3,190 research outputs found

    Clinical Trial Recommendations Using Semantics-Based Inductive Inference and Knowledge Graph Embeddings

    Full text link
    Designing a new clinical trial entails many decisions, such as defining a cohort and setting the study objectives to name a few, and therefore can benefit from recommendations based on exhaustive mining of past clinical trial records. Here, we propose a novel recommendation methodology, based on neural embeddings trained on a first-of-a-kind knowledge graph of clinical trials. We addressed several important research questions in this context, including designing a knowledge graph (KG) for clinical trial data, effectiveness of various KG embedding (KGE) methods for it, a novel inductive inference using KGE, and its use in generating recommendations for clinical trial design. We used publicly available data from clinicaltrials.gov for the study. Results show that our recommendations approach achieves relevance scores of 70%-83%, measured as the text similarity to actual clinical trial elements, and the most relevant recommendation can be found near the top of list. Our study also suggests potential improvement in training KGE using node semantics.Comment: 13 pages (w/o bibliography), 4 Figures, 6 Table

    Empowering AI drug discovery with explicit and implicit knowledge

    Full text link
    Motivation: Recently, research on independently utilizing either explicit knowledge from knowledge graphs or implicit knowledge from biomedical literature for AI drug discovery has been growing rapidly. These approaches have greatly improved the prediction accuracy of AI models on multiple downstream tasks. However, integrating explicit and implicit knowledge independently hinders their understanding of molecules. Results: We propose DeepEIK, a unified deep learning framework that incorporates both explicit and implicit knowledge for AI drug discovery. We adopt feature fusion to process the multi-modal inputs, and leverage the attention mechanism to denoise the text information. Experiments show that DeepEIK significantly outperforms state-of-the-art methods on crucial tasks in AI drug discovery including drug-target interaction prediction, drug property prediction and protein-protein interaction prediction. Further studies show that benefiting from explicit and implicit knowledge, our framework achieves a deeper understanding of molecules and shows promising potential in facilitating drug discovery applications.Comment: Bioinformatic

    Graph AI in Medicine

    Full text link
    In clinical artificial intelligence (AI), graph representation learning, mainly through graph neural networks (GNNs), stands out for its capability to capture intricate relationships within structured clinical datasets. With diverse data -- from patient records to imaging -- GNNs process data holistically by viewing modalities as nodes interconnected by their relationships. Graph AI facilitates model transfer across clinical tasks, enabling models to generalize across patient populations without additional parameters or minimal re-training. However, the importance of human-centered design and model interpretability in clinical decision-making cannot be overstated. Since graph AI models capture information through localized neural transformations defined on graph relationships, they offer both an opportunity and a challenge in elucidating model rationale. Knowledge graphs can enhance interpretability by aligning model-driven insights with medical knowledge. Emerging graph models integrate diverse data modalities through pre-training, facilitate interactive feedback loops, and foster human-AI collaboration, paving the way to clinically meaningful predictions

    The role of ontologies in biological and biomedical research: a functional perspective.

    Get PDF
    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/bib/bbv01

    Exploiting Latent Features of Text and Graphs

    Get PDF
    As the size and scope of online data continues to grow, new machine learning techniques become necessary to best capitalize on the wealth of available information. However, the models that help convert data into knowledge require nontrivial processes to make sense of large collections of text and massive online graphs. In both scenarios, modern machine learning pipelines produce embeddings --- semantically rich vectors of latent features --- to convert human constructs for machine understanding. In this dissertation we focus on information available within biomedical science, including human-written abstracts of scientific papers, as well as machine-generated graphs of biomedical entity relationships. We present the Moliere system, and our method for identifying new discoveries through the use of natural language processing and graph mining algorithms. We propose heuristically-based ranking criteria to augment Moliere, and leverage this ranking to identify a new gene-treatment target for HIV-associated Neurodegenerative Disorders. We additionally focus on the latent features of graphs, and propose a new bipartite graph embedding technique. Using our graph embedding, we advance the state-of-the-art in hypergraph partitioning quality. Having newfound intuition of graph embeddings, we present Agatha, a deep-learning approach to hypothesis generation. This system learns a data-driven ranking criteria derived from the embeddings of our large proposed biomedical semantic graph. To produce human-readable results, we additionally propose CBAG, a technique for conditional biomedical abstract generation

    Predicting Drug-Drug Interactions Using Knowledge Graphs

    Full text link
    In the last decades, people have been consuming and combining more drugs than before, increasing the number of Drug-Drug Interactions (DDIs). To predict unknown DDIs, recently, studies started incorporating Knowledge Graphs (KGs) since they are able to capture the relationships among entities providing better drug representations than using a single drug property. In this paper, we propose the medicX end-to-end framework that integrates several drug features from public drug repositories into a KG and embeds the nodes in the graph using various translation, factorisation and Neural Network (NN) based KG Embedding (KGE) methods. Ultimately, we use a Machine Learning (ML) algorithm that predicts unknown DDIs. Among the different translation and factorisation-based KGE models, we found that the best performing combination was the ComplEx embedding method with a Long Short-Term Memory (LSTM) network, which obtained an F1-score of 95.19% on a dataset based on the DDIs found in DrugBank version 5.1.8. This score is 5.61% better than the state-of-the-art model DeepDDI. Additionally, we also developed a graph auto-encoder model that uses a Graph Neural Network (GNN), which achieved an F1-score of 91.94%. Consequently, GNNs have demonstrated a stronger ability to mine the underlying semantics of the KG than the ComplEx model, and thus using higher dimension embeddings within the GNN can lead to state-of-the-art performance

    Biological Applications of Knowledge Graph Embedding Models

    Get PDF
    Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph s inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems.The work presented in this paper was supported by the CLARIFY project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875160, and by Insight research centre supported by the Science Foundation Ireland (SFI) grant (12/RC/2289_2)peer-reviewed2021-02-1
    • …
    corecore