8,112 research outputs found

    Interval-valued and intuitionistic fuzzy mathematical morphologies as special cases of L-fuzzy mathematical morphology

    Get PDF
    Mathematical morphology (MM) offers a wide range of tools for image processing and computer vision. MM was originally conceived for the processing of binary images and later extended to gray-scale morphology. Extensions of classical binary morphology to gray-scale morphology include approaches based on fuzzy set theory that give rise to fuzzy mathematical morphology (FMM). From a mathematical point of view, FMM relies on the fact that the class of all fuzzy sets over a certain universe forms a complete lattice. Recall that complete lattices provide for the most general framework in which MM can be conducted. The concept of L-fuzzy set generalizes not only the concept of fuzzy set but also the concepts of interval-valued fuzzy set and Atanassov’s intuitionistic fuzzy set. In addition, the class of L-fuzzy sets forms a complete lattice whenever the underlying set L constitutes a complete lattice. Based on these observations, we develop a general approach towards L-fuzzy mathematical morphology in this paper. Our focus is in particular on the construction of connectives for interval-valued and intuitionistic fuzzy mathematical morphologies that arise as special, isomorphic cases of L-fuzzy MM. As an application of these ideas, we generate a combination of some well-known medical image reconstruction techniques in terms of interval-valued fuzzy image processing

    Period Doubling Renormalization for Area-Preserving Maps and Mild Computer Assistance in Contraction Mapping Principle

    Full text link
    It has been observed that the famous Feigenbaum-Coullet-Tresser period doubling universality has a counterpart for area-preserving maps of {\fR}^2. A renormalization approach has been used in a "hard" computer-assisted proof of existence of an area-preserving map with orbits of all binary periods in Eckmann et al (1984). As it is the case with all non-trivial universality problems in non-dissipative systems in dimensions more than one, no analytic proof of this period doubling universality exists to date. In this paper we attempt to reduce computer assistance in the argument, and present a mild computer aided proof of the analyticity and compactness of the renormalization operator in a neighborhood of a renormalization fixed point: that is a proof that does not use generalizations of interval arithmetics to functional spaces - but rather relies on interval arithmetics on real numbers only to estimate otherwise explicit expressions. The proof relies on several instance of the Contraction Mapping Principle, which is, again, verified via mild computer assistance

    Optimal designs for rational function regression

    Full text link
    We consider optimal non-sequential designs for a large class of (linear and nonlinear) regression models involving polynomials and rational functions with heteroscedastic noise also given by a polynomial or rational weight function. The proposed method treats D-, E-, A-, and Φp\Phi_p-optimal designs in a unified manner, and generates a polynomial whose zeros are the support points of the optimal approximate design, generalizing a number of previously known results of the same flavor. The method is based on a mathematical optimization model that can incorporate various criteria of optimality and can be solved efficiently by well established numerical optimization methods. In contrast to previous optimization-based methods proposed for similar design problems, it also has theoretical guarantee of its algorithmic efficiency; in fact, the running times of all numerical examples considered in the paper are negligible. The stability of the method is demonstrated in an example involving high degree polynomials. After discussing linear models, applications for finding locally optimal designs for nonlinear regression models involving rational functions are presented, then extensions to robust regression designs, and trigonometric regression are shown. As a corollary, an upper bound on the size of the support set of the minimally-supported optimal designs is also found. The method is of considerable practical importance, with the potential for instance to impact design software development. Further study of the optimality conditions of the main optimization model might also yield new theoretical insights.Comment: 25 pages. Previous version updated with more details in the theory and additional example

    Conditionals in Homomorphic Encryption and Machine Learning Applications

    Get PDF
    Homomorphic encryption aims at allowing computations on encrypted data without decryption other than that of the final result. This could provide an elegant solution to the issue of privacy preservation in data-based applications, such as those using machine learning, but several open issues hamper this plan. In this work we assess the possibility for homomorphic encryption to fully implement its program without relying on other techniques, such as multiparty computation (SMPC), which may be impossible in many use cases (for instance due to the high level of communication required). We proceed in two steps: i) on the basis of the structured program theorem (Bohm-Jacopini theorem) we identify the relevant minimal set of operations homomorphic encryption must be able to perform to implement any algorithm; and ii) we analyse the possibility to solve -- and propose an implementation for -- the most fundamentally relevant issue as it emerges from our analysis, that is, the implementation of conditionals (requiring comparison and selection/jump operations). We show how this issue clashes with the fundamental requirements of homomorphic encryption and could represent a drawback for its use as a complete solution for privacy preservation in data-based applications, in particular machine learning ones. Our approach for comparisons is novel and entirely embedded in homomorphic encryption, while previous studies relied on other techniques, such as SMPC, demanding high level of communication among parties, and decryption of intermediate results from data-owners. Our protocol is also provably safe (sharing the same safety as the homomorphic encryption schemes), differently from other techniques such as Order-Preserving/Revealing-Encryption (OPE/ORE).Comment: 14 pages, 1 figure, corrected typos, added introductory pedagogical section on polynomial approximatio

    Density-matrix functional theory of the Hubbard model: An exact numerical study

    Full text link
    A density functional theory for many-body lattice models is considered in which the single-particle density matrix is the basic variable. Eigenvalue equations are derived for solving Levy's constrained search of the interaction energy functional W, which is expressed as the sum of Hartree-Fock energy and the correlation energy E_C. Exact results are obtained for E_C of the Hubbard model on various periodic lattices. The functional dependence of E_C is analyzed by varying the number of sites, band filling and lattice structure. The infinite one-dimensional chain and one-, two-, or three-dimensional finite clusters with periodic boundary conditions are considered. The properties of E_C are discussed in the limits of weak and strong electronic correlations, as well as in the crossover region. Using an appropriate scaling we observe a pseudo-universal behavior which suggests that the correlation energy of extended systems could be obtained quite accurately from finite cluster calculations. Finally, the behavior of E_C for repulsive (U>0) and attractive (U<0) interactions are contrasted.Comment: Phys. Rev. B (1999), in pres
    corecore