21 research outputs found

    Passive cascaded-lattice structures for low-sensitivity FIR filter design, with applications to filter banks

    Get PDF
    A class of nonrecursive cascaded-lattice structures is derived, for the implementation of finite-impulse response (FIR) digital filters. The building blocks are lossless and the transfer function can be implemented as a sequence of planar rotations. The structures can be used for the synthesis of any scalar FIR transfer function H(z) with no restriction on the location of zeros; at the same time, all the lattice coefficients have magnitude bounded above by unity. The structures have excellent passband sensitivity because of inherent passivity, and are automatically internally scaled, in an L_2 sense. The ideas are also extended for the realization of a bank of MFIR transfer functions as a cascaded lattice. Applications of these structures in subband coding and in multirate signal processing are outlined. Numerical design examples are included

    The role of lossless systems in modern digital signal processing: a tutorial

    Get PDF
    A self-contained discussion of discrete-time lossless systems and their properties and relevance in digital signal processing is presented. The basic concept of losslessness is introduced, and several algebraic properties of lossless systems are studied. An understanding of these properties is crucial in order to exploit the rich usefulness of lossless systems in digital signal processing. Since lossless systems typically have many input and output terminals, a brief review of multiinput multioutput systems is included. The most general form of a rational lossless transfer matrix is presented along with synthesis procedures for the FIR (finite impulse response) case. Some applications of lossless systems in signal processing are presented

    Cyclic LTI systems in digital signal processing

    Get PDF
    Cyclic signal processing refers to situations where all the time indices are interpreted modulo some integer L. In such cases, the frequency domain is defined as a uniform discrete grid (as in L-point DFT). This offers more freedom in theoretical as well as design aspects. While circular convolution has been the centerpiece of many algorithms in signal processing for decades, such freedom, especially from the viewpoint of linear system theory, has not been studied in the past. In this paper, we introduce the fundamentals of cyclic multirate systems and filter banks, presenting several important differences between the cyclic and noncyclic cases. Cyclic systems with allpass and paraunitary properties are studied. The paraunitary interpolation problem is introduced, and it is shown that the interpolation does not always succeed. State-space descriptions of cyclic LTI systems are introduced, and the notions of reachability and observability of state equations are revisited. It is shown that unlike in traditional linear systems, these two notions are not related to the system minimality in a simple way. Throughout the paper, a number of open problems are pointed out from the perspective of the signal processor as well as the system theorist

    Factorability of lossless time-varying filters and filter banks

    Get PDF
    We study the factorability of linear time-varying (LTV) lossless filters and filter banks. We give a complete characterization of all, degree-one lossless LTV systems and show that all degree-one lossless systems can be decomposed into a time-dependent unitary matrix followed by a lossless dyadic-based LTV system. The lossless dyadic-based system has several properties that make it useful in the factorization of lossless LTV systems. The traditional lapped orthogonal transform (LOT) is also generalized to the LTV case. We identify two classes of TVLOTs, namely, the invertible inverse lossless (IIL) and noninvertible inverse lossless (NIL) TVLOTs. The minimum number of delays required to implement a TVLOT is shown to be a nondecreasing function of time, and it is a constant if and only if the TVLOT is IIL. We also show that all IIL TVLOTs can be factorized uniquely into the proposed degree-one lossless building block. The factorization is minimal in terms of the delay elements. For NIL TVLOTs, there are factorable and unfactorable examples. Both necessary and sufficient conditions for the factorability of lossless LTV systems are given. We also introduce the concept of strong eternal reachability (SER) and strong eternal observability (SEO) of LTV systems. The SER and SEO of an implementation of LTV systems imply the minimality of the structure. Using these concepts, we are able to show that the cascade structure for a factorable IIL LTV system is minimal. That implies that if a IIL LTV system is factorable in terms of the lossless dyadic-based building blocks, the factorization is minimal in terms of delays as well as the number of building blocks. We also prove the BIBO stability of the LTV normalized IIR lattice

    Generalized linear-in-parameter models : theory and audio signal processing applications

    Get PDF
    This thesis presents a mathematically oriented perspective to some basic concepts of digital signal processing. A general framework for the development of alternative signal and system representations is attained by defining a generalized linear-in-parameter model (GLM) configuration. The GLM provides a direct view into the origins of many familiar methods in signal processing, implying a variety of generalizations, and it serves as a natural introduction to rational orthonormal model structures. In particular, the conventional division between finite impulse response (FIR) and infinite impulse response (IIR) filtering methods is reconsidered. The latter part of the thesis consists of audio oriented case studies, including loudspeaker equalization, musical instrument body modeling, and room response modeling. The proposed collection of IIR filter design techniques is submitted to challenging modeling tasks. The most important practical contribution of this thesis is the introduction of a procedure for the optimization of rational orthonormal filter structures, called the BU-method. More generally, the BU-method and its variants, including the (complex) warped extension, the (C)WBU-method, can be consider as entirely new IIR filter design strategies.reviewe

    Factorability of lossless time-varying filters and filter banks

    Full text link

    Tomorrow's Metamaterials: Manipulation of Electromagnetic Waves in Space, Time and Spacetime

    Full text link
    Metamaterials represent one of the most vibrant fields of modern science and technology. They are generally dispersive structures in the direct and reciprocal space and time domains. Upon this consideration, I overview here a number of metamaterial innovations developed by colleagues and myself in the holistic framework of space and time dispersion engineering. Moreover, I provide some thoughts regarding the future perspectives of the area

    A System Approach to the Design of Multirate Filter Banks.

    Get PDF
    This dissertation studies the design of multirate filter banks by adopting a so-called system approach. The design issue of Johnston\u27s method is first investigated in which an explicit expression of the reconstruction error is derived using Lyapunov stability theory, and new convergent iterative algorithms are proposed through non-linear optimization. The results are extended to the two-dimensional filter banks. The design issue of more general multirate filter banks is also investigated through model matching method. Using standard results from modern control theory, new design algorithms are developed which minimize the reconstruction error while completely eliminating the aliasing error. State-space realizations, inner-outer factorizations, and optimal Hankel norm approximation are used to reduce the complexity of computation and improve the accuracy of the proposed design algorithms

    Filter Bank Multicarrier Modulation for Spectrally Agile Waveform Design

    Get PDF
    In recent years the demand for spectrum has been steadily growing. With the limited amount of spectrum available, Spectrum Pooling has gained immense popularity. As a result of various studies, it has been established that most of the licensed spectrum remains underutilized. Spectrum Pooling or spectrum sharing concentrates on making the most of these whitespaces in the licensed spectrum. These unused parts of the spectrum are usually available in chunks. A secondary user looking to utilize these chunks needs a device capable of transmitting over distributed frequencies, while not interfering with the primary user. Such a process is known as Dynamic Spectrum Access (DSA) and a device capable of it is known as Cognitive Radio. In such a scenario, multicarrier communication that transmits data across the channel in several frequency subcarriers at a lower data rate has gained prominence. Its appeal lies in the fact that it combats frequency selective fading. Two methods for implementing multicarrier modulation are non-contiguous orthogonal frequency division multiplexing (NCOFDM)and filter bank multicarrier modulation (FBMC). This thesis aims to implement a novel FBMC transmitter using software defined radio (SDR) with modulated filters based on a lowpass prototype. FBMCs employ two sets of bandpass filters called analysis and synthesis filters, one at the transmitter and the other at the receiver, in order to filter the collection of subcarriers being transmitted simultaneously in parallel frequencies. The novel aspect of this research is that a wireless transmitter based on non-contiguous FBMC is being used to design spectrally agile waveforms for dynamic spectrum access as opposed to the more popular NC-OFDM. Better spectral containment and bandwidth efficiency, combined with lack of cyclic prefix processing, makes it a viable alternative for NC-OFDM. The main aim of this thesis is to prove that FBMC can be practically implemented for wireless communications. The practicality of the method is tested by transmitting the FBMC signals real time by using the Simulink environment and USRP2 hardware modules

    Signal processing with optical delay line filters for high bit rate transmission systems

    Get PDF
    In den letzten Jahrzehnten ist das globale Kommunikationssystem in einem immer größerem Maße ein integraler Bestandteil des täglichen Lebens geworden. Optische Kommunikationssysteme sind die technologische Basis für diese Entwicklung. Nur Fasern können die riesige benötigte Bandbreite bereitstellen. Während für die ersten optischen Übertragungssysteme die Faser als "flacher" Kanal betrachtet werden konnte, machen Wellenlängenmultiplex und steigende Übertragungsraten die Einbeziehung von immer mehr physikalischen Effekten notwendig. Bei einer Erhöhung der Kanaldatenrate auf 40 Gbit/s und mehr ist die statische Kompensation von chromatischer Dispersion nicht mehr ausreichend. Die intrinsische Toleranz der Modulationsformate gegenüber Dispersion nimmt quadratisch mit der Symbolrate ab. Daher können beispielsweise durch Umwelteinflüsse hervorgerufene Dispersionsschwankungen die Dispersionstoleranz der Modulationsformate überschreiten. Dies macht eine adaptive Dispersionskompensation notwendig, was gleichzeitig auch Dispersionsmonitoring erfordert, um den adaptiven Kompensator steuern zu können. Vorhandene Links können mit Restdispersionskompensatoren ausgestattet werden, um sie für Hochgeschwindigkeitsübertragungen zu ertüchtigen. Optische Kompensationstechniken sind unabhängig von der Kanaldatenrate. Daher wird eine Erhöhung der Datenrate problemlos unterstützt. Optische Kompensatoren können WDM-fähig gebaut werden, um mehrere Kanäle auf einmal zu entzerren. Das Buch beschäftigt sich mit optischen Delay-Line-Filtern als eine Klasse von optischen Kompensatoren. Die Filtersynthese von solchen Delay-Line-Filtern wird behandelt. Der Zusammenhang zwischen optischen Filtern und digitalen FIR-Filtern mit komplexen Koeffizienten im Zusammenhang mit kohärenter Detektion wird aufgezeigt. Iterative und analytische Methoden, die die Koeffizienten für dispersions- und dispersions-slope-kompensierende Filter produzieren, werden untersucht. Genauso wichtig wie die Kompensation von Dispersion ist die Schätzung der Dispersion eines Signals. Mit Delay-Line-Filtern können die Restseitenbänder eines Signals genutzt werden, um die Dispersion zu messen. Alternativ kann nichtlineare Detektion angewandt werden, um die Pulsverbreiterung, die hauptsächlich von der Dispersion herrührt, zu schätzen. Mit gemeinsamer Dispersionskompensation und Dispersionsmonitoring können Dispersionskompensatoren auf die Signalverzerrungen eingestellt werden. Spezielle Eigenschaften der Filter zusammen mit der analytischen Beschreibung können genutzt werden, um schnelle und zuverlässige Steueralgorithmen zur Filtereinstellung bereitzustellen. Schließlich wurden Prototypen derartiger faseroptischen Kompensatoren von chromatischer Dispersion und Dispersions-Slope hergestellt und charakterisiert. Die Einheiten und ihr Systemverhalten wird gezeigt und diskutiert.Over the course of the past decades, the global communication system has become a central part of people's everyday lives. Optical communication systems are the technological basis for this development. Only fibers can provide the huge bandwidth that is required. Where the fiber could be regarded as a flat channel for the first optical transmission systems wavelength multiplexing and increasing line rates made it necessary to take more and more physical effects into account. When the line rates are increased to 40 Gbit/s and higher static chromatic dispersion compensation is not enough. The modulation format's intrinsic tolerance for dispersion decreases quadratically with the symbol rate. Thus, environmentally induced chromatic dispersion fluctuations may exceed the dispersion tolerance of the modulation formats. This makes an adaptive dispersion compensation necessary implying also the need for a monitoring scheme to steer the adaptive compensator. Legacy links that are CD-compensated by DCFs can be upgraded with residual dispersion compensators to make them ready for high speed transmission. Optical compensation is independent from the line rate. Hence, increasing the data rates is inherently supported. Optical compensators can be built WDM ready compensating multiple channels at once. The book deals with optical delay line filters as one class of optical compensators. The filter synthesis of such delay line filters is addressed. The connection between optical filters and digital FIR filters with complex coefficients that are used in conjunction with coherent detection could be shown. Iterative and analytical methods that produce the coefficients for dispersion (and also dispersion slope) compensating filters are researched. As important as the compensation of dispersion is the estimation of the dispersion of a signal. Using delay line filters, the vestigial sidebands of a signal can be used to measure the dispersion. Alternatively, nonlinear detection can be used to estimate the pulse broadening which is caused mainly by dispersion. With dispersion compensation and dispersion monitoring, dispersion compensators can be adapted to the signal's impairment. Special properties of the filter in conjunction with an analytical description can be used to provide a fast and reliable control algorithm for setting the filter to a given dispersion and centering it on a signal. Finally, prototypes of such fiber optic chromatic dispersion and dispersion slope compensation filters were manufactured and characterized. The device and system characterization of the prototypes is presented and discussed
    corecore