3 research outputs found

    Laplacian Kernel Splatting for Efficient Depth-of-field and Motion Blur Synthesis or Reconstruction

    Get PDF
    Simulating combinations of depth-of-field and motion blur is an important factor to cinematic quality in synthetic images but can take long to compute. Splatting the point-spread function (PSF) of every pixel is general and provides high quality, but requires prohibitive compute time. We accelerate this in two steps: In a pre-process we optimize for sparse representations of the Laplacian of all possible PSFs that we call spreadlets. At runtime, spreadlets can be splat efficiently to the Laplacian of an image. Integrating this image produces the final result. Our approach scales faithfully to strong motion and large out-of-focus areas and compares favorably in speed and quality with off-line and interactive approaches. It is applicable to both synthesizing from pinhole as well as reconstructing from stochastic images, with or without layering

    Modeling and Compensating of Noise in Time-of-Flight Sensors

    Get PDF
    Three-dimensional (3D) sensors provide the ability to perform contactless measurements of objects and distances that are within their field of view. Unlike traditional two-dimensional (2D) cameras, which only provide RGB data about objects within a scene, 3D sensors are able to directly provide depth information for objects within a scene. Of these 3D sensing technologies, Time-of-Flight (ToF) sensors are becoming more compact which allows them to be more easily integrated with other devices and to find use in more applications. ToF sensors also provide several benefits over other 3D sensing technologies that increase the types of applications where ToF sensors can be used. For example, over the last decade, ToF sensors have become more widely used in applications such as 3D scanning, drone positioning, robotics, logistics, structural health monitoring, and road surveillance. To further extend the applications where ToF sensors can be employed, this work focuses on how to improve the performance of ToF sensors by suppressing and mitigating the effects of noise artifacts that are associated with ToF sensors. These issues include multipath interference, motion blur, and multicamera interference in 3D depth maps and point clouds

    Image-Based Rendering Of Real Environments For Virtual Reality

    Get PDF
    corecore