5 research outputs found

    Fractal model and Lattice Boltzmann Method for Characterization of Non-Darcy Flow in Rough Fractures.

    Get PDF
    The irregular morphology of single rock fracture significantly influences subsurface fluid flow and gives rise to a complex and unsteady flow state that typically cannot be appropriately described using simple laws. Yet the fluid flow in rough fractures of underground rock is poorly understood. Here we present a numerical method and experimental measurements to probe the effect of fracture roughness on the properties of fluid flow in fractured rock. We develop a series of fracture models with various degrees of roughness characterized by fractal dimensions that are based on the Weierstrass-Mandelbrot fractal function. The Lattice Boltzmann Method (LBM), a discrete numerical algorithm, is employed for characterizing the complex unsteady non-Darcy flow through the single rough fractures and validated by experimental observations under the same conditions. Comparison indicates that the LBM effectively characterizes the unsteady non-Darcy flow in single rough fractures. Our LBM model predicts experimental measurements of unsteady fluid flow through single rough fractures with great satisfactory, but significant deviation is obtained from the conventional cubic law, showing the superiority of LBM models of single rough fractures

    A feature extracting and meshing approach for sheet-like structures in rocks

    Get PDF
    Meshing rock samples with sheet-like structures based their CT scanned volumetric images, is a crucial component for both visualization and numerical simulation. In rocks, fractures and veins commonly exist in the form of sheet-like objects (e.g. thin layers and distinct flat shapes), which are much smaller than the rock mass dimensions. The representations of such objects require high-resolution 3D images with a huge dataset, which are difficult and even impossible to visualize or analyze by numerical methods. Therefore, we develop a microscopic image based meshing approach to extract major sheet-like structures and then preserve their major geometric features at the macroscale. This is achieved by the following four major steps: (1) extracting major objects through extending, separation and recovering operations based on the CT scanned data/microscopic images; (2) simplifying and constructing a simplified centroidal Voronoi diagram on the extracted structures; (3) generating triangular meshes to represent the structure; (4) generating volume tetrahedron meshes constrained with the above surface mesh as the internal surfaces. Moreover, a shape similarity approach is proposed to measure and evaluate how similar the generated mesh models to the original rock samples. It is applied as criteria for further mesh generation to better describe the rock features with fewer elements. Finally, a practical CT scanned rock is taken as an application example to demonstrate the usefulness and capability of the proposed approach

    Numerical Simulation on Hydromechanical Coupling in Porous Media Adopting Three-Dimensional Pore-Scale Model

    Get PDF
    A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson’s ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view

    Lattice Boltzmann modeling and evaluation of fluid flow in heterogeneous porous media involving multiple matrix constituents

    No full text
    Geomaterials are typical heterogeneous porous media involving multiple types of matrix constituents which dominate the subsurface flow behavior. An improved lattice Boltzmann method (LBM) approach is developed for analyzing the detailed flow characteristics through multiple matrix constituents, investigating sample size effects on the permeability variation, and evaluating characteristic information at the representative elementary volume (REV) scale for the macroscale reference. Applications are conducted in both 2D and 3D to numerically investigate the impact of geometric topology and matrix property on the detailed velocity field, and effects of sample sizes on the permeability for evaluating effective REV scale fluid flow parameters. The simulation results demonstrate that the improved LBM approach is able to quantitatively describe and simulate complex fluid flow through multiple-matrix constructed heterogeneous porous media, which provides more realistic simulation results for up-scaled research and engineering
    corecore