847 research outputs found

    Lower Bounds for Pinning Lines by Balls

    Get PDF
    A line L is a transversal to a family F of convex objects in R^d if it intersects every member of F. In this paper we show that for every integer d>2 there exists a family of 2d-1 pairwise disjoint unit balls in R^d with the property that every subfamily of size 2d-2 admits a transversal, yet any line misses at least one member of the family. This answers a question of Danzer from 1957

    Core congestion is inherent in hyperbolic networks

    Full text link
    We investigate the impact the negative curvature has on the traffic congestion in large-scale networks. We prove that every Gromov hyperbolic network GG admits a core, thus answering in the positive a conjecture by Jonckheere, Lou, Bonahon, and Baryshnikov, Internet Mathematics, 7 (2011) which is based on the experimental observation by Narayan and Saniee, Physical Review E, 84 (2011) that real-world networks with small hyperbolicity have a core congestion. Namely, we prove that for every subset XX of vertices of a δ\delta-hyperbolic graph GG there exists a vertex mm of GG such that the disk D(m,4δ)D(m,4 \delta) of radius 4δ4 \delta centered at mm intercepts at least one half of the total flow between all pairs of vertices of XX, where the flow between two vertices x,yXx,y\in X is carried by geodesic (or quasi-geodesic) (x,y)(x,y)-paths. A set SS intercepts the flow between two nodes xx and yy if SS intersect every shortest path between xx and yy. Differently from what was conjectured by Jonckheere et al., we show that mm is not (and cannot be) the center of mass of XX but is a node close to the median of XX in the so-called injective hull of XX. In case of non-uniform traffic between nodes of XX (in this case, the unit flow exists only between certain pairs of nodes of XX defined by a commodity graph RR), we prove a primal-dual result showing that for any ρ>5δ\rho>5\delta the size of a ρ\rho-multi-core (i.e., the number of disks of radius ρ\rho) intercepting all pairs of RR is upper bounded by the maximum number of pairwise (ρ3δ)(\rho-3\delta)-apart pairs of RR

    Bounding Helly numbers via Betti numbers

    Get PDF
    We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers bb and dd there exists an integer h(b,d)h(b,d) such that the following holds. If F\mathcal F is a finite family of subsets of Rd\mathbb R^d such that β~i(G)b\tilde\beta_i\left(\bigcap\mathcal G\right) \le b for any GF\mathcal G \subsetneq \mathcal F and every 0id/210 \le i \le \lceil d/2 \rceil-1 then F\mathcal F has Helly number at most h(b,d)h(b,d). Here β~i\tilde\beta_i denotes the reduced Z2\mathbb Z_2-Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these d/2\lceil d/2 \rceil first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex KK, some well-behaved chain map C(K)C(Rd)C_*(K) \to C_*(\mathbb R^d).Comment: 29 pages, 8 figure

    Helly-Type Theorems in Property Testing

    Full text link
    Helly's theorem is a fundamental result in discrete geometry, describing the ways in which convex sets intersect with each other. If SS is a set of nn points in RdR^d, we say that SS is (k,G)(k,G)-clusterable if it can be partitioned into kk clusters (subsets) such that each cluster can be contained in a translated copy of a geometric object GG. In this paper, as an application of Helly's theorem, by taking a constant size sample from SS, we present a testing algorithm for (k,G)(k,G)-clustering, i.e., to distinguish between two cases: when SS is (k,G)(k,G)-clusterable, and when it is ϵ\epsilon-far from being (k,G)(k,G)-clusterable. A set SS is ϵ\epsilon-far (0<ϵ1)(0<\epsilon\leq1) from being (k,G)(k,G)-clusterable if at least ϵn\epsilon n points need to be removed from SS to make it (k,G)(k,G)-clusterable. We solve this problem for k=1k=1 and when GG is a symmetric convex object. For k>1k>1, we solve a weaker version of this problem. Finally, as an application of our testing result, in clustering with outliers, we show that one can find the approximate clusters by querying a constant size sample, with high probability
    corecore