1,215 research outputs found

    FPT algorithms for finding near-cliques in c-closed graphs

    Get PDF
    Finding large cliques or cliques missing a few edges is a fundamental algorithmic task in the study of real-world graphs, with applications in community detection, pattern recognition, and clustering. A number of effective backtracking-based heuristics for these problems have emerged from recent empirical work in social network analysis. Given the NP-hardness of variants of clique counting, these results raise a challenge for beyond worst-case analysis of these problems. Inspired by the triadic closure of real-world graphs, Fox et al. (SICOMP 2020) introduced the notion of c-closed graphs and proved that maximal clique enumeration is fixed-parameter tractable with respect to c. In practice, due to noise in data, one wishes to actually discover “near-cliques”, which can be characterized as cliques with a sparse subgraph removed. In this work, we prove that many different kinds of maximal near-cliques can be enumerated in polynomial time (and FPT in c) for c-closed graphs. We study various established notions of such substructures, including k-plexes, complements of bounded-degeneracy and bounded-treewidth graphs. Interestingly, our algorithms follow relatively simple backtracking procedures, analogous to what is done in practice. Our results underscore the significance of the c-closed graph class for theoretical understanding of social network analysis

    An Efficient Algorithm for Enumerating Chordless Cycles and Chordless Paths

    Full text link
    A chordless cycle (induced cycle) CC of a graph is a cycle without any chord, meaning that there is no edge outside the cycle connecting two vertices of the cycle. A chordless path is defined similarly. In this paper, we consider the problems of enumerating chordless cycles/paths of a given graph G=(V,E),G=(V,E), and propose algorithms taking O(E)O(|E|) time for each chordless cycle/path. In the existing studies, the problems had not been deeply studied in the theoretical computer science area, and no output polynomial time algorithm has been proposed. Our experiments showed that the computation time of our algorithms is constant per chordless cycle/path for non-dense random graphs and real-world graphs. They also show that the number of chordless cycles is much smaller than the number of cycles. We applied the algorithm to prediction of NMR (Nuclear Magnetic Resonance) spectra, and increased the accuracy of the prediction

    Shared-Memory Parallel Maximal Clique Enumeration

    Get PDF
    We present shared-memory parallel methods for Maximal Clique Enumeration (MCE) from a graph. MCE is a fundamental and well-studied graph analytics task, and is a widely used primitive for identifying dense structures in a graph. Due to its computationally intensive nature, parallel methods are imperative for dealing with large graphs. However, surprisingly, there do not yet exist scalable and parallel methods for MCE on a shared-memory parallel machine. In this work, we present efficient shared-memory parallel algorithms for MCE, with the following properties: (1) the parallel algorithms are provably work-efficient relative to a state-of-the-art sequential algorithm (2) the algorithms have a provably small parallel depth, showing that they can scale to a large number of processors, and (3) our implementations on a multicore machine shows a good speedup and scaling behavior with increasing number of cores, and are substantially faster than prior shared-memory parallel algorithms for MCE.Comment: 10 pages, 3 figures, proceedings of the 25th IEEE International Conference on. High Performance Computing, Data, and Analytics (HiPC), 201

    All Maximal Independent Sets and Dynamic Dominance for Sparse Graphs

    Full text link
    We describe algorithms, based on Avis and Fukuda's reverse search paradigm, for listing all maximal independent sets in a sparse graph in polynomial time and delay per output. For bounded degree graphs, our algorithms take constant time per set generated; for minor-closed graph families, the time is O(n) per set, and for more general sparse graph families we achieve subquadratic time per set. We also describe new data structures for maintaining a dynamic vertex set S in a sparse or minor-closed graph family, and querying the number of vertices not dominated by S; for minor-closed graph families the time per update is constant, while it is sublinear for any sparse graph family. We can also maintain a dynamic vertex set in an arbitrary m-edge graph and test the independence of the maintained set in time O(sqrt m) per update. We use the domination data structures as part of our enumeration algorithms.Comment: 10 page

    Fine-grained Search Space Classification for Hard Enumeration Variants of Subset Problems

    Full text link
    We propose a simple, powerful, and flexible machine learning framework for (i) reducing the search space of computationally difficult enumeration variants of subset problems and (ii) augmenting existing state-of-the-art solvers with informative cues arising from the input distribution. We instantiate our framework for the problem of listing all maximum cliques in a graph, a central problem in network analysis, data mining, and computational biology. We demonstrate the practicality of our approach on real-world networks with millions of vertices and edges by not only retaining all optimal solutions, but also aggressively pruning the input instance size resulting in several fold speedups of state-of-the-art algorithms. Finally, we explore the limits of scalability and robustness of our proposed framework, suggesting that supervised learning is viable for tackling NP-hard problems in practice.Comment: AAAI 201

    Mining Maximal Cliques from an Uncertain Graph

    Get PDF
    We consider mining dense substructures (maximal cliques) from an uncertain graph, which is a probability distribution on a set of deterministic graphs. For parameter 0 < {\alpha} < 1, we present a precise definition of an {\alpha}-maximal clique in an uncertain graph. We present matching upper and lower bounds on the number of {\alpha}-maximal cliques possible within an uncertain graph. We present an algorithm to enumerate {\alpha}-maximal cliques in an uncertain graph whose worst-case runtime is near-optimal, and an experimental evaluation showing the practical utility of the algorithm.Comment: ICDE 201
    corecore