756,883 research outputs found

    Large-Scale Visual Relationship Understanding

    Full text link
    Large scale visual understanding is challenging, as it requires a model to handle the widely-spread and imbalanced distribution of <subject, relation, object> triples. In real-world scenarios with large numbers of objects and relations, some are seen very commonly while others are barely seen. We develop a new relationship detection model that embeds objects and relations into two vector spaces where both discriminative capability and semantic affinity are preserved. We learn both a visual and a semantic module that map features from the two modalities into a shared space, where matched pairs of features have to discriminate against those unmatched, but also maintain close distances to semantically similar ones. Benefiting from that, our model can achieve superior performance even when the visual entity categories scale up to more than 80,000, with extremely skewed class distribution. We demonstrate the efficacy of our model on a large and imbalanced benchmark based of Visual Genome that comprises 53,000+ objects and 29,000+ relations, a scale at which no previous work has ever been evaluated at. We show superiority of our model over carefully designed baselines on the original Visual Genome dataset with 80,000+ categories. We also show state-of-the-art performance on the VRD dataset and the scene graph dataset which is a subset of Visual Genome with 200 categories

    Attend and Interact: Higher-Order Object Interactions for Video Understanding

    Full text link
    Human actions often involve complex interactions across several inter-related objects in the scene. However, existing approaches to fine-grained video understanding or visual relationship detection often rely on single object representation or pairwise object relationships. Furthermore, learning interactions across multiple objects in hundreds of frames for video is computationally infeasible and performance may suffer since a large combinatorial space has to be modeled. In this paper, we propose to efficiently learn higher-order interactions between arbitrary subgroups of objects for fine-grained video understanding. We demonstrate that modeling object interactions significantly improves accuracy for both action recognition and video captioning, while saving more than 3-times the computation over traditional pairwise relationships. The proposed method is validated on two large-scale datasets: Kinetics and ActivityNet Captions. Our SINet and SINet-Caption achieve state-of-the-art performances on both datasets even though the videos are sampled at a maximum of 1 FPS. To the best of our knowledge, this is the first work modeling object interactions on open domain large-scale video datasets, and we additionally model higher-order object interactions which improves the performance with low computational costs.Comment: CVPR 201

    STUPD: A Synthetic Dataset for Spatial and Temporal Relation Reasoning

    Full text link
    Understanding relations between objects is crucial for understanding the semantics of a visual scene. It is also an essential step in order to bridge visual and language models. However, current state-of-the-art computer vision models still lack the ability to perform spatial reasoning well. Existing datasets mostly cover a relatively small number of spatial relations, all of which are static relations that do not intrinsically involve motion. In this paper, we propose the Spatial and Temporal Understanding of Prepositions Dataset (STUPD) -- a large-scale video dataset for understanding static and dynamic spatial relationships derived from prepositions of the English language. The dataset contains 150K visual depictions (videos and images), consisting of 30 distinct spatial prepositional senses, in the form of object interaction simulations generated synthetically using Unity3D. In addition to spatial relations, we also propose 50K visual depictions across 10 temporal relations, consisting of videos depicting event/time-point interactions. To our knowledge, no dataset exists that represents temporal relations through visual settings. In this dataset, we also provide 3D information about object interactions such as frame-wise coordinates, and descriptions of the objects used. The goal of this synthetic dataset is to help models perform better in visual relationship detection in real-world settings. We demonstrate an increase in the performance of various models over 2 real-world datasets (ImageNet-VidVRD and Spatial Senses) when pretrained on the STUPD dataset, in comparison to other pretraining datasets.Comment: Submitted to Neurips Dataset track. 24 pages including citations and appendi

    Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding

    Full text link
    Large language models have demonstrated impressive universal capabilities across a wide range of open-ended tasks and have extended their utility to encompass multimodal conversations. However, existing methods encounter challenges in effectively handling both image and video understanding, particularly with limited visual tokens. In this work, we introduce Chat-UniVi, a unified vision-language model capable of comprehending and engaging in conversations involving images and videos through a unified visual representation. Specifically, we employ a set of dynamic visual tokens to uniformly represent images and videos. This representation framework empowers the model to efficiently utilize a limited number of visual tokens to simultaneously capture the spatial details necessary for images and the comprehensive temporal relationship required for videos. Moreover, we leverage a multi-scale representation, enabling the model to perceive both high-level semantic concepts and low-level visual details. Notably, Chat-UniVi is trained on a mixed dataset containing both images and videos, allowing direct application to tasks involving both mediums without requiring any modifications. Extensive experimental results demonstrate that Chat-UniVi, as a unified model, consistently outperforms even existing methods exclusively designed for either images or videos.Comment: 26 page

    Construction of a multi-scale spiking model of macaque visual cortex

    Get PDF
    Understanding the relationship between structure and dynamics of the mammalian cortex is a key challenge of neuroscience. So far, it has been tackled in two ways: by modeling neurons or small circuits in great detail, and through large-scale models representing each area with a small number of differential equations. To bridge the gap between these two approaches, we construct a spiking network model extending earlier work on the cortical microcircuit by Potjans & Diesmann (2014) to all 32 areas of the macaque visual cortex in the parcellation of Felleman & Van Essen (1991). The model takes into account spe- cific neuronal densities and laminar thicknesses of the individual areas. The connectivity of the model combines recently updated binary tracing data from the CoCoMac database (Stephan et al., 2001) with quantitative tracing data providing connection densities (Markov et al., 2014a) and laminar connection patterns (Stephan et al., 2001; Markov et al., 2014b). We estimate missing data using structural regular- ities such as the exponential decay of connection densities with distance between areas (Ercsey-Ravasz et al., 2013) and a fit of laminar patterns versus logarithmic ratios of neuron densities. The model integrates a large body of knowledge on the structure of macaque visual cortex into a consistent framework that allows for progressive refinement
    • …
    corecore