5 research outputs found

    Recognition of Sign Language from High Resolution Images Using Adaptive Feature Extraction and Classification

    Get PDF
    A variety of algorithms allows gesture recognition in video sequences. Alleviating the need for interpreters is of interest to hearing impaired people, since it allows a great degree of self-sufficiency in communicating their intent to the non-sign language speakers without the need for interpreters. State-of-the-art in currently used algorithms in this domain is capable of either real-time recognition of sign language in low resolution videos or non-real-time recognition in high-resolution videos. This paper proposes a novel approach to real-time recognition of fingerspelling alphabet letters of American Sign Language (ASL) in ultra-high-resolution (UHD) video sequences. The proposed approach is based on adaptive Laplacian of Gaussian (LoG) filtering with local extrema detection using Features from Accelerated Segment Test (FAST) algorithm classified by a Convolutional Neural Network (CNN).聽 The recognition rate of our algorithm was verified on real-life data

    Recognition of Sign Language from High Resolution Images Using Adaptive Feature Extraction and Classification

    Get PDF
    A variety of algorithms allows gesture recognition in video sequences. Alleviating the need for interpreters is of interest to hearing impaired people, since it allows a great degree of self-sufficiency in communicating their intent to the non-sign language speakers without the need for interpreters. State-of-the-art in currently used algorithms in this domain is capable of either real-time recognition of sign language in low resolution videos or non-real-time recognition in high-resolution videos. This paper proposes a novel approach to real-time recognition of fingerspelling alphabet letters of American Sign Language (ASL) in ultra-high-resolution (UHD) video sequences. The proposed approach is based on adaptive Laplacian of Gaussian (LoG) filtering with local extrema detection using Features from Accelerated Segment Test (FAST) algorithm classified by a Convolutional Neural Network (CNN).聽 The recognition rate of our algorithm was verified on real-life data

    A Comprehensive Literature Review on Convolutional Neural Networks

    Get PDF
    The fields of computer vision and image processing from their initial days have been dealing with the problems of visual recognition. Convolutional Neural Networks (CNNs) in machine learning are deep architectures built as feed-forward neural networks or perceptrons, which are inspired by the research done in the fields of visual analysis by the visual cortex of mammals like cats. This work gives a detailed analysis of CNNs for the computer vision tasks, natural language processing, fundamental sciences and engineering problems along with other miscellaneous tasks. The general CNN structure along with its mathematical intuition and working, a brief critical commentary on the advantages and disadvantages, which leads researchers to search for alternatives to CNN鈥檚 are also mentioned. The paper also serves as an appreciation of the brain-child of past researchers for the existence of such a fecund architecture for handling multidimensional data and approaches to improve their performance further
    corecore