12,275 research outputs found

    Modular Self-Reconfigurable Robot Systems

    Get PDF
    The field of modular self-reconfigurable robotic systems addresses the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology. Modular self-reconfigurable systems have the promise of making significant technological advances to the field of robotics in general. Their promise of high versatility, high value, and high robustness may lead to a radical change in automation. Currently, a number of researchers have been addressing many of the challenges. While some progress has been made, it is clear that many challenges still exist. By illustrating several of the outstanding issues as grand challenges that have been collaboratively written by a large number of researchers in this field, this article has shown several of the key directions for the future of this growing fiel

    A multi-agent based evolutionary algorithm in non-stationary environments

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2008 IEEEIn this paper, a multi-agent based evolutionary algorithm (MAEA) is introduced to solve dynamic optimization problems. The agents simulate living organism features and co-evolve to find optimum. All agents live in a lattice like environment, where each agent is fixed on a lattice point. In order to increase the energy, agents can compete with their neighbors and can also acquire knowledge based on statistic information. In order to maintain the diversity of the population, the random immigrants and adaptive primal dual mapping schemes are used. Simulation experiments on a set of dynamic benchmark problems show that MAEA can obtain a better performance in non-stationary environments in comparison with several peer genetic algorithms.This work was suported by the Key Program of National Natural Science Foundation of China under Grant No. 70431003, the Science Fund for Creative Research Group of the National Natural Science Foundation of China under Grant No. 60521003, the National Science and Technology Support Plan of China under Grant No. 2006BAH02A09, and the Engineering and Physical Sciences Research Council of the United Kingdom under Grant No. EP/E060722/1

    Exploiting Environmental Computation in a Multi-Agent Model of Slime Mould

    Full text link
    Very simple organisms, such as the single-celled amoeboid slime mould Physarum polycephalum possess no neural tissue yet, despite this, are known to exhibit complex biological and computational behaviour. Given such limited resources, can environmental stimuli play a role in generating the complexity of slime mould behaviour? We use a multi-agent collective model of slime mould to explore a two-way mechanism where the collective behaviour is influenced by simulated chemical concentration gradient fields and, in turn, this behaviour alters the spatial pattern of the concentration gradients. This simple mechanism yields complex behaviour amid the dynamically changing gradient profiles and suggests how the apparently intelligent response of the slime mould could possibly be due to outsourcing of computation to the environment.Comment: 2014 ABBII International Symposium on Artificial, Biological and Bio-Inspired Intelligence, 27-28th September, Rhodes, Greec
    corecore