5,447 research outputs found

    Algebraic time-decay for the bipolar quantum hydrodynamic model

    Full text link
    The initial value problem is considered in the present paper for bipolar quantum hydrodynamic model for semiconductors (QHD) in R3\mathbb{R}^3. We prove that the unique strong solution exists globally in time and tends to the asymptotical state with an algebraic rate as t+t\to+\infty. And, we show that the global solution of linearized bipolar QHD system decays in time at an algebraic decay rate from both above and below. This means in general, we can not get exponential time-decay rate for bipolar QHD system, which is different from the case of unipolar QHD model (where global solutions tend to the equilibrium state at an exponential time-decay rate) and is mainly caused by the nonlinear coupling and cancelation between two carriers. Moreover, it is also shown that the nonlinear dispersion does not affect the long time asymptotic behavior, which by product gives rise to the algebraic time-decay rate of the solution of the bipolar hydrodynamical model in the semiclassical limit.Comment: 23 page

    Semiclassical and relaxation limits of bipolar quantum hydrodynamic model

    Get PDF
    The global in-time semiclassical and relaxation limits of the bipolar quantum hydrodynamic model for semiconductors are investigated in R3R^3. We prove that the unique strong solution converges globally in time to the strong solution of classical bipolar hydrodynamical equation in the process of semiclassical limit and to that of the classical Drift-Diffusion system under the combined relaxation and semiclassical limits.Comment: 21 page

    Global exponential stability of classical solutions to the hydrodynamic model for semiconductors

    Full text link
    In this paper, the global well-posedness and stability of classical solutions to the multidimensional hydrodynamic model for semiconductors on the framework of Besov space are considered. We weaken the regularity requirement of the initial data, and improve some known results in Sobolev space. The local existence of classical solutions to the Cauchy problem is obtained by the regularized means and compactness argument. Using the high- and low- frequency decomposition method, we prove the global exponential stability of classical solutions (close to equilibrium). Furthermore, it is also shown that the vorticity decays to zero exponentially in the 2D and 3D space. The main analytic tools are the Littlewood-Paley decomposition and Bony's para-product formula.Comment: 18 page

    Existence analysis for a simplified transient energy-transport model for semiconductors

    Full text link
    A simplified transient energy-transport system for semiconductors subject to mixed Dirichlet-Neumann boundary conditions is analyzed. The model is formally derived from the non-isothermal hydrodynamic equations in a particular vanishing momentum relaxation limit. It consists of a drift-diffusion-type equation for the electron density, involving temperature gradients, a nonlinear heat equation for the electron temperature, and the Poisson equation for the electric potential. The global-in-time existence of bounded weak solutions is proved. The proof is based on the Stampacchia truncation method and a careful use of the temperature equation. Under some regularity assumptions on the gradients of the variables, the uniqueness of solutions is shown. Finally, numerical simulations for a ballistic diode in one space dimension illustrate the behavior of the solutions
    corecore