11 research outputs found

    Artificial Intelligence-Based Drug Design and Discovery

    Get PDF
    The drug discovery process from hit-to-lead has been a challenging task that requires simultaneously optimizing numerous factors from maximizing compound activity, efficacy to minimizing toxicity and adverse reactions. Recently, the advance of artificial intelligence technique enables drugs to be efficiently purposed in silico prior to chemical synthesis and experimental evaluation. In this chapter, we present fundamental concepts of artificial intelligence and their application in drug design and discovery. The emphasis will be on machine learning and deep learning, which demonstrated extensive utility in many branches of computer-aided drug discovery including de novo drug design, QSAR (Quantitative Structure–Activity Relationship) analysis, drug repurposing and chemical space visualization. We will demonstrate how artificial intelligence techniques can be leveraged for developing chemoinformatics pipelines and presented with real-world case studies and practical applications in drug design and discovery. Finally, we will discuss limitations and future direction to guide this rapidly evolving field

    Large-Scale Chemical Similarity Networks for Target Profiling of Compounds Identified in Cell-Based Chemical Screens

    No full text
    <div><p>Target identification is one of the most critical steps following cell-based phenotypic chemical screens aimed at identifying compounds with potential uses in cell biology and for developing novel disease therapies. Current <i>in silico</i> target identification methods, including chemical similarity database searches, are limited to single or sequential ligand analysis that have limited capabilities for accurate deconvolution of a large number of compounds with diverse chemical structures. Here, we present CSNAP (Chemical Similarity Network Analysis Pulldown), a new computational target identification method that utilizes chemical similarity networks for large-scale chemotype (consensus chemical pattern) recognition and drug target profiling. Our benchmark study showed that CSNAP can achieve an overall higher accuracy (>80%) of target prediction with respect to representative chemotypes in large (>200) compound sets, in comparison to the SEA approach (60–70%). Additionally, CSNAP is capable of integrating with biological knowledge-based databases (Uniprot, GO) and high-throughput biology platforms (proteomic, genetic, etc) for system-wise drug target validation. To demonstrate the utility of the CSNAP approach, we combined CSNAP's target prediction with experimental ligand evaluation to identify the major mitotic targets of hit compounds from a cell-based chemical screen and we highlight novel compounds targeting microtubules, an important cancer therapeutic target. The CSNAP method is freely available and can be accessed from the CSNAP web server (<a href="http://services.mbi.ucla.edu/CSNAP/" target="_blank">http://services.mbi.ucla.edu/CSNAP/</a>).</p></div

    Molecular mechanisms and targets of new anticancer treatments

    Get PDF
    The work presented in this thesis is an effort to decipher and understand the mechanism of action (MOA) of anticancer agents by building on and complementing chemical proteomics methods. The backbone of the thesis relies on a recent method called Functional Identification of Target by Expression Proteomics (FITExP) developed in Zubarev lab, where drug induced proteomic signatures are analyzed in various cell lines and top differentially regulated proteins with consistent behavior are determined, among which the drug target and mechanistic proteins are usually present. FITExP relies on the assumption that proteins most affected with a perturbation have a higher probability of being involved in that process. In this regard, Paper I aimed to enhance the performance of FITExP analysis by merging proteomic data from drug-treated matrix attached and detached cells. This is while the majority if not all proteomics and molecular biology experiments are performed in matrix attached cells, as the general belief is that detached cells lose their structural integrity and do not harbor valuable information. However, detached cells are those that are more sensitive to chemotherapeutics and might reflect the proteome changes better. The comparative proteomics of living and dying cells improved FITExP performance with regards to identification of targets and provided insight about proteins involved in cellular life and death decisions. Furthermore, the orthogonal partial least squares-discriminant analysis (OPLS-DA) paradigm presented in this study, was used throughout the thesis for contrasting and visualizing the proteomic signature of a molecule against others, to reveal targets and specific proteins changing in response to the molecule of interest. In Paper II, as a further development of FITExP and to demonstrate its applicability in a broader context, we built a proteome signature library of 56 clinical and experimental anticancer agents in A549 lung adenocarcinoma cell line. This resource called ProTargetMiner can be used for different purposes. The proximity of compounds in hierarchical clustering or t-SNE could be used for prediction of the mechanism of new compounds. Contrasting each molecule against other treatments using the OPLS-DA scheme presented in Paper I, revealed drug targets, mechanistic proteins, resistance factors, drug metabolizing enzymes and effects on protein complexes. Representative examples were used to demonstrate that the specificity factors extracted from the OPLS-DA models can help identify subtle but biologically significant processes, even when such an effect is as low as 15% fold change. Furthermore, we showed that the inclusion of 8-10 contrasting molecules in the OPLS-DA models can produce enough specificity for drug target deconvolution, which offered a miniaturization opportunity. Therefore, we built three deeper datasets using 9 compounds that showed the most diverse proteome changes in the orthogonal space in three cell lines from major cancer types: A549 lung, MCF-7 breast and RKO colon cancers. These datasets provide a unique depth of 7398, 8735 and 8551 respectively, with no missing values. Subsequently, a Shiny package was created in R, which can employ these datasets as a resource and merge it with user data and provide OPLS-DA output and target deconvolution opportunity for new compounds. Finally, using the original ProTargetMiner data, we also built a first of its kind proteomic correlation database which can find applications in deciphering the function of uncharacterized proteins. Moreover, the resource helped to identify a set of core or untouchable proteins with stable expression across all the treatments, revealing essential functions within the cells. Such proteins could be used as house-keeping controls in molecular biology experiments. In paper III, we combined FITExP with other chemical proteomics tools Thermal Proteome Profiling (TPP) and multiplexed redox proteomics, to study the target and mechanism space of auranofin. This would also allow to assess the power, orthogonality and complementarity of these techniques in the realm of chemical proteomics. TPP is a recently developed technique that can monitor changes in the stability of proteins upon binding to small molecules. Redox proteomics is a method by which the oxidation level of protein cysteinome can be quantitatively analyzed. Auranofin is an FDA-approved anti-inflammatory drug for treatment of rheumatoid arthritis, but due to its potent antitumor activity, it is currently in clinical trials against cancer. Although several MOAs have been suggested for auranofin, uncertainties exist regarding its cellular targets; therefore, this molecule was chosen as a challenging candidate to test the chemical proteomics tools. A combination of the above mentioned tools confirmed thioredoxin reductase 1 (TXNRD1) (ranking 3rd) as the cognate target of auranofin and demonstrated that perturbation of oxidoreductase pathway is the main route of auranofin cytotoxicity. We next showed that changes in the redox state of specific cysteines can be linked to protein stability in TPP. Some of these cysteines were mapped to the active sites of redox-active enzymes. In Paper IV, using quantitative multiplexed proteomics, we helped to show that b-AP15, a bis-benzylidine piperidone compound inhibiting deubiquitinases USP14 and UCHL5, produces a similar perturbation signature as bortezomib in colon cancer cells. However, in comparison with bortezomib, b-AP15 induces chaperone expression to a significantly higher level and leads to a more extensive accumulation of polyubiqutinated proteins. The polyubiqutinated proteins co-localize with mitochondrial membrane and subsequently reduce oxidative phosphorylation. These results help define the atypical cell death induced by b-AP15 and describe why this molecule is effective against apoptosis resistant cells in variety of tumor models. Finally, in Paper V, we extended the applications of TPP and combined it with specificity concept for proteome-wide discovery of specific protein substrates for enzymes. We developed a universal method called System-wide Identification of Enzyme Substrates by Thermal Analysis (SIESTA) that relies on the hypothesis that enzymatic post-translational modification of substrate proteins can potentially change their stability against thermal denaturation. Furthermore, we applied the concept of specificity similar to the above papers, to reveal potential substrates using OPLS-DA. SIESTA was applied to two enzyme systems, namely TXNRD1 and poly-(ADP-ribose) polymerase-10 (PARP10), identifying known and putative candidate substrates. A number of these candidate proteins were validated as PARP10 substrates by targeted mass spectrometry, chemiluminescence and other assays. SIESTA is an unbiased and system wide approach and its broad application can improve our understanding of enzyme function in homeostasis and disease. In turn, specific protein substrates can serve as readouts in high throughput screening and facilitate drug discovery. Taken together, in this thesis, FITExP methodology was improved in two directions. In paper I, we improved the performance of FITExP by combining the proteomics data from detached and attached cells. In Paper II, we demonstrated how the proteomics data on a multitude of drugs in a single cell line enables the discovery of compound targets and MOA. Furthermore, we built an R Shiny package which can serve as a resource for the cancer community in target and MOA deconvolution. In Papers III and IV, we applied an arsenal of chemical proteomics tools for characterization of two anticancer compounds. In Paper V, we expanded the applications of TPP to identification of specific protein substrates for enzymes in a system-wide manner

    Modeling and disrupting protein interactions

    Get PDF
    Rational drug design requires a deep understanding of protein interactions, both in terms of the structural mechanisms that regulate binding of individual molecules and the broader, pathway- and cell-level effects of disrupting protein interaction networks. This thesis presents work that stems from these ideas, discussing contributions to a number of current challenges in the field of drug discovery. First, we describe how structural flexibility is leveraged by ‘selectively promiscuous’ protein interfaces – enabling them to bind specifically to several distinctly shaped ligands. Taking PD-1 as a case study, we demonstrate using molecular dynamics simulations how the flexible receptor interface recognizes conserved ‘trigger’ motifs on its cognate ligands’ interfaces. Trigger interactions, which we show are also exploited by a recent blockbuster PD-1 inhibitor, drive the initial steps of an induced-fit binding pathway that then ‘splits’ into distinct, ligand-specific bound states. Second, we present a hybrid genomic and structural pipeline for genome-scale identification of protein targets for bioactive compounds. We train a random forest classifier to predict compound-target interactions from compound treatment and gene knockdown gene expression signatures in multiple cell types. Refining genomic predictions with a structure-based screen, we achieve top-10/top-100 target prediction accuracies of 26%/41%, respectively, on a validation set of 152 FDA-approved drugs, and validate previously unknown small molecule modulators of HRAS, KRAS, CHIP, and PDK1. Third, we present a strategy that combines transcriptomic and structural analyses with single-cell microscopy to predict small molecule inhibitors of TNF-induced NF-kB signaling and elucidate the network response. Validating two novel pathway inhibitors that disrupt the protein network upstream of IKK and NF-kB, our findings suggest that a network-centric drug discovery approach is a promising strategy to evaluate the impact of pharmacologic intervention in signaling. Last, we introduce DrugQuery (DQ), a structure-based public web server for small molecule target prediction. DQ docks user-submitted small molecules against a target library of 7957 predicted binding sites on 1245 human proteins. The server achieved a top-decile target prediction accuracy of 68% on a validation set of 95 FDA-approved drugs and 86% on a validation set of 102 FXR-binding compounds from the 2017 D3R Grand Challenge 2
    corecore