24,274 research outputs found

    Large steps in cloth simulation

    Get PDF
    The bottle-neck in most cloth simulation systems is that time steps must be small to avoid numerical instability. This paper describes a cloth simulation system that can stably take large time steps. The simulation system couples a new technique for enforcing constraints on individual cloth particles with an implicit integration method. The simulator models cloth as a triangular mesh, with internal cloth forces derived using a simple continuum formulation that supports modeling operations such as local anisotropic stretch or compression; a unified treatment of damping forces is included as well. The implicit integration method generates a large, unbanded sparse linear system at each time step which is solved using a modified conjugate gradient method that simultaneously enforces particles ’ constraints. The constraints are always maintained exactly, independent of the number of conjugate gradient iterations, which is typically small. The resulting simulation system is significantly faster than previous accounts of cloth simulation systems in the literature. Keywords—Cloth, simulation, constraints, implicit integration, physically-based modeling.

    Asynchronous Variational Contact Mechanics

    Full text link
    An asynchronous, variational method for simulating elastica in complex contact and impact scenarios is developed. Asynchronous Variational Integrators (AVIs) are extended to handle contact forces by associating different time steps to forces instead of to spatial elements. By discretizing a barrier potential by an infinite sum of nested quadratic potentials, these extended AVIs are used to resolve contact while obeying momentum- and energy-conservation laws. A series of two- and three-dimensional examples illustrate the robustness and good energy behavior of the method

    Learning to Navigate Cloth using Haptics

    Full text link
    We present a controller that allows an arm-like manipulator to navigate deformable cloth garments in simulation through the use of haptic information. The main challenge of such a controller is to avoid getting tangled in, tearing or punching through the deforming cloth. Our controller aggregates force information from a number of haptic-sensing spheres all along the manipulator for guidance. Based on haptic forces, each individual sphere updates its target location, and the conflicts that arise between this set of desired positions is resolved by solving an inverse kinematic problem with constraints. Reinforcement learning is used to train the controller for a single haptic-sensing sphere, where a training run is terminated (and thus penalized) when large forces are detected due to contact between the sphere and a simplified model of the cloth. In simulation, we demonstrate successful navigation of a robotic arm through a variety of garments, including an isolated sleeve, a jacket, a shirt, and shorts. Our controller out-performs two baseline controllers: one without haptics and another that was trained based on large forces between the sphere and cloth, but without early termination.Comment: Supplementary video available at https://youtu.be/iHqwZPKVd4A. Related publications http://www.cc.gatech.edu/~karenliu/Robotic_dressing.htm

    Learning cloth manipulation with demonstrations

    Get PDF
    Recent advances in Deep Reinforcement learning and computational capabilities of GPUs have led to variety of research being conducted in the learning side of robotics. The main aim being that of making autonomous robots that are capable of learning how to solve a task on their own with minimal requirement for engineering on the planning, vision, or control side. Efforts have been made to learn the manipulation of rigid objects through the help of human demonstrations, specifically in the tasks such as stacking of multiple blocks on top of each other, inserting a pin into a hole, etc. These Deep RL algorithms successfully learn how to complete a task involving the manipulation of rigid objects, but autonomous manipulation of textile objects such as clothes through Deep RL algorithms is still not being studied in the community. The main objectives of this work involve, 1) implementing the state of the art Deep RL algorithms for rigid object manipulation and getting a deep understanding of the working of these various algorithms, 2) Creating an open-source simulation environment for simulating textile objects such as clothes, 3) Designing Deep RL algorithms for learning autonomous manipulation of textile objects through demonstrations.Peer ReviewedPreprin

    Ground Profile Recovery from Aerial 3D LiDAR-based Maps

    Get PDF
    The paper presents the study and implementation of the ground detection methodology with filtration and removal of forest points from LiDAR-based 3D point cloud using the Cloth Simulation Filtering (CSF) algorithm. The methodology allows to recover a terrestrial relief and create a landscape map of a forestry region. As the proof-of-concept, we provided the outdoor flight experiment, launching a hexacopter under a mixed forestry region with sharp ground changes nearby Innopolis city (Russia), which demonstrated the encouraging results for both ground detection and methodology robustness.Comment: 8 pages, FRUCT-2019 conferenc
    • …
    corecore