1,895 research outputs found

    Orchestrating Service Migration for Low Power MEC-Enabled IoT Devices

    Full text link
    Multi-Access Edge Computing (MEC) is a key enabling technology for Fifth Generation (5G) mobile networks. MEC facilitates distributed cloud computing capabilities and information technology service environment for applications and services at the edges of mobile networks. This architectural modification serves to reduce congestion, latency, and improve the performance of such edge colocated applications and devices. In this paper, we demonstrate how reactive service migration can be orchestrated for low-power MEC-enabled Internet of Things (IoT) devices. Here, we use open-source Kubernetes as container orchestration system. Our demo is based on traditional client-server system from user equipment (UE) over Long Term Evolution (LTE) to the MEC server. As the use case scenario, we post-process live video received over web real-time communication (WebRTC). Next, we integrate orchestration by Kubernetes with S1 handovers, demonstrating MEC-based software defined network (SDN). Now, edge applications may reactively follow the UE within the radio access network (RAN), expediting low-latency. The collected data is used to analyze the benefits of the low-power MEC-enabled IoT device scheme, in which end-to-end (E2E) latency and power requirements of the UE are improved. We further discuss the challenges of implementing such schemes and future research directions therein

    A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing

    Full text link
    Edge computing is promoted to meet increasing performance needs of data-driven services using computational and storage resources close to the end devices, at the edge of the current network. To achieve higher performance in this new paradigm one has to consider how to combine the efficiency of resource usage at all three layers of architecture: end devices, edge devices, and the cloud. While cloud capacity is elastically extendable, end devices and edge devices are to various degrees resource-constrained. Hence, an efficient resource management is essential to make edge computing a reality. In this work, we first present terminology and architectures to characterize current works within the field of edge computing. Then, we review a wide range of recent articles and categorize relevant aspects in terms of 4 perspectives: resource type, resource management objective, resource location, and resource use. This taxonomy and the ensuing analysis is used to identify some gaps in the existing research. Among several research gaps, we found that research is less prevalent on data, storage, and energy as a resource, and less extensive towards the estimation, discovery and sharing objectives. As for resource types, the most well-studied resources are computation and communication resources. Our analysis shows that resource management at the edge requires a deeper understanding of how methods applied at different levels and geared towards different resource types interact. Specifically, the impact of mobility and collaboration schemes requiring incentives are expected to be different in edge architectures compared to the classic cloud solutions. Finally, we find that fewer works are dedicated to the study of non-functional properties or to quantifying the footprint of resource management techniques, including edge-specific means of migrating data and services.Comment: Accepted in the Special Issue Mobile Edge Computing of the Wireless Communications and Mobile Computing journa

    Edge Robotics: are we ready? An experimental evaluation of current vision and future directions

    Get PDF
    Cloud-based robotics systems leverage a wide range of Information Technologies (IT) to offer tangible benefits like cost reduction, powerful computational capabilities, data offloading, etc. However, the centralized nature of cloud computing is not well-suited for a multitude of Operational Technologies (OT) nowadays used in robotics systems that require strict real-time guarantees and security. Edge computing and fog computing are complementary approaches that aim at mitigating some of these challenges by providing computing capabilities closer to the users. The goal of this work is hence threefold: i) to analyze the current edge computing and fog computing landscape in the context of robotics systems, ii) to experimentally evaluate an end-to-end robotics system based on solutions proposed in the literature, and iii) to experimentally identify current benefits and open challenges of edge computing and fog computing. Results show that, in the case of an exemplary delivery application comprising two mobile robots, the robot coordination and range can be improved by consuming real-time radio information available at the edge. However, our evaluation highlights that the existing software, wireless and virtualization technologies still require substantial evolution to fully support edge-based robotics systems.This work has been partially funded by European Union’s Horizon 2020 research and innovation programme under grant agreement No 101015956, and the Spanish Ministry of Economic Affairs and Digital Transformation and the European Union- NextGenerationEU through the UNICO 5G I+ D 6G-EDGEDT and 6G-DATADRIVE
    corecore