE.Dec. Given a vector space D that supports the
inner product operation (e.g.,D = Zd

q for q prime). For a security parameter λ and a setup

133

6.1. Overview

parameter sp, the setup algorithm DMIPE.Setup(λ,sp) generates public parameters pp

and a master secret key msk. The key generation algorithm DMIPE.Derive(pp,msk, ~V)
takes public parameters pp, a master secret key msk and a list ~V ⊂D of vectors. It outputs
a secret key sk~V for ~V . For public parameters pp, a secret key sk~V for ~V and a predicate
vector v ∈D, the delegation algorithm DMIPE.Del(pp,sk~V ,v) returns a secret key for sk~V′
where ~V′ = ~V ∪ {v}. The encryption algorithm DMIPE.Enc(pp,µ,x) outputs a ciphertext
ctx for public parameters pp, a plaintext µ and an attribute vector x ∈ D. The decryption
algorithm DMIPE.Enc(pp,sk~V ,ctx) either recovers the plaintext µ if 〈x,v〉= 0 for all v ∈ ~V
or returns ⊥.

There is an important requirement for predicate vectors, say ~V . They have to be
linearly independent, i.e., no vector is a linear combination of two or more other vectors
from ~V . The requirement is necessary to ensure that there is no redundant vector in ~V

when checking decryption conditions. Besides, the delegation of a decryption key for
~V∪v is possible if v is linearly independent of the existing predicate vectors in ~V . Further
details can be found in Section 6.2.

Let us illustrate a simple application of DMIPE. Consider a company where each
officer/worker has a secret key allowing him/her to access internal documents. Assume
that access is restricted depending on his/her role/department in the company. To this
end, each document is encrypted with an attribute vector, and each person in the company
is issued with a predicate vector. A private key for each person corresponds to a list
of predicate vectors. Furthermore, a manager can use her/his key to generate a key for
subordinates using delegation.

DMIPE is a generalisation of IPE that is more natural than HIPE. Compared to HIPE,
the decryption hierarchy in DMIPE is more flexible for delegation.

Figure 6.1 below depicts the relation of SE, DMIPE, HIPE, and other primitives, such
as HIBE, ABE, puncturable encryption (PE) [GM15], puncturable IBE (PIBE) [DSDR21],
Dual–form PE (DFPE) [DRSS21] and several forward–secure cryptosystems (we gener-
ally write as “Forward Security” in Figure 6.1). Here, the arrow “A→ B” means that “we
can construct B from A”.

Details of DMIPE will be presented in Section 6.2.

Lattice–based DMIPE. At a high–level description, our lattice–based DMIPE design
exploits the dual Regev encryption framework (Section 2.7.3), the lattice trapdoor mech-
anism and the lattice evaluation for inner product functions (see Lemma 6.4.1 and Lemma
6.4.3 for formal statements). The DMIPE design’s security is based on the intractability
of the DLWE problem.

Now, we sketch the lattice–based DMIPE construction. For appropriately chosen
parameters n,m,d,q,σ0, a public key (included in the public parameters pp) consists of

matrices B
$
←− Zn×dm

q , U
$
←− Zn×m

q and A ∈ Zn×m
q , which is generated together with a σ0–

134

6.1. Overview

Figure 6.1: The relation of SE and other primitives.

Table 6.1: Comparison of our lattice–based d–dimensional SE with other SEs based
on lattices.

d-dim.
SE from

pk-size
(` := dlogr qe)

msk-size
(` := dlogr qe)

sk-size
(k predicate

vectors)

ct-size
(h attribute

vectors,
m-bit plaintext)

Abdalla et al.
[ADCM12]
(∆(d)-HIPE)

(d2(`+ 1) ·Zn×m
q

+2 ·Zn×m
q

1 ·Dm×m
Z 1 ·Dkm×m

Z

(hd(`+ 1)) ·Zm
q

+2 ·Zm
q

Xagawa
[Xag15]

(∆(d)-HIPE)

(d2 + d) ·Zn×n`
q

+2 ·Zn×ml
q

1 ·D(m−n`)×n`
Z

1 ·D(m+(2k−1)n`)×m
Z

+1 ·D(m+(2k−1)n`)×nk
Z

(h−1 + hd) ·Zn`
q

+2 ·Zm
q

Ours
(DMIPE)

(d + 2) ·Zn×m
q 1 ·Dm×m

Z 1 ·Dkm×m
Z

(d + 2) ·Zm
q

trapdoor A−1
σ0

. The trapdoor acts as the master secret key. To generate a key for a list
~V of k predicate vectors, we compute Bvi := BHvi for each vi ∈ ~V . Here, we use the
public evaluation Hvi ← EvalFIP(fvi ,B) from Lemma 6.4.3. The secret key sk~V is the
σ0-trapdoor A−1

~V ,σ0
for A~V computed using the master secret key A−1

σ0
via Lemma 6.4.1,

where A~V := [A|Bv1 | · · · |Bvk]. Regarding delegation, given a secret key sk~V := A−1
~V ,σ0

, one

can update it to get a secret key for ~V′ := ~V ∪ {vk+1} for any vk+1. This can be done by
generating a trapdoor A−1

~V′,σ0
for A~V′ = [A~V |Bvk+1] from A−1

~V ,σ0
. Again, Bvk+1 is computed

by evaluating (fvk+1 , B) using EvalFIP.
Encryption on an attribute vector x employs the dual Regev’s style to produce a ci-

phertext ctx := (cin,cmid,cout), in which cmid := s>(B− x⊗G) + e>inR ∈ Zmd
q . Here s

$
←− Zn

q

135

6.2. Delegatable Multiple Inner Product Encryption

is an LWE secret, ein ← χm is an LWE error, and R
$
←− {−1,0,1}m×md. For decrypt-

ing a ciphertext ctx using a secret key sk~V , we again exploit Lemma 6.4.3 to compute
cvi := cmidHvi for all vi ∈ ~V . Putting cvi’s, cin, and cout together allows us to recover the
underlying plaintext if 〈x,vi〉 = 0 (mod q) for all vi ∈ ~V . Otherwise, decryption fails.

The lattice–based DMIPE will be given in Section 6.4.

Equivalence of DMIPE and SE. We prove in Section 6.3 and Section 6.5 that DMIPE
and SE are equivalent in the sense that we can establish security–preserving conversions
between them. In particular, we can use DMIPE to construct SE, where SE inherits se-
curity from DMIPE and vice versa. It also means we can get a lattice–based SE from a
lattice–based DMIPE. This way, our (d–dimensional) SE construction is more efficient in
terms of sizes, than SE obtained from ∆(d)–HIPEs [ADCM12, Xag15], according to the
generic framework of Chen et al. [CLLW14]. Table 6.1 compares our SE construction
with two other lattice–based SEs. All are d–dimensional ones.

ADE and the Construction from SE. ADE is, in fact, also a subclass of PrE, in which
both predicates and attributes are tags. These tags are categorised into two lists: allow list

contains positive tags and deny list – negative tags. Both ciphertexts and decryption keys
are associated with these two kinds of tags. Further, ADE also supports the delegation
mechanism called puncturing. Roughly saying, negatively puncturing is the delegation on
negative tags, and this puncturing can revoke the decryption ability. In contrast, positively

puncturing is delegation done on positive tags and allows decryption.
We will present a formal definition and security model for ADE. Moreover, we con-

sider three versions of ADE: (i) standard ADE (sADE); (ii) inclusive ADE (iADE) and
(iii) k–threshold ADE (k–tADE). We show that one can construct sADE and iADE from
SE by applying appropriate encodings. This result will be detailed in Section 6.6. How-
ever, translating k–tADE to SE is an open problem.

The security notions for SE, DMIPE and even ADE inherit from those for PrE, which
were introduced in [KSW08]. They include selective payload-hiding, selective attribute–
hiding, adaptive payload–hiding, and adaptive attribute–hiding. We stress that, in this
work, we concentrate on the selective payload–hiding security.

Figure 6.2 shows the roadmap of this chapter.

6.2 Delegatable Multiple Inner Product Encryption

This section introduces a new primitive called delegatable multiple inner product encryp-
tion (DMIPE). We do that by presenting DMIPE’s syntax and security notions. A DMIPE
ciphertext is produced together with a d–dimensional ciphertext vector, or attribute vec-

tor. Notice that a DMIPE decryption key associated with a list of d–dimensional key vec-

136

6.2. Delegatable Multiple Inner Product Encryption

Overview [Section 6.1]

Delegatable Multiple Inner Product Encryption [Section 6.2]

Generic SE from DMIPE [Section 6.3]

DMIPE Construction over Lattices [Section 6.4]

Constructing DMIPE from SE [Section 6.5]

Allow–/Deny–list Encryption from Spatial Encryption [Section 6.6]

Summary [Section 6.7]

Figure 6.2: The roadmap of this chapter.

tors or predicate vectors. We assume that all vectors reside in the same space D, which
supports the inner product defined by 〈a,b〉= a1b1 + · · ·+adbd ∈Dwhere a := (a1, · · · ,ad),
b := (b1, · · · ,bd) ∈ Dd.

We can see that DMIPE is a generalisation of IPE that is more natural than HIPE.
DMIPE’s decryption hierarchy is also more flexible for delegation than HIPE. Remind
that Table 1.5 gives a syntax comparison between IPE, HIPE and DMIPE, while Figure
6.1 intuitively illustrates their relation with several other primitives.

6.2.1 Syntax

A DMIPE is a tuple of algorithms DMIPE.Setup, DMIPE.Derive, DMIPE.Del, DMIPE.Enc

and DMIPE.Dec, which are formally defined as follows:

• (pk,msk)← DMIPE.Setup(1λ,sp). DMIPE.Setup is the key setup algorithm. It is
PPT. Its inputs are a security parameter λ and setup parameters sp. Its outputs are a
public key pk and a master secret key msk.

• sk~V ← DMIPE.Derive(pk,msk, ~V). DMIPE.Derive is the key derivation algorithm.
It is PPT. Its inputs are a public key pk, a master secret key msk and a list of vectors
~V = {v1, · · · ,vk}. Its output is a secret key sk~V for ~V .

• ⊥ /sk~V2
← DMIPE.Del(pk,sk~V1

,vk+1). DMIPE.Del is key delegation algorithm. It
is PPT. Its inputs are a public key pk, a secret key sk~V1

for ~V1 = {v1, · · · ,vk} and
a vector vk+1. Its output is either a secret key sk~V2

for ~V2 := ~V1 ∪ {vk+1} (vk+1 is
linearly independent of ~V) or ⊥ (if vk+1 is not linearly independent of ~V).

• ctx← DMIPE.Enc(pk,µ,x). DMIPE.Enc is the encryption algorithm. It is PPT. Its
inputs are a public key, a plaintext µ and a vector x. Its output is a ciphertext ctx.

137

6.2. Delegatable Multiple Inner Product Encryption

• ⊥/µ := DMIPE.Dec(pk,sk~V ,ctx). DMIPE.Dec is the decryption algorithm. It is
DPT. Its inputs are a ciphertext ctx, a secret key sk~V . Its output is either a plaintext
µ (if it succeeds) or ⊥ (otherwise). Note that DMIPE.Dec is successful if ~V ·x = 0
(i.e., 〈vi,x〉 = 0 for all vi ∈ ~V).

Here we require predicate vectors ~V = {v1, · · · ,vk} to be linearly independent. The
restriction is to make sure that no redundant vectors are in ~V making the decryption con-
ditions well–defined. Of course, a decryption key for ~V ∪ v could be produced from the
decryption for ~V if ~V ∪v is also a set of linearly independent vectors.

6.2.2 Correctness

The correctness of DMIPE requires that: for any security parameters λ, any system param-
eters sp, any (pk,msk)← DMIPE.Setup(1λ,sp), sk~V ← DMIPE.Del(pk,sk~V′ ,v) (where
~V = ~V′∪{v}) or sk~V ← DMIPE.Derive(pk, msk, ~V),

• if 〈v,x〉 = 0 for all v ∈ ~V then

Pr[DMIPE.Dec(pk,sk~V ,DMIPE.Del(pk,sk~V′ ,v)) = µ] ≥ 1−negl(λ),

• otherwise,

Pr[DMIPE.Dec(pk,sk~V ,DMIPE.Del(pk,sk~V′ ,v)) = µ] < negl(λ),

over the randomness of the involved algorithms.

6.2.3 Security Notions

Similarly to SE, we can define the adaptive/selective payload–/attribute–hiding security
for DMIPE. However, we only state the selective payload–hiding security. We present the
security notion in Definition 6.2.1 and Figure 6.3. Note that in Figure 6.3, by “x 6⊥ ~V”, we
mean “∃v ∈ ~V : x 6⊥ v”.

Definition 6.2.1 (PAY–sATT–ATK security for DMIPE). Define the advantage of the ad-

versaryA in the game DMIPEPAY–sATT–ATK
A

(λ,sp) as

AdvPAY–sATT–ATK
A, DMIPE (λ) :=

∣∣∣∣∣Pr[DMIPEPAY–sATT–ATK
A

(λ,sp)⇒ 1]−
1
2

∣∣∣∣∣ .
We say that a DMIPE is PAY–sATT–ATK secure if, for any polynomial–time adversaryA,

it holds that

AdvPAY–sATT–ATK
A, DMIPE (λ) ≤ negl(λ).

138

6.3. Generic SE Construction from DMIPE

GAME DMIPEPAY-sATT-ATK
A

(λ,sp):
(where ATK ∈ {CPA,CCA1,CCA2})

1. x∗←A(1λ,sp);
2. (pk,msk)← DMIPE.Setup(1λ,sp);
3. (µ∗0,µ

∗
1)←AKQ(·), DQ1(·,·)(pk);

4. b
$
←− {0,1}, ct∗x∗ ← DMIPE.Enc(pk,x∗,µ∗b);

5. b′←Act∗x∗ , KQ(·), DQ2(·,·)(pk); // NOTE: DQ2(~V ,ct∗x∗) with x∗ ⊥ ~V is not allowed.
6. If b′ = b, return 1. Otherwise, return 0.
Queried Oracles:
• Key Oracle KQ(~V) (allowed only if x∗ 6⊥ ~V): Run sk~V ← DMIPE.Derive(pk,msk, ~V).
• Decryption Oracle DQ1(~V ,ctx) (allowed only if ATK ∈ {CCA1,CCA2}): Run sk~V
← DMIPE.Derive(pk,msk, ~V). Return the output of DMIPE.Dec(pk,ctx,sk~V).

• Decryption Oracle DQ2(~V ,ctx) (allowed only if ATK = CCA2): Run
sk~V ← DMIPE.Derive(pk,msk, ~V). Return the output of DMIPE.Dec(pk,ctx,sk~V).

Figure 6.3: Security game for DMIPE.

6.3 Generic SE Construction from DMIPE

First, we review some necessary concepts in affine geometry and linear algebra.

6.3.1 Selected Facts

Let F denote a field. A d–dimensional vector subspace V v Fd having a basis M ∈ Fd×m

can be represented as
V := span(M) = {Mx : x ∈ Fm}.

As M is a basis for V then all rows of M are linearly independent. Whereas, a d–
dimensional affine subspace W of Fd is defined as

W = y + span(M) = {y + Mx : x ∈ Fm}, (6.1)

for some y ∈ Fd,M ∈ Fd×m.
Suppose that W is a d–dimensional affine subspace represented as in Equation (6.1).

Then one can change W into a vector subspace defined as follows:

W = span(M′) :=

M′x′ : x′ =
1x

 ,x ∈ Fm+1

 , (6.2)

where M′ :=

1 0
y M

 ∈ F(d+1)×(m+1). Of course, the linear independence of M′’s rows is

guaranteed by that of M’s rows. Equation (6.2) says that W is now a (d + 1)–dimensional

139

6.3. Generic SE Construction from DMIPE

vector subspace. We have shown that a d–dimensional affine SE can always be embedded
into a (d + 1)–dimensional linear SE. Therefore, from here on, by “SE” we always mean
“linear SE” associated with vector subspaces and vectors over some field F. For example,
F can be Zq for prime q.

Remark that for linear SE, we create a ciphertext using a vector x, while we produce
a decryption key with a vector space V . If the relation x ∈ V holds then decryption is suc-
cessful. For the generic construction of SE from DMIPE, we have to map the “belonging
to, ∈” relation to the “orthogonal to, ⊥” relation.

The following lemma allows deriving a basis for the given space’s orthogonal com-
plement.

Lemma 6.3.1 ([Coh96, Algorithm 2.3.7] and [CLLW14]). There is an efficient algorithm,

named OCB taking as input a vector space V to output a basis, denoted B⊥(V), for the

V’s orthogonal complement V⊥. In addition, the algorithm ensures that if V2 v V1 then

B⊥(V1) ⊆ B⊥(V2).

6.3.2 The Generic Construction

Let ΠDMIPE := (DMIPE.Setup,DMIPE.Derive,DMIPE.Del,DMIPE.Enc,DMIPE.Dec) be
a DMIPE system. Using ΠDMIPE, an SE system, say ΠSE := (SE.Setup, SE.Derive,

SE.Del, SE.Enc, SE.Dec) can be built up as below.

• (pk,msk) ← SE.Setup(1λ,sp). For input a security parameter λ, a system pa-
rameters sp, run (dmipe.pp, dmipe.msk) ← DMIPE.Setup(1λ,sp) and set pk :=
dmipe.pp, and msk : = dmipe.msk.

• skV ← SE.Derive(pk,msk,V). For input a public key pk, the master secret key msk

and a subspace V , perform:

1. Run B⊥(V)← OCB(V), and set ~V := {v : v ∈ B⊥(V)}.

2. Run dmipe.sk~V ← DMIPE.Derive(pk,msk, ~V), and set skV := dmipe.sk~V .

• skV2 ← SE.Del(pk,skV1 ,V2). For input a public key pk, secret key for subspace
skV1 = dmipe.sk~V for V1 and a subspace V2 v V1, perform:

1. Run B⊥(V1)←OCB(V1), B⊥(V2)←OCB(V2), and set ~V1 := {v : v ∈ B⊥(V1)},
~V2 := {v : v ∈ B⊥(V2)}. Note that since V2 v V1 , ~V1 ⊆ ~V2.

2. Suppose that ~V2 \ ~V1 = {v1, · · · ,vk} for some k ≥ 1. Set ~V← ~V1. For i ∈ [k], run
dmipe.sk~V∪{vi}

← DMIPE.Del(pk,dmipe.sk~V ,vi), then set ~V ← ~V ∪{vi}.

3. At this point, we reach ~V = ~V2. Finally, output skV2 := dmipe.sk~V2
.

140

6.3. Generic SE Construction from DMIPE

A

B

C

DMIPE.Setuppk pk

query1

queryk

OCB()
...

OCB(query1)...
OCB(queryk)

SE Avdersary DMIPE Avdersary ≡ SE Challenger DMIPE Challenger

µ0,µ1 µ0,µ1 b
$
←− {0,1}

DMIPE.Enc(pk,µb ,̂ t)ĉtĉt

b′

b′
b′

Figure 6.4: Reduction from DMIPE to SE.

Doing this makes it clear that the distribution of the private keys is independent of
the path taken. Namely, the distribution for the key skV3 computed from skV2 is the
same as that of skV3 computed from skV1 with V3 v V2 v V1.

• ctx ← SE.Enc(pk,x,µ). For input the a public key pk, an attribute vector x and a
plaintext µ, run dmipe.ctx ← DMIPE.Enc(pk,x,µ) and output a ciphertext ctx :=
dmipe.ctx.

• µ/ ⊥← SE.Dec(pk,ctx,skV). For input the a public key pk, a ciphertext ctx and a
secret key skV for a space V , return µ/ ⊥← DMIPE.Dec(pk,ctx,skV).

6.3.3 Correctness

The correctness of SE is stated in Theorem 6.3.1.

Theorem 6.3.1. The SE scheme ΠSE is correct provided the correctness of the underlying

DMIPE scheme ΠDMIPE.

Proof. The induced scheme ΠSE is correct following the equivalence of “x ∈ V” and
“x ⊥ v, for all v ∈ B⊥(V)”. �

6.3.4 Security Analysis

Theorem 6.3.2. Suppose that A is the adversary that wins some security game (selec-

tive/adaptive payload–/attribute–hiding) for ΠSE. Then, there is an adversary B that wins

the same security game for ΠDMIPE such that AdvDMIPE
B

≥ AdvSE
A
.

Proof. We present a reduction in which the DMIPE adversary B plays as the SE chal-
lenger. It plays with A in the SE security game. The B’s strategy is to simulate the
security game environment for ΠSE. At the same time, B also communicates with the
DMIPE challenger C. The reduction’s main idea is as follows. At first, B forwards a

141

6.4. DMIPE Construction over Lattices

public key sent by C to A. After that, any queries having received from B will be trans-
formed using the algorithm OCB (in Lemma 6.3.1) before being forwarded to C. The
challenge ciphertext for the SE security game is also produced by C then sent back to A
by B. Finally, B returns whatA have returned.

We visualise the reduction in Figure 6.4 and describe it in detail below.

Setup. B hands A the a public key pk, which has been received from the DMIPE chal-
lenger C.

Query 1. For anyA,’s query, B first transforms using OCB to a query that is compatible
with DMIPE, which is then sent to C. B answers the query ofA by forwarding the
C’s response.

Challenge. Now A challenges by submitting two plaintexts and/or attribute vectors. At
this point, B forwards the challenge to C. B sent back toA what C has responded.

Query 2. Similar to Query 1 but is under some restrictions mentioned in security games
for DMIPE and SE.

Output. B returns as his guess whatA has just returned.

It is easy to see that B perfectly simulates the SE environment for A. Moreover, what
B received from A are also perfect in order for B to play with C in the DMIPE security
game. Therefore, B can succeed in the DMIPE security game with a probability not less
than that ofA in the SE game. The proof follows. �

6.4 DMIPE Construction over Lattices

The DMIPE construction over lattices employs the lattice trapdoor reviewed in Section
2.5.3 and the lattice evaluation algorithms in Section 2.5.4. The construction will also
involve a family of inner product functions. We will then define the family right now.

Let v ∈ Zd
q be a vector. We denote as fv : Zd

q → Zq an inner product indicated by v.
The function fv will map any x ∈ Zd

q to = 〈v,x〉 (mod q). Formally,

fv(x) := 〈v,x〉 (mod q).

It is well–known that one can represent the function as a circuit having only one addition
gate; see [BGG+14, Section 4] for discussion.

For the DMIPE construction, we consider the max–absolute–value norm ‖ · ‖max in-
stead of Euclidean norm ‖·‖. We therefore use a modified version of lattice trapdoor which
will be demonstrated in Section 6.4.1. Further, the lattice homomorphic evaluations will
focus on the inner product functions as detailed in Section 6.4.2.

142

6.4. DMIPE Construction over Lattices

6.4.1 Modified Lattice Trapdoors

Let n,m,q ∈ Z+, σ ∈ R+ and let A ∈ Zn×m
q be a matrix. We have known in Section 2.5.3

that given a matrix U ∈ Zn×m′
q (including zero matrices) for any positive integer m′, there

is an algorithm helps sample via discrete Gaussian distributions (DZm,σ)m′ over ΛU
q (A).

That is, the algorithm outputs a matrix, say X ∼ (DZm,σ)m′ , such that AX = U (mod q). In
this chapter, such the algorithm is called a σ–trapdoor and denoted by A−1

σ (·). Then, we
have X← A−1

σ (U).
Slightly abusing, A−1

σ is also called a σ–trapdoor for A. Also, the publicly known
constant trapdoor TG ∈ Z

m×m for the gadget matrix G is denoted as G−1
O(1) in this chap-

ter. Following [BV16, Tsa19, KNYY20], we collect some selected standard results and
algorithms on lattice trapdoors used for our design.

Lemma 6.4.1 ([Ajt96, GPV08, AP09, ABB10, CHKP10, MP12]). The following facts

hold for lattice trapdoors:

1. Let n, m, q be positive integers where m = O(n logq). There is an efficient algo-

rithm TrapGen(1n,1m,q) that takes (n,m,q) as input to generate a matrix A ∈ Zn×m
q

together with its trapdoor A−1
σ0

satisfying that the distribution of A is negligibly far

fromU(Zn×m
q) with σ0 = ω(n logq logn).

2. Given a trapdoor A−1
σ1

, one can compute A−1
σ2

for any σ2 ≥ σ1.

3. Given a trapdoor A−1
σ , one can compute [A|B]−1

σ , [B|A]−1
σ for any matrix B having

the same number of rows as A.

4. Given the gadget matrix G ∈ Zn×m′
q with m′ ≥ ndlogqe, using its trapdoor G−1

O(1)

one can compute the trapdoor [A|AR + G]−1
σ for all A ∈ Zn×m

q and R ∈ Zm×m′ and

σ = m · ‖R‖max ·ω(
√

logm).

5. For a trapdoor A−1
σ and for any U ∈ Zn×m′

q , by Lemma 2.3.7, Pr[‖A−1
σ (U)‖max ≤

12σ : x← DZ,σ] ≥ 1−2−100.

6.4.2 Lattice Homomorphic Evaluations for Inner Product Functions

In this section, we will modify to restrict the lattice homomorphic evaluation algorithms
(Section 2.5.4) to the inner product functions. Moreover, we only concentrate inner prod-
uct functions defined over Zq. Notice that [BV16, BTVW17, Tsa19] work with binary
functions, i.e., f : {0,1}∗ → {0,1}∗ rather than functions over Zq when using the lattice
homomorphic evaluations. For example, the following lemma is from [Tsa19, Theorem
2].

143

6.4. DMIPE Construction over Lattices

Lemma 6.4.2 ([Tsa19, Theorem 2]). There exist efficient deterministic algorithms EvalF

and EvalFX such that for all n,q,d ∈ N and m = ndlogqe, for any depth-` Boolean cir-

cuit f : {0,1}d → {0,1}k and for every x ∈ {0,1}d, for any matrix B ∈ Zn×md
q , the out-

puts H ← EvalF(f ,B) and Ĥ ← EvalFX(f ,x,B) are both in Zmd×mk and it holds that

‖H‖max,‖Ĥ‖max ≤ (2m)` and

[B−x⊗G]Ĥ = BH− f (x)⊗G (mod q),

where G ∈ Zn×m
q is the gadget matrix.

Hence, Lemma 6.4.2 is not helpful to our work. Further, the norm bound of Ĥ and
H in Lemma 6.4.2 are quite large than expected. The following lemma suffices for our
DMIPE design.

Lemma 6.4.3 (Evaluation for Inner Product Functions). Let n,q,d ∈ N and m = ndlogqe

be positive integers. Let fv : Zd
q → Zq be any inner product function indicated by v ∈ Zd

q.

Let G ∈ Zn×m
q be the gadget matrix. Then, there exists a DPT algorithm EvalFIP that

on input the function fv and any matrix B ∈ Zn×md
q , outputs a matrix H ∈ {0,1}md×m ←

EvalFIP(fv,B), satisfying that ‖H‖max ≤ 1 and that for every x ∈ Zd
q,

[B±x⊗G]H = BH±〈v,x〉 ·G (mod q). (6.3)

Proof. We will show an instance of the matrix H that satisfies Equation (6.3). Let v =

(v1, · · · ,vd) ∈ Zd
q be the vector corresponding to the inner product function fv. For i ∈ [d],

we define a matrix Hi as Hi := G−1(viG) ∈ {0,1}m×m. Here, G−1 is mentioned in Section
2.5.2. By definition of G−1, it holds that, GHi = viG for all i ∈ [d]. Define,

H :=

H1
...

Hd

 ∈ {0,1}md×m.

The following holds:

(x⊗G)H =

d∑
i=1

xiG(G−1(viG)) =

d∑
i=1

xiviG = 〈v,x〉 ·G.

It implies that
[B±x⊗G]H = BH±〈v,x〉 ·G (mod q).

Obviously, ‖H‖max ≤ 1 as H ∈ {0,1}md×m. �

In the next section, we present the DMIPE construction over lattices.

144

6.4. DMIPE Construction over Lattices

6.4.3 The Construction

First, we summarise the system parameters and give their descriptions in Table 6.2.

Table 6.2: System parameters in our lattice–based DMIPE construction.

Parameters Definition
λ security parameter
d dimension of the DMIPE system
n # row of matrices G
q system modulus
m # column of matrices G

B, ν parameters for the bounded distribution χ used in DLWE
σ∗ Gaussian parameter in the underlying LWE
σ0 Gaussian parameter used in the trapdoor

We will first give a brief description of the construction. A DMIPE public key pk

includes matrices A,G,B,U. The DMIPE master secret key will be msk := A−1
σ0

. Here,

G is the gadget matrix, A
$
←− Zn×m

q and its σ0–trapdoor A−1
σ0

are created by TrapGen,

B
$
←− Zn×dm

q and U ∈ Zn×m
q .

Let ~V = {v1, · · · ,vk} be a list of predicate vectors. A key sk~V associated with ~V is pro-
duced by for each vi ∈ ~V , evaluating Hvi←EvalFIP(fvi ,B) (Lemma 6.4.3) and then setting
Bvi := BHvi . Now, sk~V for ~V is A−1

~V ,σ0
which is a σ0–trapdoor for A~V := [A|Bv1 | · · · |Bvk].

Suppose that ~V′ is a list of vectors satisfying ~V ⊆ ~V′. Then, from A−1
~V ,σ0

we can dele-

gate a key sk~V′ for ~V′ by evaluating Hvi ← EvalFIP(fvi ,B) and setting Bvi := BHvi for all
vi ∈ ~V′ \ ~V . Similarly, the key sk~V′ is a σ0–trapdoor for A~V′ := [A|Bv1 | · · · |Bvk′], where
k′ = |~V′|.

A ciphertext ctx with respect to vector x on a plaintext µ ∈ {0,1}m consists of (cin, cmid,

cout), in which cin := s>A+e>in ∈ Z
m
q , cmid := s>(B−x⊗G)+e>inR ∈ Zmd

q , cout := s>U+e>out +

µ · dq/2e ∈ Zm
q . Here, s

$
←− Zn

q, R
$
←− {−1,1}m×md and ein,eout← χm for some distribution χ.

Using a secret key sk~V to decrypt a ciphertext ctx, one computes cvi := cmidHvi for all
vi ∈ ~V . Computing cout − [cin|cv1 | · · · |cvk]W enables regaining the underlying plaintext µ
as long as 〈x,vi〉 = 0 (mod q), ∀vi ∈ ~V .

In the following, we formally present the lattice–based DMIPE system. The sys-
tem comprises algorithms DMIPE.Setup, DMIPE.Del, DMIPE.Drive, DMIPE.Enc and
DMIPE.Dec.

• (pk,msk)← DMIPE.Setup(1λ,1d). Taking as input a security parameter λ and a
dimension d, DMIPE.Setup performs the following:

1. Choose n,m,q according to λ,d. Also, choose a (B, ν)–bounded distribution χ

145

6.4. DMIPE Construction over Lattices

for the underlying LWE problem. We can take χ = DZ,σ∗ (for some σ∗ > 0)
which is a (12σ∗,2−100)–bounded distribution.

2. Take the gadget matrix G ∈ Zn×m
q , and its publicly known trapdoor G−1

O(1).

3. Select a Gaussian parameter σ0.

4. Generate (A,A−1
σ0

) using TrapGen(1n,1m,q). Also, sample U
$
←− Zn×m

q , B
$
←−

Zn×md
q .

5. Output pk := (A,G,B,U) as public key and msk := A−1
σ0

as master secret key.

• sk~V ← DMIPE.Derive(pk,msk, ~V). Taking as input a public key pk, a master secret
key msk and a list of d–dimensional vectors ~V = {v1, · · · ,vk}, perform:

1. Compute Hvi ← EvalF(fvi ,B) and Bvi := BHvifor each vector vi.

2. Set B~V := [Bv1 | · · · |Bvk] and A~V := [A|B~V].

3. Calculate trapdoor A−1
~V ,σ0

for A~V (via Item 3 of Lemma 6.4.1) and return sk~V :=

A−1
~V ,σ0

.

• sk~V2
← DMIPE.Del(pk,sk~V1

,vk+1). Taking as input a public key pk, a secret key
sk~V1

= A−1
~V1,σ0

for a list ~V1 = {v1, · · · ,vk}, and a vector vk+1 < ~V1), DMIPE.Del per-
forms the following steps:

1. For all i ∈ [k + 1], compute Hvi ← EvalFIP(fvi ,B) and Bvi := BHvi .

2. Set A~V2
:= [A|Bv1 | · · · |Bvk |Bvk+1] with ~V2 := ~V1 ∪ {vk+1}. Note that A~V1

:=
[A|Bv1 | · · · |Bvk].

3. Compute trapdoor A−1
~V2,σ0

using the trapdoor A−1
~V1,σ0

(via Item 3 of Lemma

6.4.1) and output sk~V2
:= A−1

~V2,σ0
.

• ctx ← DMIPE.Enc(pk,µ,x). Taking as input a public key pk, a plaintext µ :=
(µ1, · · · ,µm) ∈ {0,1}m and an attribute vector x ∈ Zd

q, DMIPE.Enc does the following:

1. Sample s
$
←− Zn

q, R
$
←− {−1,1}m×md and ein,eout← χm.

2. Compute cin := s>A + e>in ∈ Z
m
q , cmid := s>(B − x ⊗G) + e>inR ∈ Zmd

q , cout :=
s>U + e>out +µ · dq/2e ∈ Z

m
q .

3. Return ciphertext ctx := (cin,cmid,cout).

• µ/⊥ := DMIPE.Dec(pk,sk~V ,ctx). Taking as input a public key pk, secret key sk~V :=
A−1
~V

for ~V = (v1, · · · ,vk) and a ciphertext ctx := (cin,cmid,cout) with respect to x ∈ Zd
q,

DMIPE.Dec does the following:

1. Evaluate Hvi ← EvalFIP(fvi ,B) and Bvi := BHvifor each vector vi.

146

6.4. DMIPE Construction over Lattices

2. Set A~V := [A|Bv1 | · · · |Bvk].

3. Calculate W← A−1
~V ,σ0

(U), i.e., A~VW = U (mod q).

4. For i ∈ [k], compute cvi := cmidHvi , i.e, cvi = s>(Bvi + 〈vi,x〉 ·G) + e>inRHvi .

5. Calculate µ′ := (µ′1, · · · ,µ
′
m)← cout− [cin|cv1 | · · · |cvk]W.

6. For i ∈ [m], return µi = 0 if |µ′i | < q/4; return µi = 1 otherwise.

6.4.4 Correctness

Theorem 6.4.1 (Correctness). Assume that the chosen parameters satisfy

B+ 12(mB+ km3B) ·σ0 < q/4.

Then, the lattice–based DMIPE described in Section 6.4.3 is correct.

Proof. First, recall that cvi = cmidHvi = s>(Bvi −〈vi,x〉 ·G) + e>inRHvi . Then, cvi = s>Bvi +

e>inRHvi if and only if 〈vi,x〉 = 0. Therefore, in the case that 〈vi,x〉 = 0 for all vi ∈ ~V , we
have

µ′ := cout− [cin|cv1 | · · · |cvk]W = µ · dq/2e+ eout + [e>in|e
>
inRHv1 | · · · |e

>
inRHvk]W.

Now, we need to bound ‖eout + [e>in|e
>
inRtHv1 | · · · |e>inRHvk]W‖max. We have

‖eout + [e>in|e
>
inRtHv1 | · · · |e

>
inRHvk]W‖max

≤ ‖eout‖max + [e>in|e
>
inRHv1 | · · · |e

>
inRHvk]W‖max

≤ ‖eout‖max + (m‖e>in‖max + kmmax
i∈[k]
‖e>inRHvi |‖max) · ‖W‖max

≤ ‖eout‖max + (m‖e>in‖max + km3‖e>in‖max · ‖R‖max ·max
i∈[k]
‖Hvi‖max) · ‖W‖max.

By Lemma 2.1.4, the second and the third inequality above hold. Now, because χ is
(B, ν)–bounded then ‖e>out‖max ≤ B, ‖e>in‖max ≤ B. Moreover, ‖Hvi‖max ≤ 1 by Lemma 6.4.3
and ‖W‖max ≤ 12σ0 by Item 5 of Lemma 6.4.1. Of course, ‖R‖max ≤ 1. Therefore,

‖eout + [e>in|e
>
inRtHv1 | · · · |e

>
inRHvk]W‖max ≤ B+ 12(mB+ km3B) ·σ0.

If parameters fulfil B + 12(mB + km3B) ·σ0 ≤ q/4, then the system is correct. The
proof follows. �

6.4.5 Security Analysis

We give the security of the DMIPE system in the following theorem.

147

6.4. DMIPE Construction over Lattices

Theorem 6.4.2 (Selective Payload–hiding Security). Under the hardness of the (n,2m,q,

χ)–DLWE instance, the lattice–based DMIPE described in Section 6.4.3 is selectively

payload–hiding secure against chosen plaintext attacks. Specifically, if there exists an

adversary A that breaks the selective payload–hiding security of ΠDMIPE, then one can

build a solver B that solves the (n,2m,q,χ)−DLWE instance.

Proof. We prove the theorem through hybrid games. The original selective payload-
hiding security game is Game 0. The last game is Game 4 in which the adversary’s
advantage is zero. We will prove two consecutive games to be indistinguishable. In par-
ticular, we will show that Game 3 and Game 4 are indistinguishable owing to a reduction
from DLWE. Now, letWi be the event that the adversary wins in Game i. Our goal is to
prove that |Pr[W0]−1/2| = negl(λ). Details are below.

Game 0. This is the original game DMIPEsel,CPA
payload,A stated in Figure 6.3. In this game, the

adversary releases a target attribute vector x∗. Also, suppose that in the Challenge
phase when producing the challenge ciphertext, the challenger generates the short
matrix R∗ ∈ {−1,1}m×md.

Game 1. This game resembles Game 0 except that generating the short matrix R∗
$
←−

{−1,1}m×md is now moved to the Setup phase, no longer in the Challenge phase.

Game 2. This game is modified from Game 1 in the way of generating pk := (A,G,B,U).
Everything else is unchanged. Specifically, B is not randomly sampled but set as

B := AR∗+ x∗⊗G ∈ Zn×md
q . (6.4)

The matrix A is still created together with A−1
σ0

by TrapGen(1n,1m,q) and U
$
←−

Zn×m
q . We know that, the challenge ciphertext ct∗x∗ will consist of (c∗in,c

∗
mid,c

∗
out).

However, notice that in this game, by Equation (6.4), the component c∗mid will be-
come

c∗mid := s>(B−x∗⊗G) + e>inR∗ = s>(AR∗) + e>inR∗ = c∗inR∗.

Game 3. This game is the same as Game 2, except that now the matrix A is sampled
uniformly at random from Zn×m

q . The challenger does not have A−1
σ0

anymore. How-
ever, the challenger can use the trapdoor G−1

O(1) for its response to the adversary’s
queries. Specifically, let ~V = {v1, · · · ,vk}. The key queries KQ(~V), is responded as
below:

1. For each vector vi, the challenger computes Hvi ← EvalFIP(fvi ,AR∗).

and then sets Bvi := BHvi = AR∗Hvi + 〈vi,x∗〉 ·G.

2. The challenger sets the matrix A~V := [A|Bv1 | · · · |Bvk].

148

6.4. DMIPE Construction over Lattices

3. If for all i ∈ [k], 〈vi,x∗〉= 0 (mod q), then the challenger aborts the query. Oth-
erwise, there exists i ∈ [k] so that 〈vi0 ,x∗〉 , 0 (mod q). Then, the challenger
can use G−1

O(1) to compute [A|AR∗Hvi0
+ 〈vi0 ,x∗〉 ·G]−1

σ (via Item 4 of Lemma
6.4.1). After that, the challenger uses [A|AR∗Hvi0

+ 〈vi0 ,x∗〉 ·G]−1
σ tp compute

[A~V]−1
σ (via Item 3 of Lemma 6.4.1), and finally returns sk~V ← [A~V]−1

σ .

Key delegation queries KD(~V ,v) are also answered in the same way.

Game 4. This game slightly modifies Game 3. In this game, in the challenge ciphertext
two components cin and cout are both uniform in Zm

q . The component cmid is kept
unchanged. Then, it is easy to see that |Pr[W4]−1/2| = 0.

Our purpose is to prove that |Pr[W0]− 1/2| ≤ negl(λ). To do that, we will show the
indistinguishability of the two consecutive games. This is done through the following
lemmas.

Lemma 6.4.4. Game 1 and Game 0 are perfectly the same in the view of the adversary;

i.e.,

Pr[W1] = Pr[W0].

Proof. By the construction, sampling R∗ is independent of the view of the adversary.
Therefore, sampling R∗ at the Setup phase will not notice the adversary. �

Lemma 6.4.5. In the view of the adversary A, Game 2 and Game 1 are indistinguish-

able, i.e.,

|Pr[W1]−Pr[W2]| ≤ negl(λ).

Proof. By the leftover hash lemma (Lemma 2.5.1), this lemma holds. �

Lemma 6.4.6. In the view of the adversary A, Game 3 and Game 2 are indistinguish-

able, i.e.,

|Pr[W2]−Pr[W3]| ≤ negl(λ).

Proof. Note that Item 1 of Lemma 6.4.1 says that matrix A generated by TrapGen looks
like random. Furthermore, both using the trapdoor G−1

O(1) and using the trapdoor A−1
σ0

return the same output distribution. However, choosing the Gaussian parameter σ in Step
3 of Hybrid 3 should be careful. Namely, we should choose

σ = m · ‖R∗Hvi0
‖max ·ω(

√
logm)

≤ m2d · ‖R∗‖max · ‖Hvi0
‖max ·ω(

√
logm)

≤ m2d ·ω(
√

logm).

�

149

6.4. DMIPE Construction over Lattices

Lemma 6.4.7. In the view of the adversary A, Game 4 and Game 3 are indistinguish-

able, i.e.,

|Pr[W3]−Pr[W4]| ≤ negl(λ),

assuming the hardness of the (n,2m,q,χ)–DLWE problem.

Proof. We prove the lemma via a reduction. The key idea of the reduction is as follows.
Suppose thatA can distinguish Game 4 from Game 3. Then, we can construct a DLWE
solver B exploitingA. Specifically,

DLWE Instance. The DLWE solver B is required to solve an (n,2m,q,χ)–DLWE in-

stance (F,c), where F = [A|U]
$
←− Zn×m

q ×Zn×m
q , and a vector c = (cin,cout) ∈ Zm

q ×Z
m
q .

The goal of B is to decide the following two cases:

Case 1: c is random in Z2m
q ; or

Case 2: c is LWE samples, i.e., c>in = s>A + e>in, c>out = s>U + e>out, for some random
vector s ∈ Zn

q and (eout,eout)← χm×χm.

Initialise. A releases its target attribute vector x∗ ∈ Zd
q.

Setup. B now samples R∗
$
←− {−1,1}m×md and then computes B := AR∗ + x∗ ⊗G. After

that, B sets the a public key pk = (A,G,B,U) and master secret key in the same way
as in Game 3. The public key pk will be sent toA.

Query. For queries ofA, B follows Game 3 to respond.

Challenge. A submits two plaintexts µ∗0 and µ∗1 to B. The challenge ciphertext will be

computed as follows: B chooses a bit b
$
←− {0,1}, then sets c∗in = cin, c∗>mid← c∗>in R∗

and c∗out ← cout +µ
∗
bd

q
2e. At this point, the challenge ciphertext is computes ctx∗ =

(c∗in,c
∗
mid,c

∗
out).

Output. Based on the result thatA has returned, B will decide the DLWE instance.

Our reasoning is that Game 3 and Game 4 just differ in the way of generating the chal-
lenge ciphertext, which directly relates to the DLWE instance. We notice here that

• If c belongs to Case 2, then c>in = s>A + e>in, c>out = s>U + e>out. Hence, c∗>mid =

c∗>in R∗ = s>AR∗+ e>inR∗ = s>(B−x∗⊗G) + e>inR∗, which is precisely the ones com-
puted in Game 3.

• If c belongs to Case 1, then c∗in, c∗out are uniformly random. Then ct∗x∗ is exactly
computed as in Game 4.

150

6.4. DMIPE Construction over Lattices

Therefore, ifA can distinguish Game 3 and Game 4, then B can succeeds to decide
the DLWE instance with probability not less than A’s probability. This completes the
proof for Lemma 6.4.7. �

From Lemmas 6.4.4–6.4.7, we conclude∣∣∣∣∣Pr[W0]−
1
2

∣∣∣∣∣ ≤ |Pr[W0]−Pr[W1]|+ |Pr[W1]−Pr[W2]|

+ |Pr[W2]−Pr[W3]|+ |Pr[W3]−Pr[W4]|+ |Pr[W4]−1/2|

≤ negl(λ).

This completes the proof for Theorem 6.4.2. �

6.4.6 Setting Parameters

Parameters for the DMIPE construction in Section 6.4.3 can be heuristically chosen as
follows:

• Choose a security parameter first and denote it by λ.

• Choose parameters such that the (n,2m,q,χ)–DLWE (in Lemma 6.4.7) is hard
which follows Lemma 2.4.1. Specifically, we choose n = n(λ), ε, ν, q = q(n) ≤ 2n,
m = Θ(n logq) = poly(n), χ = χ(n) such that χ is a (B, ν)–bounded for some B = B(n)
such that, q/B ≥ 2nε . Note that in the literature, choosing practical parameters usu-
ally follows the “core–SVP hardness” methodology; see [ABDo20, Section 5.2.1].

• Choose m > (n + 1) logq +ω(logn) (For Lemma 6.4.5; due to Lemma 2.5.1).

• Choose Gaussian parameter σ0 = ω(n logq logn) (for TrapGen; due to Item 1 of
Lemma 6.4.1).

• Choose Gaussian parameter σ ≥ m2d ·ω(
√

logm) (for Game 3 to work; due to
Lemma 6.4.6).

• Parameters should also satisfy the condition

B+ 12(mB+ km3B) ·σ0 < q/4,

(for Correctness; due to Theorem 6.4.1).

151

6.5. Constructing DMIPE from SE

6.5 Constructing DMIPE from SE

We have shown that there is a generic construction of SE from DMIPE. Reversely, in this
section, we will prove that: one can also build a DMIPE from an SE. The primary tool
for doing this is a transformation, named OVS, that maps a list of predicate vectors ~V =

{v1, · · · ,vk} in the DMIPE manner to the (unique) orthogonal complement of the subspace
generated by all vectors in ~V , which acts as a vector subspace in the SE manner. That is,

OVS(~V) := (span(v1, · · · ,vk))⊥.

Such a transformation guarantees that 〈vi,x〉 = 0 (mod q) ∀vi ∈ ~V is equivalent to x ∈
OVS(~V). Additionally, the transformation also makes sure that if ~V1 ⊆ ~V2 then OVS(~V2)v
OVS(~V1).

The construction works as follows.

• (pk,msk)← DMIPE.Setup(1λ,sp). Run (se.pp,se.msk)← SE.Setup(1λ,sp) and
then output pk := se.pp, msk := se.msk.

• sk~V ← DMIPE.Derive(pk,T,msk, ~V). Run V ← OVS(~V), se.skV ← SE.Derive(pk,

msk,V) and then output sk~V := se.skV .

• ctx←DMIPE.Enc(pk,x,µ). Run se.ctx←SE.Enc(pk,x,µ) and output ctx := se.ctx.

• sk~V2
←DMIPE.Del(pk, ~V1,sk~V1

,v). Compute V1←OVS(~V1), V2←OVS(~V1∪{v}),
and then se.skV2 ← SE.Del(pk,se.skV1 ,V2). (Note that se.skV1 = sk~V1

.) Finally,
output sk~V2

:= se.skV2 .

• µ/⊥← DMIPE.Dec(pk,ctx,skV). Return the output µ/⊥← SE.Dec(pk,ctx,skV).

The correctness of the DMIPE construction straightforwardly follows from the cor-
rectness of the corresponding SE. We can prove the security of the DMIPE construction
in a similar way to that of Theorem 6.3.2.

6.6 Allow–/Deny–list Encryption from Spatial Encryp-
tion

Allow–/deny–list encryption (ADE) was introduced by Derler et al. [DRSS21] as a
generalisation of IBE [Sha85], HIBE [GS02a], PE [GM15], DFPE [DRSS21], FuPE
[DKL+18]. However, Derler et al. [DRSS21] did not state any syntax or security no-
tions for ADE. Roughly stating, ADE is a sort of PKE that involves with tags, namely,
positive tags included in an allow list and negative tags included in a deny list. These two

152

6.6. Allow–/Deny–list Encryption from Spatial Encryption

kinds of lists are involved in both ciphertexts and decryption keys through a delegation
mechanism called puncturing. More specifically, ciphertexts can be generated together
with mixed tags. Puncturing on negative tags will produce decryption keys revoked from
the decryption ability. Contrarily, puncturing on positive tags will produce decryption
keys allowed for decryption.

This section formally defines the syntax and security notions for ADE. Moreover, we
also introduce three ADE versions: standard ADE (sADE), k–threshold ADE (k–tADE)
and inclusive ADE (iADE). They are different according to the correctness requirements.
We then present the encodings that help transform sADE and iADE to SE.

6.6.1 Framework of ADE

Denote λ to be a security parameter. Let d = d(λ) (respectively, a = a(λ)) be the maxi-
mum number of negative tags per ciphertext (respectively, the the maximum number of
positive tags) for the ADE system. Denote by M =M(λ), T (+) = T (+)(λ) and T (−) =

T (−)(λ) the plaintext space, the positive tag space and the negative tag space, respectively.
Syntax. ADE is a collection of the algorithms: key generation ADE.Gen, encryption

ADE.Enc, negative puncturing ADE.Npun, positive puncturing ADE.Ppun, and decryp-
tion ADE.Dec. They work as described below.

• (pk,sk∅
∅
)← ADE.Gen(1λ,1a,1d). ADE.Gen is a key generation algorithm. It is

PPT. Its inputs are a security parameter λ, a maximum number a of positive tags
per ciphertext and a maximum number d of negative tags per ciphertext. Its output
are a public key pk, and a (not punctured) initial secret key sk∅

∅
.

• sk
AL′1∪AL′2
DL′ ← ADE.Ppun(pk,sk

AL′1
DL′ ,AL′2,k). a ADE.Ppun is the positive puncturing

algorithm. It is PPT. Its inputs are a public key pk, a previously punctured key sk
AL′1
DL′

for a set of positive tags ∅ ⊆ AL′1 ⊆ T
(+) and a set of negative tags ∅ ⊆ DL′ ⊆ T (−),

and a set of positive tags AL′2 ∈ T
(+) \ AL′1. Its output is a new punctured key

sk
AL′1∪AL’2
DL′ .

• skAL′
DL′1∪DL′2

← ADE.Npun(pk,skAL′
DL′1

,DL′2). ADE.Npun is the negative puncturing

algorithm. It is PPT. Its input are a public key pk, a previously punctured key skAL′
DL′1

for a set of positive tags ∅ ⊆ AL′ ⊆ T (+), a set of negative tags ∅ ⊆ DL′1 ⊆ T
(−) and a

set of negative tags DL′2 ⊆ T
(−) \DL′1. Its output is a new punctured key skAL′

DL′1∪DL′2
.

• ctAL
DL ← ADE.Enc(pk,µ,AL,DL). ADE.Enc is the encryption algorithm. It is PPT.

Its inputs are a public key pk, a plaintext µ, a set of positive tags AL and a set of
negative tags DL. Its output is a ciphertext ctAL

DL.

aHere, note that k is only used in the k-tADE variant.

153

6.6. Allow–/Deny–list Encryption from Spatial Encryption

• µ/⊥ := ADE.Dec(pk,skAL′
DL′ ,ctAL

DL). ADE.Dec is the decryption algorithm. It is DPT.
Its inputs are a public key pk, a secret key skAL′

DL′ associated with AL′ ⊆ T (+) and
DL′ ⊆ T (−), and a ciphertext ctAL

DL associated with AL ⊆ T (+) and DL ⊆ T (−). Its
output is either a plaintext µ (if decryption succeeds) or ⊥ (otherwise).

Correctness and ADE Versions. We will define the correctness and classify ADE ver-
sions at the same time. Consider any λ,a,d ∈N, µ ∈M, ∅ ⊂ AL,AL′ ⊆ T (+), ∅ ⊂DL,DL′ ⊆

T (−), any (pk,sk∅
∅
)← ADE.Gen(1λ,1a,1d), and any punctured key skAL′

DL′ generated using
any combination of ADE.Npun, and ADE.Ppun on AL′,DL′.

All versions require that the initial key sk∅
∅

is always able to successfully decrypt any
ciphertext that was produced using the corresponding a public key pk. That is,

Pr[ADE.Dec(pk,sk∅
∅
,ADE.Enc(pk,µ,AL,DL)) = µ] ≥ 1−negl(λ).

However, when punctured, the additional correctness requirement varies for each version.
Specifically,

• Standard ADE (sADE). If (AL = AL′)∧ (DL∩DL′ = ∅) then

Pr[ADE.Dec(pk,skAL′
DL′ ,ADE.Enc(pk,µ,AL,DL)) = µ] ≥ 1−negl(λ).

Otherwise,

Pr[ADE.Dec(pk,skAL′
DL′ ,ADE.Enc(pk,pk,µ,AL,DL)) = µ] ≤ negl(λ).

• Inclusive ADE (iADE). If ((AL′ ⊆ AL)∧ (DL∩DL′ = ∅)) then

Pr[ADE.Dec(pk,skAL′
DL′ ,ADE.Enc(pk,µ,AL,DL)) = µ] ≥ 1−negl(λ).

Otherwise,

Pr[ADE.Dec(pk,skAL′
DL′ ,ADE.Enc(pk,µ,AL,DL)) = µ] ≤ negl(λ).

• k–threshold ADE (k–tADE). If ((|AL∩AL′| ≥ k)∧ (DL∩DL′ = ∅)), then

Pr[ADE.Dec(pk,skAL′
DL′ ,ADE.Enc(pk,µ,AL,DL)) = µ] ≥ 1−negl(λ).

Otherwise,

Pr[ADE.Dec(pk,skAL′
DL′ ,ADE.Enc(pk,µ,AL,DL)) = µ] ≤ negl(λ).

154

6.6. Allow–/Deny–list Encryption from Spatial Encryption

Note that if AL′ ⊆ AL holds, then iADE should be sADE.

Security Notions of ADE Versions. We define the selective payload–hiding security for
all ADE versions. The security notion is given in Definition 6.6.1 and Figure 6.5 below.

Definition 6.6.1 (PAY–sPUN–ATK for ADE). Define the advantage of the adversary A

in the game ADEPAY–sPUN–ATK
A

(λ,a,d) as

AdvPAY–sPUN–ATK
A, ADE (λ) :=

∣∣∣∣∣Pr[ADEPAY–sPUN–ATK
A

(λ,a,d)⇒ 1]−
1
2

∣∣∣∣∣ .
We say that an ADE is PAY–sPUN–ATK secure if, for any polynomial–time adversaryA,

AdvPAY–sPUN–ATK
A, ADE (λ) ≤ negl(λ).

GAME ADEPAY–sATT–ATK
A

(λ,a,d):
(where ATK ∈ {CPA,CCA1,CCA2})

1. (AL∗,DL∗)←A(1λ,1a,1d);
2. (pk,sk∅

∅
)← ADE.Gen(1λ,1a,1d), AL′← ∅, DL′← ∅;

3. (µ∗0,µ
∗
1)←APunc(·,·),DQ(·,·)(pk);

4. b
$
←− {0,1}, ctAL∗

DL∗ ← ADE.Enc(pk,µ∗b,AL∗,DL∗);
5. b′←APun(·,·),DQ(·)(pk,ctAL∗

DL∗); // NOTE: Not allowed DQ(AL′,DL′,ctAL∗
DL∗)

with (AL′,DL′) ∈ SUCC(AL∗,DL∗).
6. If b′ = b, return 1. Otherwise, return 0.
Queried Oracles:
• Puncturing Oracle Pun((AL′,DL′)) (It is only allowed if (AL′,DL′) <

SUCC(AL∗,DL∗)): Run ADE.Ppun and ADE.Npun in any order using
sk∅
∅

to output skAL′
DL′ .

• Decryption Oracle DQ(AL′,DL′,ctAL
DL) (allowed only if ATK=CCA): Run

ADE.Ppun and ADE.Npun in any order using sk∅
∅

to get skAL′
DL′ . Finally,

return the output of ADE.Dec(pk,skAL′
DL′ ,ctAL

DL).
Define SUCC(AL∗,DL∗) for ADE Variants:
• For sADE:

SUCC(AL∗,DL∗) := {(AL′,DL′) : ((AL′ = AL∗)∧ (DL′∩DL∗ = ∅))} .
• For k–tADE:

SUCC(AL∗,DL∗) := {(AL′,DL′) : ((|AL′∩AL∗| ≥ k)∧ (DL′∩DL∗ = ∅))} .
• For iADE:

SUCC(AL∗,DL∗) := {(A′L,DL′) : ((AL′ ⊆ AL∗)∧ (DL′∩DL∗ = ∅))} .

Figure 6.5: Security game for ADE versions.

155

6.6. Allow–/Deny–list Encryption from Spatial Encryption

6.6.2 Transforming sADE and iADE to SE

For q prime, let T (−),T (+) ⊂ Zq be (finite) negative tag space and positive tag space,
respectively. Suppose that |T (+)| = a and |T (−)| = d involved in the sADE (or iADE)
version. For two pairs of allow list and deny list (AL′1,DL′1), (AL′2,DL′2) ∈ T (+)×T (−), we
say (AL′1,DL′1) ⊆ (AL′2,DL′2) if and only if (AL′1 ⊆ AL′2)∧ (DL′1 ⊆ DL′2).

The idea for transforming sADE and iADE to SE is as follows: Assume that (AL′,DL′)
⊆ T (+) ×T (−) to be a pair of tag lists that is punctured on decryption keys. We encode
the pair into a subspace V compatible with the SE syntax. Note that V is possibly affine.
Accordingly, for any pair (AL,DL) ⊆ T (+) ×T (−) of ciphertext tags, we encode it as a
vector v satisfying that v ∈ V if and only if (AL′ ⊆ AL)∧ (DL′∩DL = ∅).

To perform that, we use the following encodings EncodeInKey and EncodeInCipher:

• Wkey← EncodeInKey(AL′,DL′). On input a pair (AL′,DL′) ⊆ T (+)×T (−), do the
following:

1. The allow list AL′ = {p1, · · · , pk} is stick to a space of vectors beginning with
(p1, · · · , pk)>, namely

WAL′ := {(p1, · · · , pk, xk+1, · · · , xa)> : xi ∈ Zq} ⊆ Z
a
q. (6.5)

One can easily check that if AL′1 ⊆ AL′2 then WAL′2
vWAL′1

.

2. The deny list DL′ is stick to the space

WDL′ := span{vx : x ∈ DL′′}, (6.6)

where vx := (1, x, x2, · · · , x2d−1) and DL′′ := T (−) \DL′ is the complement of
DL′.

We observe that adding one more tag into DL′ is equivalent to removing one
tag from DL′′. Then given DL′1 ⊆ DL′2 we have WDL′′2

vWDL′′1
.

3. Output the subspace Wkey which is defined as

Wkey := WAL′ ×WDL′ .

Now, one can perform negative puncturing and positive puncturing of sADE and
iADE via the delegation of SE.

• xct ← EncodeInCipher(AL,DL). On input a pair (AL,DL) ⊆ T (+) ×T (−), do the
following steps:

1. Stick AL = {p1, · · · , pk} to vector xAL := (p1, · · · , pk,0, · · · ,0) ∈ Za
q.

156

6.7. Summary

Clearly, if AL′ ⊆ AL then xAL ∈ WAL′ . Here WAL′ is defined as in Equation
(6.5).

2. Encode the list DL as xDL :=
∑

x∈DL vx ∈ Z
2d
q , where vx := (1, x, x2, · · · , x2d−1).

It is observed that xDL <WDL′ for any DL∩DL′ , ∅ (i.e., DL * DL′′). Here
WDL′ is defined as in Equation (6.6).

3. Output vector xct := (xAL,xDL) ∈ Za+2d
q .

Obviously, xct ∈Wkey if and only if (xAL,xDL) ∈WAL′ ×WDL′ , which is equivalent to
(AL′ ⊆ AL)∧ (DL′ ∩DL = ∅). Therefore, the correctness and the security of sADE and
iADE are inherited from those of SE.

6.7 Summary

We have revisited the notion of spatial encryption (SE). We were motivated by the short-
comings of a generic framework that transforms a hierarchical inner product encryption
(HIPE) system into an SE system. The framework will allow having lattice–based SE
from the corresponding lattice–based HIPE. However, such an induced SE incurs a large
key and ciphertext size.

To realise an SE over lattices with smaller sizes, we begin by introducing a prim-
itive named delegatable multiple inner product encryption (DMIPE). DMIPE is also a
generalisation of inner product encryption (IPE) but having equipped with a delegation
mechanism. We proved that one could generically transform a DMIPE to get an SE and
vice versa. In other words, there are “security notions–preserving” conversions between
SE and DMIPE. We then instantiate a DMIPE in the lattice setting.

Following our generic framework, the SE construction over lattices obtained from the
lattice DMIPE is better in size than the existing lattice–based SEs induced from HIPE.

We showed that the DMIPE over lattices (hence, the induced SE construction) offers
selectively payload–hiding security in the standard model. Nevertheless, we believe that
our lattice DMIPE construction can achieve the selectively weak attribute–hiding security
which is defined by Agrawal et al. [AFV11]. Moreover, a possible technical idea to
realise that might also be from Agrawal et al. [AFV11]. So this would be exciting work
for the future.

Furthermore, an adaptively secure DMIPE (and hence SE) construction from lattices
would be desired. Remark that in the recent work [KNYY20], an IPE enjoying adaptively
security has been proposed. Therefore, adaptively secure DMIPE and SE constructions
may be able to exploit the ideas of [KNYY20]. However, the delegation mechanism may
be the most challenging thing in achieving adaptive security for DMIPE. Therefore, we
leave it for further research in the future. In addition, a DMIPE and SE construction that

157

6.7. Summary

offer attribute–hiding security in the lattice setting should also be worthwhile for pursuing
further research.

One more thing is that we could only convert sADE and iADE into SE via encodings
specified in Section 6.6.2. However, finding the encodings for changing k–tADE into SE
is still open. Seemingly, the idea of threshold gates (see [Ham11, Page 51]) might be
helpful to do that. However, we think that instead of the original SE defined in this thesis,
the doubly spatial encryption (DSE) (which is also an SE variant introduced in [Ham11])
or some other SE variants might be needed. Again, we leave this as further work.

158

Chapter 7

Conclusion and Future Work

In this chapter, we summarise the contributions of the thesis. We then sketch some fasci-
nating directions for further research.

7.1 Summary of the Thesis

Lattice–based cryptography is rapidly developing with many breakthrough results. It
promises to be an excellent source of cryptographic constructions, which are secure against
quantum adversaries. Moreover, lattice–based cryptography still offers vast room for fur-
ther developments and improvements.

This thesis investigates several selected topics of lattice–based cryptography. We ex-
ploit some well–known technical tools such as rejection sampling, forking lemma, lattice
trapdoors, and lattice homomorphic evaluations, to list a few. Our primary research fo-
cus has been to develop new technical tools, propose novel primitives and improve the
existing constructions. The following contributions are noteworthy.

• We have proposed the first forward–secure blind signatures over lattices. We have
shown that they are secure against key exposure attacks.

• We have developed a trapdoor delegation for the LVV19 trapdoor. We have demon-
strated that the trapdoor can be used to construct the first HIBE based on the DM-
PLWE problem.

• We have introduced a new primitive called delegatable fully key–homomorphic en-
cryption (DFKHE). From DFKHE, we can get puncturable encryption (PE) in the
generic sense. Further, we have developed a concrete lattice-based PE by instantia-
tion of DFKHE.

• We have revisited the notion of spatial encryption (SE). In particular, we have in-
troduced the concept of delegatable multiple inner product encryption (DMIPE).

159

7.2. Future Work

Moreover, we have shown a security–preserving equivalence between SE and DMIPE
and then have presented a DMIPE over lattices. Additionally, we have formally
defined allow–/deny–list encryption (ADE), which covers PE (among others) as a
subclass. It turns out that one can get two versions of ADE from SE through appro-
priate encodings.

7.2 Future Work

We have pointed out some open problems/questions in each chapter. However, from a
more generic perspective, there are some other exciting research directions that we can
work on in the future. First, we would like to implement the lattice–based cryptosys-
tems proposed in this thesis and experiment with their parameters to maximise efficiency
and security. In particular, we would be able to evaluate other practical aspects such as
performance and actual sizes of keys, signatures and ciphertexts. Additionally, we could
compare our lattice–based construction with others. However, before doing that, we must
consider cryptographic optimisation and integrate this concept into the revised design
when implementing our systems. Furthermore, we should do a systematic investigation
on choosing specific parameters for techniques/tools in lattices, such as trapdoors and ho-
momorphic evaluations. Specifying hidden constants in parameter conditions/relations is
one of the main jobs. The job may need intensive experiments to bound the value of the
hidden constants. This investigation will help set concrete parameters in our lattice–based
cryptosystems and follow–up works.

Second, the lattice trapdoors and the lattice homomorphic evaluations seem to be
still far from being practical in terms of efficiency. Recently, we have seen some efforts
to improve the efficacy of the lattice trapdoor mechanisms, including [GPR+18, CGM19,
BEP+21]. One research direction for the future is to improve the practical aspects of these
mechanisms.

Third, the principal purpose of designing cryptosystems based on lattices is their re-
sistance against quantum adversaries. However, it seems to be insufficient to guarantee the
post–quantum security of a lattice–based cryptosystem if the cryptosystem is just proved
secure in the random oracle model (ROM). This is because a quantum adversary may ac-
cess random oracles in quantum superposition as discussed in [BDF+11, ABB+17]. On
the other hand, one can obtain the post–quantum security of a lattice–based cryptosystem
if its security is proven in the standard model. Unfortunately, security in the standard
model usually comes at a high cost in performance. A recently discussed alternative is
security proofs in the quantum random oracle model (QROM) (e.g., [BDF+11, ABB+17,
KLS18, LZ19, DFMS19, YZ21] to name a few). It is folklore that cryptosystems secure
in ROM often offer better efficiency than ones secure in the standard model; see, e.g.,

160

7.2. Future Work

[BR93] for further detail. However, this fact may no longer be true for QROM. At this
point, we must determine whether QROM or the standard model is more suitable for prac-
tical purposes. The answer may vary among specific cryptosystems. In our future work,
we intend to convert all cryptosystems proposed in this thesis into counterparts secure in
QROM. By doing that, we can compare which model between the standard model and
QROM provides better efficiency for each of our lattice cryptosystems.

Besides that, quantum adversaries may also have the ability to query quantumly to the
signing/encryption/decryption oracle. Advanced cryptosystems over lattices that resist
such quantum adversaries’ power should be worth focusing on further in later works.

161

Bibliography

[AB09] Shweta Agrawal and Dan Boneh. Identity-Based Encryption from Lattices in
the Standard Model. In Proceedings of the Fortieth Annual ACM Symposium

on Theory of Computing, 2009. (Cited on pages 10, 99, and 108.)

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient Lattice (H)IBE in
the Standard Model. In Henri Gilbert, editor, Advances in Cryptology – EU-

ROCRYPT 2010, volume 6110 LNCS, pages 553–572, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg. (Cited on pages 4, 5, 8, 10, 11, 13, 33,
34, 35, 108, 113, and 143.)

[ABB+17] Erdem Alkim, Nina Bindel, Johannes Buchmann, Özgür Dagdelen, Edward
Eaton, Gus Gutoski, Juliane Krämer, and Filip Pawlega. Revisiting Tesla
in the Quantum Random Oracle Model. Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 10346 LNCS:143–162, 2017. (Cited on page 160.)

[ABDo20] Erdem Alkim, Joppe W Bos, Leo Ducas, and others. Frodo{KEM}: Learn-
ing with Errors Key Encapsulation Algorithm Specifications And Supporting
Documentation, version 30 September, 2020. Technical report, 2020. (Cited
on pages 129 and 151.)

[AD97] Miklos Ajtai and Cynthia Dwork. A Public-Key Cryptosystem with Equiv-
alence. Proceedings of the twenty-ninth annual ACM symposium on Theory

of computing, pages 284–293, 1997. (Cited on page 3.)

[ADCM12] Michel Abdalla, Angelo De Caro, and Karina Mochetti. Lattice-based hier-
archical inner product encryption. Lecture Notes in Computer Science (in-

cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 7533 LNCS:121–138, 2012. (Cited on pages 14, 15, 16,
17, 133, 135, and 136.)

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan.
Functional encryption for inner product predicates from learning with errors.

162

Bibliography

Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 7073 LNCS:21–
40, 2011. (Cited on pages 57 and 157.)

[Ajt96] M Ajtai. Generating Hard Instances of Lattice Problems (Extended Ab-
stract). In Proceedings of the Twenty-eighth Annual ACM Symposium on

Theory of Computing, STOC ’96, pages 99–108, New York, NY, USA, 1996.
ACM. (Cited on pages 2, 3, 5, 10, 34, and 143.)

[Ajt99] Miklós Ajtai. Generating Hard Instances of the Short Basis Problem. In
Automata, Languages and Programming, 26th International Colloquium,

ICALP’99, Prague, Czech Republic, July 11-15, 1999, Proceedings, pages
1–9, 1999. (Cited on page 10.)

[And02] Ross Anderson. Two remarks on public key cryptology. Technical Report,
University of Cambridge, Computer Laboratory, 2002. (Cited on page 8.)

[AP09] Joël Alwen and Chris Peikert. Generating Shorter Bases for Hard Random
Lattices. In 26th International Symposium on Theoretical Aspects of Com-

puter Science, {STACS} 2009, February 26-28, 2009, Freiburg, Germany,

Proceedings, pages 75–86, 2009. (Cited on pages 34, 35, and 143.)

[AR00] Michel Abdalla and Leonid Reyzin. A New Forward-Secure Digital Signa-
ture Scheme. In Tatsuaki Okamoto, editor, Advances in Cryptology — ASI-

ACRYPT 2000, pages 116–129, Berlin, Heidelberg, 2000. Springer Berlin
Heidelberg. (Cited on page 8.)

[AS15] Jacob Alperin-Sheriff. Short signatures with short public keys from homo-
morphic trapdoor functions. In Lecture Notes in Computer Science (includ-

ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), volume 9020, pages 236–255, 2015. (Cited on page 4.)

[BB11] Dan Boneh and Xavier Boyen. Efficient Selective-ID Secure Identity Based
Encryption Without Random Oracles. Journal of Cryptography, 24(4:659–
693, 2011. (Cited on pages 13 and 129.)

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. Random oracles in a quantum world. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 7073 LNCS:41–69, 2011.
(Cited on page 160.)

163

Bibliography

[BEP+21] Pauline Bert, Gautier Eberhart, Lucas Prabel, Adeline Roux-Langlois, and
Mohamed Sabt. Implementation of Lattice Trapdoors on Modules and Ap-

plications, volume 12841 LNCS. 2021. (Cited on page 160.)

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Niko-
laenko, Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy.
Fully key-homomorphic encryption, arithmetic circuit ABE and compact
garbled circuits. In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 8441 LNCS, pages 533–556, 2014. (Cited on pages 5, 8, 12, 13, 23,
29, 33, 34, 35, 40, 41, 111, 112, 113, and 142.)

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully
Homomorphic Encryption Without Bootstrapping. In Proceedings of the 3rd

Innovations in Theoretical Computer Science Conference, ITCS ’12, pages
309–325, New York, NY, USA, 2012. ACM. (Cited on pages 4 and 5.)

[BH08] Dan Boneh and Michael Hamburg. Generalized identity based and broad-
cast encryption schemes. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-

formatics), 5350 LNCS:455–470, 2008. (Cited on pages 13, 14, 15, 54,
and 132.)

[BKM17] Dan Boneh, Sam Kim, and Hart Montgomery. Private Puncturable PRFs
from Standard Lattice Assumptions. In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017,
pages 415–445, Cham, 2017. Springer International Publishing. (Cited on
page 113.)

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. Classical Hardness of Learning with Errors. In Proceedings of the

Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13,
pages 575–584, New York, NY, USA, 2013. ACM. (Cited on pages 4, 5,
and 30.)

[BM99] Mihir Bellare and Sara K Miner. A Forward-Secure Digital Signature
Scheme. In Michael Wiener, editor, Advances in Cryptology — CRYPTO’

99, pages 431–448, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.
(Cited on pages 8, 9, 45, and 59.)

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-Key
model and a general forking lemma. Proceedings of the ACM Conference

164

Bibliography

on Computer and Communications Security, pages 390–399, 2006. (Cited
on page 66.)

[Boy10] Xavier Boyen. Lattice Mixing and Vanishing Trapdoors: A Framework for
Fully Secure Short Signatures and More. In Phong Q Nguyen and David
Pointcheval, editors, Public Key Cryptography – PKC 2010, pages 499–517,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. (Cited on page 4.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a
paradigm for designing efficient protocols. 1st ACM Conference on Com-

puter and Communications Security, (November 1993):62–73, 1993. (Cited
on pages 41 and 161.)

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee.
Private Constrained PRFs (and More) from LWE. Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 10677 LNCS:264–302, 2017. (Cited
on pages 5 and 143.)

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient Fully Homomorphic
Encryption from (Standard) LWE. In Proceedings of the 2011 IEEE 52Nd

Annual Symposium on Foundations of Computer Science, FOCS ’11, pages
97–106, Washington, DC, USA, 2011. IEEE Computer Society. (Cited on
page 5.)

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully Homomorphic Encryp-
tion from Ring-LWE and Security for Key Dependent Messages. In Phillip
Rogaway, editor, Advances in Cryptology – CRYPTO 2011, pages 505–524,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. (Cited on page 5.)

[BV16] Zvika Brakerski and Vinod Vaikuntanathan. Circuit-ABE from LWE: Un-
bounded Attributes and Semi-adaptive Security. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, volume
9816, pages 363–384, Berlin, Heidelberg, 2016. Springer. (Cited on pages 5,
13, 29, 30, and 143.)

[CGM19] Yilei Chen, Nicholas Genise, and Pratyay Mukherjee. Approximate Trap-
doors for Lattices and Smaller Hash-and-Sign Signatures. In Steven D Gal-
braith and Shiho Moriai, editors, Advances in Cryptology – ASIACRYPT

2019, pages 3–32, Cham, 2019. Springer International Publishing. (Cited on
page 160.)

165

Bibliography

[Cha83] David Chaum. Blind Signatures for Untraceable Payments. In David Chaum,
Ronald L Rivest, and Alan T Sherman, editors, Advances in Cryptology,
pages 199–203, Boston, MA, 1983. Springer US. (Cited on pages 8, 9, 43,
and 59.)

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A Forward-Secure Public-Key
Encryption Scheme. In Eli Biham, editor, Advances in Cryptology — EU-

ROCRYPT 2003, pages 255–271, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg. (Cited on pages 10, 88, and 111.)

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-Ciphertext Se-
curity from Identity-Based Encryption. In Advances in Cryptology -

{EUROCRYPT} 2004, International Conference on the Theory and Applica-

tions of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004,

Proceedings, pages 207–222, 2004. (Cited on page 13.)

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or
how to delegate a lattice basis. In Henri Gilbert, editor, Advances in Cryptol-

ogy – EUROCRYPT 2010. EUROCRYPT 2010. Lecture Notes in Computer

Science, volume 6110, pages 601–639, Berlin, Heidelberg, 2010. Springer-
Verlag. (Cited on pages 4, 5, 8, 10, 11, 34, 35, 113, and 143.)

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and
Daniel Wichs. Watermarking Cryptographic Capabilities. In Daniel Wichs
and Yishay Mansour, editors, STOC 2016: Proceedings of the forty-eighth

annual ACM symposium on Theory of Computing, pages 1115–1127, Cam-
bridge, MA,USA, 2016. (Cited on page 11.)

[CHYC05] Sherman S M Chow, Hui Lucas Chi Kwong, Siu-Ming Yiu, and K P Chow.
Forward-secure multisignature and blind signature schemes. Applied Math-

ematics and Computation, 168:895–908, 2005. (Cited on page 9.)

[CLLW14] Jie Chen, Hoonwei Lim, San Ling, and Huaxiong Wang. The relation and
transformation between hierarchical inner product encryption and spatial en-
cryption. Designs, Codes, and Cryptography, 71(2):347–364, 2014. (Cited
on pages 14, 15, 132, 133, 136, and 140.)

[Coh96] Henri Cohen. A Course in Computational Algebraic Number Theory. Num-
ber Graduate texts in mathematics, 138. Springer, Berlin, 1996. (Cited on
page 140.)

166

Bibliography

[Cop97] Don Coppersmith. Small solutions to polynomial equations, and low ex-
ponent RSA vulnerabilities. Journal of Cryptology, 10(4):233–260, 1997.
(Cited on page 2.)

[CPS95] Jan L Camenisch, Jean-Marc Piveteau, and Markus A Stadler. Blind signa-
tures based on the discrete logarithm problem. In Alfredo De Santis, editor,
Advances in Cryptology — EUROCRYPT’94, pages 428–432, Berlin, Hei-
delberg, 1995. Springer Berlin Heidelberg. (Cited on pages 8 and 9.)

[CW14] Jie Chen and Hoeteck Wee. Doubly spatial encryption from DBDH. Theo-

retical Computer Science, 543(C):79–89, 2014. (Cited on pages 14 and 15.)

[CZF12] Cheng Chen, Zhenfeng Zhang, and Dengguo Feng. Fully secure doubly-
spatial encryption under simple assumptions. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 7496 LNCS:253–263, 2012. (Cited on
pages 14 and 15.)

[DCK03] Dang Nguyen Duc, Jung Hee Cheon, and Kwangjo Kim. A Forward-Secure
Blind Signature Scheme Based on the Strong RSA Assumption. In Si-
han Qing, Dieter Gollmann, and Jianying Zhou, editors, Information and

Communications Security, pages 11–21, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg. (Cited on pages 8, 9, 45, and 46.)

[DF03] Yevgeniy Dodis and Nelly Fazio. Public Key Broadcast Encryption for
Stateless Receivers. In Joan Feigenbaum, editor, Digital Rights Manage-

ment, pages 61–80, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.
(Cited on pages 10 and 88.)

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security
of the Fiat-Shamir Transformation in the Quantum Random-Oracle Model.
In Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), volume 11693
LNCS, pages 356–383. Springer Verlag, 2019. (Cited on page 160.)

[DGJ18] David Derler, Kai Gellert, and Tibor Jager. Bloom Filter Encryption and
Applications to Efficient Forward-Secret 0-RTT Key Exchange. Cryptology
ePrint Archive, Report 2018/199, 2018. (Cited on pages 11 and 12.)

[DJSS18] David Derler, Tibor Jager, Daniel Slamanig, and Christoph Striecks. Bloom
filter encryption and applications to efficient forward-secret 0-RTT key ex-
change. In Jesper Buus Nielsen and Vincent Rijmen, editors, Lecture Notes

167

Bibliography

in Computer Science (including subseries Lecture Notes in Artificial Intel-

ligence and Lecture Notes in Bioinformatics), volume 10822 LNCS, pages
425–455, Cham, 2018. Springer International Publishing. (Cited on pages 11
and 12.)

[DKL+18] David Derler, Stephan Krenn, Thomas Lorünser, Sebastian Ramacher,
Daniel Slamanig, and Christoph Striecks. Revisiting Proxy Re-encryption:
Forward Secrecy, Improved Security, and Applications. In Michel Ab-
dalla and Ricardo Dahab, editors, Public-Key Cryptography – PKC 2018,
pages 219–250, Cham, 2018. Springer International Publishing. (Cited on
pages 11, 14, 17, and 152.)

[DM14] Léo Ducas and Daniele Micciancio. Improved Short Lattice Signatures in the
Standard Model. In Juan A Garay and Rosario Gennaro, editors, Advances

in Cryptology – CRYPTO 2014, pages 335–352, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg. (Cited on page 4.)

[DOW92] W Diffie, P C V Oorschot, and M J Wiener. Authentication and authenticated
key exchanges. Des Codes Crypt, 2:107–125, 1992. (Cited on page 8.)

[DRSS21] David Derler, Sebastian Ramacher, Daniel Slamanig, and Christoph
Striecks. Fine-Grained Forward Secrecy : Allow-List / Deny-List Encryp-
tion and Applications. In Financial Cryptography and Data Security 2021,
pages 1–22, 2021. (Cited on pages 14, 17, 134, and 152.)

[DSDR21] Priyanka Dutta, Willy Susilo, Dung Hoang Duong, and Partha Sarathi Roy.
Puncturable Identity-Based Encryption from Lattices. In Joonsang Baek and
Sushmita Ruj, editors, Australasian Conference on Information Security and

Privacy, pages 571–589, Cham, 2021. Springer International Publishing.
(Cited on page 134.)

[FS87] Amos Fiat and Adi Shamir. How To Prove Yourself: Practical Solutions to
Identification and Signature Problems. In Andrew M Odlyzko, editor, Ad-

vances in Cryptology — CRYPTO’ 86, pages 186–194, Berlin, Heidelberg,
1987. Springer Berlin Heidelberg. (Cited on page 68.)

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding
protocols. pages 416–426, 1990. (Cited on page 67.)

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In In Proc.

STOC, pages 169–178, 2009. (Cited on pages 4 and 5.)

168

Bibliography

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosys-
tems from lattice reduction problems. Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelligence and Lec-

ture Notes in Bioinformatics), 1294(k 2):112–131, 1997. (Cited on pages 3
and 5.)

[GHJL17] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 0-RTT Key Ex-
change with Full Forward Secrecy. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, pages 519–
548, Cham, 2017. Springer International Publishing. (Cited on pages 11
and 12.)

[GM15] M D Green and I Miers. Forward Secure Asynchronous Messaging from
Puncturable Encryption. In 2015 IEEE Symposium on Security and Privacy,
pages 305–320, 5 2015. (Cited on pages 11, 12, 14, 17, 53, 110, 131, 133,
134, and 152.)

[GPR+18] Kamil Doruk Gur, Yuriy Polyakov, Kurt Rohloff, Gerard W. Ryan, and Erkay
Savas. Implementation and evaluation of improved Gaussian sampling for
latice trapdoors. Proceedings of the ACM Conference on Computer and

Communications Security, pages 61–71, 2018. (Cited on page 160.)

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for Hard
Lattices and New Cryptographic Constructions. In Proceedings of the For-

tieth Annual ACM Symposium on Theory of Computing, STOC ’08, pages
197–206, New York, NY, USA, 2008. ACM. (Cited on pages 4, 5, 8, 10, 11,
13, 28, 29, 32, 34, 35, 49, 113, and 143.)

[GS02a] Craig Gentry and Alice Silverberg. Hierarchical ID-Based Cryptography. In
Yuliang Zheng, editor, Advances in Cryptology — ASIACRYPT 2002, pages
548–566, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. (Cited on
pages 14, 50, and 152.)

[GS02b] Craig Gentry and Mike Szydlo. Cryptanalysis of the Revised NTRU Sig-
nature Scheme. In Lars R Knudsen, editor, Advances in Cryptology — EU-

ROCRYPT 2002, pages 299–320, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg. (Cited on pages 9 and 88.)

[GSW13a] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic Encryption
from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based. In Ran Canetti and Juan A Garay, editors, Advances

169

Bibliography

in Cryptology – CRYPTO 2013, pages 75–92, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. (Cited on page 5.)

[GSW13b] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic Encryption
from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based. Cryptology ePrint Archive, Report 2013/340, 2013. (Cited
on page 33.)

[Gün90] Christoph G Günther. An Identity-Based Key-Exchange Protocol. In Jean-
Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryptology —

EUROCRYPT ’89, pages 29–37, Berlin, Heidelberg, 1990. Springer Berlin
Heidelberg. (Cited on page 8.)

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate en-
cryption for circuits from LWE. Lecture Notes in Computer Science (includ-

ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 9216(639554):503–523, 2015. (Cited on page 5.)

[Ham11] Mike Hamburg. Spatial Encryption. PhD. Thesis, (July), 2011. (Cited on
pages 13, 14, 15, 54, 132, and 158.)

[HKLN20] Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen. Lattice-
based blind signatures, revisited. In Lecture Notes in Computer Science (in-

cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), volume 12171 LNCS, pages 500–529. Springer, 2020.
(Cited on pages 61, 85, and 86.)

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryp-
tion. Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 2332:466–
481, 2002. (Cited on pages 9 and 88.)

[HM96] Shai Halevi and Silvio Micali. Practical and Provably-Secure Commitment
Schemes from Collision-Free Hashing. In Neal Koblitz, editor, Advances

in Cryptology — CRYPTO ’96, pages 201–215, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg. (Cited on page 69.)

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. NTRU: A ring-based
public key cryptosystem. In Joe P Buhler, editor, Algorithmic Number The-

ory, pages 267–288, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.
(Cited on page 3.)

170

Bibliography

[IR01] Gene Itkis and Leonid Reyzin. Forward-Secure Signatures with Optimal
Signing and Verifying. In Joe Kilian, editor, Advances in Cryptology —

CRYPTO 2001, pages 332–354, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg. (Cited on page 8.)

[JFC+10] Yu Jia, Kong Fanyu, Xiangguo Cheng, Hao Rong, Chen Yangkui, Li Xu-
liang, and Li Guowen. Forward-Secure Multisignature, Threshold Signature
and Blind Signature Schemes. Journal of Networks, 5, 2010. (Cited on
page 9.)

[Kil06] Eike Kiltz. {Chosen-Ciphertext Security from Tag-Based Encryption}. In
Shai Halevi and Tal Rabin, editors, Theory of Cryptography, pages 581–600,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. (Cited on page 13.)

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treat-
ment of fiat-shamir signatures in the quantum random-oracle model. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 10822 LNCS:552–586,
2018. (Cited on page 160.)

[KNYY20] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa.
Adaptively Secure Inner Product Encryption from LWE. Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics), 12493 LNCS:375–404, 2020.
(Cited on pages 5, 143, and 157.)

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption support-
ing disjunctions, polynomial equations, and inner products. Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intel-

ligence and Lecture Notes in Bioinformatics), 4965 LNCS(2006):146–162,
2008. (Cited on pages 14, 54, 57, and 136.)

[KTX08] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently Se-
cure Identification Schemes Based on the Worst-Case Hardness of Lattice
Problems. In Josef Pieprzyk, editor, Advances in Cryptology - ASIACRYPT

2008, pages 372–389, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
(Cited on page 69.)

[Kuc10] Marcin Kucharczyk. Blind Signatures in Electronic Voting Systems. In
Andrzej Kwiecień, Piotr Gaj, and Piotr Stera, editors, Computer Net-

works, pages 349–358, Berlin, Heidelberg, 2010. Springer Berlin Heidel-
berg. (Cited on pages 8 and 59.)

171

Bibliography

[LC05] Yeu-Pong Lai and Chin-Chen Chang. A simple forward secure blind sig-
nature scheme based on master keys and blind signatures. In 19th Interna-

tional Conference on Advanced Information Networking and Applications

(AINA’05) Volume 1 (AINA papers), volume 2, pages 139–144, 2005. (Cited
on page 9.)

[LDR+21] Huy Quoc Le, Dung Hoang Duong, Partha Sarathi Roy, Willy Susilo,
Kazuhide Fukushima, and Shinsaku Kiyomoto. Lattice-based Signcryption
with Equality Test in Standard Model. Computer Standards & Interfaces,
76(June 2021):103515, 2021. (Cited on page xvii.)

[LDS+20] Huy Quoc Le, Dung Hoang Duong, Willy Susilo, Ha Thanh Nguyen Tran,
Viet Cuong Trinh, Josef Pieprzyk, and Thomas Plantard. Lattice Blind Sig-
natures with Forward Security. In Joseph K Liu and Hui Cui, editors, In-

formation Security and Privacy, pages 3–22, Cham, 2020. Springer Interna-
tional Publishing. (Cited on pages xvi, 9, 18, 59, 85, and 86.)

[LDSP20] Huy Quoc Le, Dung Hoang Duong, Willy Susilo, and Josef Pieprzyk. Trap-

door Delegation and HIBE from Middle-Product LWE in Standard Model,
volume 2. Springer International Publishing, 2020. (Cited on pages xvi, 10,
11, 18, and 88.)

[LDSP22a] Huy Quoc Le, Dung Hoang Duong, Willy Susilo, and Josef Pieprzyk. Spatial
Encryption Revisited: From Delegatable Multiple Inner Product Encryption
and More. Cryptology ePrint Archive, Report 2022/095, 2022. (Cited on
page 19.)

[LDSP22b] Huy Quoc Le, Dung Hoang Duong, Willy Susilo, and Josef Pieprzyk. Spatial
Encryption Revisited: From Delegatable Multiple Inner Product Encryption
and More. In Atluri Vijayalakshmi, Roberto Di Pietro, Jensen Christian D.,
and Meng Weizhi, editors, Computer Security – ESORICS 2022, pages 283–
302, Cham, 2022. Springer International Publishing. (Cited on pages xvi,
19, and 132.)

[Len83] H. W. Lenstra. Integer Programming With a Fixed Number of Vari-
ables. Mathematics of Operations Research, 8(4):538–548, 1983. (Cited
on page 2.)

[LLL82] Arjen K Lenstra, Hendrik W Lenstra, and Laszlo Lovasz. Factoring Polyno-
mials with Rational Coefficients. In Mathematische Annalen, volume 261,
1982. (Cited on pages 2 and 5.)

172

Bibliography

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized Compact Knap-
sacks Are Collision Resistant. In Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener, editors, Automata, Languages and Program-

ming, pages 144–155, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
(Cited on page 31.)

[LM09] Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decod-
ing, unique shortest vectors, and the minimum distance problem. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 5677 LNCS:577–594,
2009. (Cited on page 4.)

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices
and Learning with Errors over Rings. In Advances in Cryptology - (EU-

ROCRYPT) 2010, 29th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Monaco / French Riviera, May

30 - June 3, 2010. Proceedings, pages 1–23, 2010. (Cited on pages 4 and 5.)

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Lecture Notes in Computer Science (including sub-

series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-

matics), volume 7881 LNCS, pages 35–54, 2013. (Cited on page 4.)

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Designs, Codes and Cryptography, 75(3):565–599, 6
2015. (Cited on pages 4 and 5.)

[LSK+19] Huy Quoc Le, Willy Susilo, Thanh Xuan Khuc, Minh Kim Bui, and
Dung Hoang Duong. A Blind Signature from Module Latices. In 2019

IEEE Conference on Dependable and Secure Computing, DSC 2019 - Pro-

ceedings, 2019. (Cited on pages xvii and 85.)

[LVD+21] Huy Quoc Le, Bay Vo, Dung Hoang Duong, Willy Susilo, Ngoc T. Le,
Kazuhide Fukushima, and Shinsaku Kiyomoto. Identity-Based Linkable
Ring Signatures From Lattices. IEEE Access, 9:84739–84755, 2021. (Cited
on page xvi.)

[LVV19] Alex Lombardi, Vinod Vaikuntanathan, and Thuy Duong Vuong. Lattice
Trapdoors and IBE from Middle-Product LWE. In Dennis Hofheinz and
Alon Rosen, editors, Theory of Cryptography, pages 24–54, Cham, 2019.
Springer International Publishing. (Cited on pages xiii, 4, 5, 8, 10, 11, 23,
31, 32, 34, 36, 37, 38, 39, 88, 89, 90, and 99.)

173

Bibliography

[Lyu08a] Vadim Lyubashevsky. Lattice-based identification schemes secure under ac-
tive attacks. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4939
LNCS:162–179, 2008. (Cited on page 60.)

[Lyu08b] Vadim Lyubashevsky. Towards practical lattice-based cryptography. PhD
thesis, UC San Diego, 2008. (Cited on pages 67 and 68.)

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with Aborts: Applications to Lattice and
Factoring-Based Signatures. In Advances in Cryptology - {ASIACRYPT}

2009, 15th International Conference on the Theory and Application of Cryp-

tology and Information Security, Tokyo, Japan, December 6-10, 2009. Pro-

ceedings, pages 598–616, 2009. (Cited on pages 4 and 68.)

[Lyu11] Vadim Lyubashevsky. Lattice Signatures Without Trapdoors. Technical re-
port, Cryptology ePrint Archive, Paper 2011/537, 2011. (Cited on pages 78,
83, and 85.)

[Lyu12] Vadim Lyubashevsky. Lattice Signatures without Trapdoors. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EU-

ROCRYPT 2012, pages 738–755, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg. (Cited on pages 4, 29, 32, 63, and 78.)

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting Post-quantum Fiat-Shamir. In
Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), volume 11693
LNCS, pages 326–355. Springer Verlag, 2019. (Cited on page 160.)

[Mic01] Daniele Micciancio. Improving Lattice based cryptosystems using the Her-
mite Normal Form. In Joseph Silverman, editor, Cryptography and Lat-

tices Conference — CaLC 2001, volume 2146 of Lecture Notes in Computer

Science, pages 126–145, Providence, Rhode Island, 2001. Springer-Verlag.
(Cited on page 3.)

[Mic07] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and
efficient one-way functions. Computational Complexity, 16(4):365–411,
2007. (Cited on page 3.)

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for Lattices: Simpler,
Tighter, Faster, Smaller. In David Pointcheval and Thomas Johansson, edi-
tors, Advances in Cryptology – EUROCRYPT 2012, pages 700–718, Berlin,

174

Bibliography

Heidelberg, 2012. Springer Berlin Heidelberg. (Cited on pages 4, 5, 10, 11,
33, 34, 35, 36, 88, 90, 112, and 143.)

[MR04] Daniele Micciancio and Oded Regev. Worst-Case to Average-Case Reduc-
tions Based on Gaussian Measures. In 45th Symposium on Foundations of

Computer Science (FOCS) 2004) 17-19 October 2004, Rome, Italy, Pro-

ceedings, pages 372–381, 2004. (Cited on pages 3, 5, 26, 27, 28, and 29.)

[NIS16] NIST. NIST Post-Quantum Cryptography Standardization.
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-

cryptography-standardization., 2016. (Cited on page 1.)

[OT09] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryp-
tion for inner-products. In Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-

formatics), volume 5912 LNCS, pages 214–231, 2009. (Cited on pages 14
and 132.)

[Pan01] Victor Y Pan. Structured Matrices and Polynomials: Unified Superfast Al-

gorithms. Springer-Verlag, Berlin, Heidelberg, 2001. (Cited on page 90.)

[Pei09] Chris Peikert. Bonsai Trees (or, Arboriculture in Lattice-Based Cryptogra-
phy). Cryptology ePrint Archive, Report 2009/359, 2009. (Cited on pages 4
and 30.)

[Pei16] Chris Peikert. A Decade of Lattice Cryptography. Found. Trends Theor.

Comput. Sci., 10(4):283–424, 3 2016. (Cited on pages 2 and 6.)

[PNXW18] T V X Phuong, R Ning, C Xin, and H Wu. Puncturable Attribute-Based En-
cryption for Secure Data Delivery in Internet of Things. In IEEE INFOCOM

2018 - IEEE Conference on Computer Communications, pages 1511–1519,
4 2018. (Cited on page 131.)

[PS96] David Pointcheval and Jacques Stern. Provably secure blind signature
schemes. In Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in

Cryptology — ASIACRYPT ’96, pages 252–265, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg. (Cited on pages 8, 9, and 59.)

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital sig-
natures and blind signatures. Journal of Cryptology, 13(3):361–396, 2000.
(Cited on pages 9, 65, and 85.)

175

Bibliography

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for
efficient and composable oblivious transfer. Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelligence and Lec-

ture Notes in Bioinformatics), 5157 LNCS(2006):554–571, 2008. (Cited on
page 4.)

[Reg03] Oded Regev. New lattice based cryptographic constructions. Conference

Proceedings of the Annual ACM Symposium on Theory of Computing, pages
407–416, 2003. (Cited on page 3.)

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Proceedings of the 37th Annual {ACM} Symposium on

Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 84–93,
2005. (Cited on pages 3, 4, and 5.)

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM, 56(6):84–93, 9 2009. (Cited on page 30.)

[RSSS17] Miruna Ros, ca, Amin Sakzad, Damien Stehlé, and Ron Steinfeld. Middle-
Product Learning with Errors. In Jonathan Katz and Hovav Shacham, edi-
tors, Advances in Cryptology – CRYPTO 2017, pages 283–297, Cham, 2017.
Springer International Publishing. (Cited on pages 4, 5, and 31.)

[Rüc10] Markus Rückert. Lattice-based blind signatures. Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 6477 LNCS:413–430, 2010. (Cited
on pages 9, 60, 61, 69, and 85.)

[SCJ+16] Smith-Tone, Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody,
Rene Peralta Daniel, Ray Perlner, and Daniel Smith-Tone. Report on Post-
Quantum Cryptography. Technical report, National Institute of Standards
and Technology, 2016. (Cited on page 1.)

[SDL20] Willy Susilo, Dung Hoang Duong, and Huy Quoc Le. Efficient Post-
quantum Identity-based Encryption with Equality Test. In 2020 IEEE 26th

International Conference on Parallel and Distributed Systems (ICPADS),
pages 633–640, 2020. (Cited on page xvii.)

[SDLP20] Willy Susilo, Dung Hoang Duong, Huy Quoc Le, and Josef Pieprzyk.
Puncturable encryption: A generic construction from delegatable fully key-
homomorphic encryption. Lecture Notes in Computer Science (including

176

Bibliography

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-

formatics), 12309 LNCS:107–127, 2020. (Cited on pages xvi, 12, 18, 110,
and 111.)

[Sha85] Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In
George Robert Blakley and David Chaum, editors, Advances in Cryptology,
volume 196 LNCS, pages 47–53, Berlin, Heidelberg, 1985. Springer Berlin
Heidelberg. (Cited on pages 9, 14, 50, 88, and 152.)

[Sho02] P.W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th Annual Symposium on Foundations of Com-

puter Science, pages 124–134, 11 2002. (Cited on page 1.)

[Sim10] Denis Simon. Selected applications of LLL in number theory. Information

Security and Cryptography, 10:265–282, 2010. (Cited on page 2.)

[SSS+20] Shi Feng Sun, Amin Sakzad, Ron Steinfeld, Joseph K. Liu, and Dawu Gu.
Public-Key Puncturable Encryption: Modular and Compact Constructions.
Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-

tificial Intelligence and Lecture Notes in Bioinformatics), 12110 LNCS:309–
338, 2020. (Cited on pages 11 and 12.)

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient
Public Key Encryption Based on Ideal Lattices. In Advances in Cryptology

- ASIACRYPT 2009, 15th International Conference on the Theory and Ap-

plication of Cryptology and Information Security, Tokyo, Japan, December

6-10, 2009. Proceedings, pages 617–635, 2009. (Cited on pages 4, 5, 31,
and 32.)

[Tsa19] Rotem Tsabary. Fully Secure Attribute-Based Encryption for t-CNF from

LWE, volume 11692 LNCS. Springer International Publishing, 2019. (Cited
on pages 5, 143, and 144.)

[WCW+19] Jianghong Wei, Xiaofeng Chen, Jianfeng Wang, Xuexian Hu, and Jianfeng
Ma. Forward-Secure Puncturable Identity-Based Encryption for Securing
Cloud Emails. In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 11736 LNCS, pages 134–150, 2019. (Cited on page 14.)

[Xag15] Keita Xagawa. Improved (Hierarchical) Inner-Product Encryption from
Lattices. Full version of the paper appeared at PKC’13, pages 235–252,
2015. (Cited on pages 14, 15, 16, 17, 133, 135, and 136.)

177

Bibliography

[YFDL04] Danfeng Yao, Nelly Fazio, Yevgeniy Dodis, and Anna Lysyanskaya. ID-
Based Encryption for Complex Hierarchies with Applications to Forward
Security and Broadcast Encryption. In Proceedings of the 11th ACM Confer-

ence on Computer and Communications Security, CCS ’04, page 354–363,
New York, NY, USA, 2004. Association for Computing Machinery. (Cited
on pages 10 and 88.)

[YZ21] Takashi Yamakawa and Mark Zhandry. Classical vs Quantum Random Or-
acles. In Advances in Cryptology – EUROCRYPT 2021: 40th Annual Inter-

national Conference on the Theory and Applications of Cryptographic Tech-

niques, Zagreb, Croatia, October 17–21, 2021, Proceedings, Part II, pages
568–597, Berlin, Heidelberg, 2021. Springer-Verlag. (Cited on page 160.)

[ZC09] Muxin Zhou and Zhenfu Cao. Spatial encryption under simpler assumption.
Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 5848 LNCS:19–
31, 2009. (Cited on pages 14 and 15.)

178

	Contributions to Lattice–based Cryptography
	Recommended Citation

	Abstract
	Acknowledgements
	List of Abbreviations
	Table of Contents
	List of Figures
	List of Tables
	List of Publications
	Introduction
	Lattice–based Cryptography
	Contributions and Organisation
	Contributions
	Organisation of the Thesis

	Preliminaries
	Notation
	Background of Lattices
	Lattices
	Lattice Worst–case Problems

	Gaussian Distributions over Lattices
	Hardness Assumptions
	Learning with Errors Problem
	Degree–parameterised Middle–product Learning with Errors
	Shortest Integer Solution Problem

	Fundamental Tools
	Randomness Extraction
	The Gadget Matrix
	Lattice Trapdoors
	Lattice Homomorphic Evaluations

	Security Proof Models
	Cryptographic Primitives
	Digital Signature
	Blind Signature
	Public–key Encryption
	Hierarchical Identity–based Encryption
	Puncturable Encryption
	Spatial Encryption

	Summary

	Forward–secure Blind Signatures over Lattices
	Overview
	Related Background
	Rejection Sampling
	Hash Functions
	Rewinding, Oracle Replay Attack and Forking Lemma
	Witness Indistinguishability
	Fiat–Shamir with Aborts
	Commitment Functions

	Binary Tree Structure for Times
	The FSBS Construction
	The Construction
	Correctness
	Security Analysis
	Setting Parameters

	Discussion on the Validity of the Proof of Theorem 3.4.3
	Summary

	Hierarchical IBE from Degree–parameterised Middle–product LWE
	Overview
	Main Technique: Delegation for LVV19 Trapdoor
	DMPLWE–based HIBE in Standard Model
	The Construction
	Correctness
	Security Analysis
	Setting Parameters

	Summary

	Puncturable Encryptions over Lattices
	Overview
	Delegatable Fully Key–homomorphic Encryption
	Syntax
	Correctness
	Security Notions

	Generic PE Construction from DFKHE
	The Generic Construction
	Correctness
	Security

	DFKHE Construction over Lattices
	The Construction
	Correctness
	Security Analysis
	Setting Parameters

	Lattice–based PE Construction from DFKHE
	Summary

	Spatial Encryption over Lattices and More
	Overview
	Delegatable Multiple Inner Product Encryption
	Syntax
	Correctness
	Security Notions

	Generic SE Construction from DMIPE
	Selected Facts
	The Generic Construction
	Correctness
	Security Analysis

	DMIPE Construction over Lattices
	Modified Lattice Trapdoors
	Lattice Homomorphic Evaluations for Inner Product Functions
	The Construction
	Correctness
	Security Analysis
	Setting Parameters

	Constructing DMIPE from SE
	Allow–/Deny–list Encryption from Spatial Encryption
	Framework of ADE
	Transforming sADE and iADE to SE

	Summary

	Conclusion and Future Work
	Summary of the Thesis
	Future Work

	Bibliography

