16,742 research outputs found

    A Reuse-based framework for the design of analog and mixed-signal ICs

    Get PDF
    Despite the spectacular breakthroughs of the semiconductor industry, the ability to design integrated circuits (ICs) under stringent time-to-market (TTM) requirements is lagging behind integration capacity, so far keeping pace with still valid Moore's Law. The resulting gap is threatening with slowing down such a phenomenal growth. The design community believes that it is only by means of powerful CAD tools and design methodologies -and, possibly, a design paradigm shift-that this design gap can be bridged. In this sense, reuse-based design is seen as a promising solution, and concepts such as IP Block, Virtual Component, and Design Reuse have become commonplace thanks to the significant advances in the digital arena. Unfortunately, the very nature of analog and mixed-signal (AMS) design has hindered a similar level of consensus and development. This paper presents a framework for the reuse-based design of AMS circuits. The framework is founded on three key elements: (1) a CAD-supported hierarchical design flow that facilitates the incorporation of AMS reusable blocks, reduces the overall design time, and expedites the management of increasing AMS design complexity; (2) a complete, clear definition of the AMS reusable block, structured into three separate facets or views: the behavioral, structural, and layout facets, the two first for top-down electrical synthesis and bottom-up verification, the latter used during bottom-up physical synthesis; (3) the design for reusability set of tools, methods, and guidelines that, relying on intensive parameterization as well as on design knowledge capture and encapsulation, allows to produce fully reusable AMS blocks. A case study and a functional silicon prototype demonstrate the validity of the paper's proposals.Ministerio de Educación y Ciencia TEC2004-0175

    Transistor-Level Synthesis of Pipeline Analog-to-Digital Converters Using a Design-Space Reduction Algorithm

    Get PDF
    A novel transistor-level synthesis procedure for pipeline ADCs is presented. This procedure is able to directly map high-level converter specifications onto transistor sizes and biasing conditions. It is based on the combination of behavioral models for performance evaluation, optimization routines to minimize the power and area consumption of the circuit solution, and an algorithm to efficiently constraint the converter design space. This algorithm precludes the cost of lengthy bottom-up verifications and speeds up the synthesis task. The approach is herein demonstrated via the design of a 0.13 μm CMOS 10 bits@60 MS/s pipeline ADC with energy consumption per conversion of only 0.54 pJ@1 MHz, making it one of the most energy-efficient 10-bit video-rate pipeline ADCs reported to date. The computational cost of this design is of only 25 min of CPU time, and includes the evaluation of 13 different pipeline architectures potentially feasible for the targeted specifications. The optimum design derived from the synthesis procedure has been fine tuned to support PVT variations, laid out together with other auxiliary blocks, and fabricated. The experimental results show a power consumption of 23 [email protected] V and an effective resolution of 9.47-bit@1 MHz. Bearing in mind that no specific power reduction strategy has been applied; the mentioned results confirm the reliability of the proposed approach.Ministerio de Ciencia e Innovación TEC2009-08447Junta de Andalucía TIC-0281

    Regression modeling for digital test of ΣΔ modulators

    Get PDF
    The cost of Analogue and Mixed-Signal circuit testing is an important bottleneck in the industry, due to timeconsuming verification of specifications that require state-ofthe- art Automatic Test Equipment. In this paper, we apply the concept of Alternate Test to achieve digital testing of converters. By training an ensemble of regression models that maps simple digital defect-oriented signatures onto Signal to Noise and Distortion Ratio (SNDR), an average error of 1:7% is achieved. Beyond the inference of functional metrics, we show that the approach can provide interesting diagnosis information.Ministerio de Educación y Ciencia TEC2007-68072/MICJunta de Andalucía TIC 5386, CT 30

    Equalization-Based Digital Background Calibration Technique for Pipelined ADCs

    Get PDF
    In this paper, we present a digital background calibration technique for pipelined analog-to-digital converters (ADCs). In this scheme, the capacitor mismatch, residue gain error, and amplifier nonlinearity are measured and then corrected in digital domain. It is based on the error estimation with nonprecision calibration signals in foreground mode, and an adaptive linear prediction structure is used to convert the foreground scheme to the background one. The proposed foreground technique utilizes the LMS algorithm to estimate the error coefficients without needing high-accuracy calibration signals. Several simulation results in the context of a 12-b 100-MS/s pipelined ADC are provided to verify the usefulness of the proposed calibration technique. Circuit-level simulation results show that the ADC achieves 28-dB signal-to-noise and distortion ratio and 41-dB spurious-free dynamic range improvement, respectively, compared with the noncalibrated ADC

    Calculation of Generalized Polynomial-Chaos Basis Functions and Gauss Quadrature Rules in Hierarchical Uncertainty Quantification

    Get PDF
    Stochastic spectral methods are efficient techniques for uncertainty quantification. Recently they have shown excellent performance in the statistical analysis of integrated circuits. In stochastic spectral methods, one needs to determine a set of orthonormal polynomials and a proper numerical quadrature rule. The former are used as the basis functions in a generalized polynomial chaos expansion. The latter is used to compute the integrals involved in stochastic spectral methods. Obtaining such information requires knowing the density function of the random input {\it a-priori}. However, individual system components are often described by surrogate models rather than density functions. In order to apply stochastic spectral methods in hierarchical uncertainty quantification, we first propose to construct physically consistent closed-form density functions by two monotone interpolation schemes. Then, by exploiting the special forms of the obtained density functions, we determine the generalized polynomial-chaos basis functions and the Gauss quadrature rules that are required by a stochastic spectral simulator. The effectiveness of our proposed algorithm is verified by both synthetic and practical circuit examples.Comment: Published by IEEE Trans CAD in May 201
    corecore