1,076 research outputs found

    LDSO: Direct Sparse Odometry with Loop Closure

    Full text link
    In this paper we present an extension of Direct Sparse Odometry (DSO) to a monocular visual SLAM system with loop closure detection and pose-graph optimization (LDSO). As a direct technique, DSO can utilize any image pixel with sufficient intensity gradient, which makes it robust even in featureless areas. LDSO retains this robustness, while at the same time ensuring repeatability of some of these points by favoring corner features in the tracking frontend. This repeatability allows to reliably detect loop closure candidates with a conventional feature-based bag-of-words (BoW) approach. Loop closure candidates are verified geometrically and Sim(3) relative pose constraints are estimated by jointly minimizing 2D and 3D geometric error terms. These constraints are fused with a co-visibility graph of relative poses extracted from DSO's sliding window optimization. Our evaluation on publicly available datasets demonstrates that the modified point selection strategy retains the tracking accuracy and robustness, and the integrated pose-graph optimization significantly reduces the accumulated rotation-, translation- and scale-drift, resulting in an overall performance comparable to state-of-the-art feature-based systems, even without global bundle adjustment

    Fast, Autonomous Flight in GPS-Denied and Cluttered Environments

    Full text link
    One of the most challenging tasks for a flying robot is to autonomously navigate between target locations quickly and reliably while avoiding obstacles in its path, and with little to no a-priori knowledge of the operating environment. This challenge is addressed in the present paper. We describe the system design and software architecture of our proposed solution, and showcase how all the distinct components can be integrated to enable smooth robot operation. We provide critical insight on hardware and software component selection and development, and present results from extensive experimental testing in real-world warehouse environments. Experimental testing reveals that our proposed solution can deliver fast and robust aerial robot autonomous navigation in cluttered, GPS-denied environments.Comment: Pre-peer reviewed version of the article accepted in Journal of Field Robotic

    Communication constrained cloud-based long-term visual localization in real time

    Full text link
    Visual localization is one of the primary capabilities for mobile robots. Long-term visual localization in real time is particularly challenging, in which the robot is required to efficiently localize itself using visual data where appearance may change significantly over time. In this paper, we propose a cloud-based visual localization system targeting at long-term localization in real time. On the robot, we employ two estimators to achieve accurate and real-time performance. One is a sliding-window based visual inertial odometry, which integrates constraints from consecutive observations and self-motion measurements, as well as the constraints induced by localization on the cloud. This estimator builds a local visual submap as the virtual observation which is then sent to the cloud as new localization constraints. The other one is a delayed state Extended Kalman Filter to fuse the pose of the robot localized from the cloud, the local odometry and the high-frequency inertial measurements. On the cloud, we propose a longer sliding-window based localization method to aggregate the virtual observations for larger field of view, leading to more robust alignment between virtual observations and the map. Under this architecture, the robot can achieve drift-free and real-time localization using onboard resources even in a network with limited bandwidth, high latency and existence of package loss, which enables the autonomous navigation in real-world environment. We evaluate the effectiveness of our system on a dataset with challenging seasonal and illuminative variations. We further validate the robustness of the system under challenging network conditions
    • …
    corecore