365 research outputs found

    Improving speaker turn embedding by crossmodal transfer learning from face embedding

    Full text link
    Learning speaker turn embeddings has shown considerable improvement in situations where conventional speaker modeling approaches fail. However, this improvement is relatively limited when compared to the gain observed in face embedding learning, which has been proven very successful for face verification and clustering tasks. Assuming that face and voices from the same identities share some latent properties (like age, gender, ethnicity), we propose three transfer learning approaches to leverage the knowledge from the face domain (learned from thousands of images and identities) for tasks in the speaker domain. These approaches, namely target embedding transfer, relative distance transfer, and clustering structure transfer, utilize the structure of the source face embedding space at different granularities to regularize the target speaker turn embedding space as optimizing terms. Our methods are evaluated on two public broadcast corpora and yield promising advances over competitive baselines in verification and audio clustering tasks, especially when dealing with short speaker utterances. The analysis of the results also gives insight into characteristics of the embedding spaces and shows their potential applications

    Data-Driven Representation Learning in Multimodal Feature Fusion

    Get PDF
    abstract: Modern machine learning systems leverage data and features from multiple modalities to gain more predictive power. In most scenarios, the modalities are vastly different and the acquired data are heterogeneous in nature. Consequently, building highly effective fusion algorithms is at the core to achieve improved model robustness and inferencing performance. This dissertation focuses on the representation learning approaches as the fusion strategy. Specifically, the objective is to learn the shared latent representation which jointly exploit the structural information encoded in all modalities, such that a straightforward learning model can be adopted to obtain the prediction. We first consider sensor fusion, a typical multimodal fusion problem critical to building a pervasive computing platform. A systematic fusion technique is described to support both multiple sensors and descriptors for activity recognition. Targeted to learn the optimal combination of kernels, Multiple Kernel Learning (MKL) algorithms have been successfully applied to numerous fusion problems in computer vision etc. Utilizing the MKL formulation, next we describe an auto-context algorithm for learning image context via the fusion with low-level descriptors. Furthermore, a principled fusion algorithm using deep learning to optimize kernel machines is developed. By bridging deep architectures with kernel optimization, this approach leverages the benefits of both paradigms and is applied to a wide variety of fusion problems. In many real-world applications, the modalities exhibit highly specific data structures, such as time sequences and graphs, and consequently, special design of the learning architecture is needed. In order to improve the temporal modeling for multivariate sequences, we developed two architectures centered around attention models. A novel clinical time series analysis model is proposed for several critical problems in healthcare. Another model coupled with triplet ranking loss as metric learning framework is described to better solve speaker diarization. Compared to state-of-the-art recurrent networks, these attention-based multivariate analysis tools achieve improved performance while having a lower computational complexity. Finally, in order to perform community detection on multilayer graphs, a fusion algorithm is described to derive node embedding from word embedding techniques and also exploit the complementary relational information contained in each layer of the graph.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Design and Real-World Application of Novel Machine Learning Techniques for Improving Face Recognition Algorithms

    Get PDF
    Recent progress in machine learning has made possible the development of real-world face recognition applications that can match face images as good as or better than humans. However, several challenges remain unsolved. In this PhD thesis, some of these challenges are studied and novel machine learning techniques to improve the performance of real-world face recognition applications are proposed. Current face recognition algorithms based on deep learning techniques are able to achieve outstanding accuracy when dealing with face images taken in unconstrained environments. However, training these algorithms is often costly due to the very large datasets and the high computational resources needed. On the other hand, traditional methods for face recognition are better suited when these requirements cannot be satisfied. This PhD thesis presents new techniques for both traditional and deep learning methods. In particular, a novel traditional face recognition method that combines texture and shape features together with subspace representation techniques is first presented. The proposed method is lightweight and can be trained quickly with small datasets. This method is used for matching face images scanned from identity documents against face images stored in the biometric chip of such documents. Next, two new techniques to increase the performance of face recognition methods based on convolutional neural networks are presented. Specifically, a novel training strategy that increases face recognition accuracy when dealing with face images presenting occlusions, and a new loss function that improves the performance of the triplet loss function are proposed. Finally, the problem of collecting large face datasets is considered, and a novel method based on generative adversarial networks to synthesize both face images of existing subjects in a dataset and face images of new subjects is proposed. The accuracy of existing face recognition algorithms can be increased by training with datasets augmented with the synthetic face images generated by the proposed method. In addition to the main contributions, this thesis provides a comprehensive literature review of face recognition methods and their evolution over the years. A significant amount of the work presented in this PhD thesis is the outcome of a 3-year-long research project partially funded by Innovate UK as part of a Knowledge Transfer Partnership between University of Hertfordshire and IDscan Biometrics Ltd (partnership number: 009547)

    Deep learning methods in speaker recognition: a review

    Full text link
    This paper summarizes the applied deep learning practices in the field of speaker recognition, both verification and identification. Speaker recognition has been a widely used field topic of speech technology. Many research works have been carried out and little progress has been achieved in the past 5-6 years. However, as deep learning techniques do advance in most machine learning fields, the former state-of-the-art methods are getting replaced by them in speaker recognition too. It seems that DL becomes the now state-of-the-art solution for both speaker verification and identification. The standard x-vectors, additional to i-vectors, are used as baseline in most of the novel works. The increasing amount of gathered data opens up the territory to DL, where they are the most effective
    • …
    corecore