531 research outputs found

    Towards Effective Adversarial Textured 3D Meshes on Physical Face Recognition

    Full text link
    Face recognition is a prevailing authentication solution in numerous biometric applications. Physical adversarial attacks, as an important surrogate, can identify the weaknesses of face recognition systems and evaluate their robustness before deployed. However, most existing physical attacks are either detectable readily or ineffective against commercial recognition systems. The goal of this work is to develop a more reliable technique that can carry out an end-to-end evaluation of adversarial robustness for commercial systems. It requires that this technique can simultaneously deceive black-box recognition models and evade defensive mechanisms. To fulfill this, we design adversarial textured 3D meshes (AT3D) with an elaborate topology on a human face, which can be 3D-printed and pasted on the attacker's face to evade the defenses. However, the mesh-based optimization regime calculates gradients in high-dimensional mesh space, and can be trapped into local optima with unsatisfactory transferability. To deviate from the mesh-based space, we propose to perturb the low-dimensional coefficient space based on 3D Morphable Model, which significantly improves black-box transferability meanwhile enjoying faster search efficiency and better visual quality. Extensive experiments in digital and physical scenarios show that our method effectively explores the security vulnerabilities of multiple popular commercial services, including three recognition APIs, four anti-spoofing APIs, two prevailing mobile phones and two automated access control systems

    Automatic handwriter identification using advanced machine learning

    Get PDF
    Handwriter identification a challenging problem especially for forensic investigation. This topic has received significant attention from the research community and several handwriter identification systems were developed for various applications including forensic science, document analysis and investigation of the historical documents. This work is part of an investigation to develop new tools and methods for Arabic palaeography, which is is the study of handwritten material, particularly ancient manuscripts with missing writers, dates, and/or places. In particular, the main aim of this research project is to investigate and develop new techniques and algorithms for the classification and analysis of ancient handwritten documents to support palaeographic studies. Three contributions were proposed in this research. The first is concerned with the development of a text line extraction algorithm on colour and greyscale historical manuscripts. The idea uses a modified bilateral filtering approach to adaptively smooth the images while still preserving the edges through a nonlinear combination of neighboring image values. The proposed algorithm aims to compute a median and a separating seam and has been validated to deal with both greyscale and colour historical documents using different datasets. The results obtained suggest that our proposed technique yields attractive results when compared against a few similar algorithms. The second contribution proposes to deploy a combination of Oriented Basic Image features and the concept of graphemes codebook in order to improve the recognition performances. The proposed algorithm is capable to effectively extract the most distinguishing handwriter’s patterns. The idea consists of judiciously combining a multiscale feature extraction with the concept of grapheme to allow for the extraction of several discriminating features such as handwriting curvature, direction, wrinkliness and various edge-based features. The technique was validated for identifying handwriters using both Arabic and English writings captured as scanned images using the IAM dataset for English handwriting and ICFHR 2012 dataset for Arabic handwriting. The results obtained clearly demonstrate the effectiveness of the proposed method when compared against some similar techniques. The third contribution is concerned with an offline handwriter identification approach based on the convolutional neural network technology. At the first stage, the Alex-Net architecture was employed to learn image features (handwritten scripts) and the features obtained from the fully connected layers of the model. Then, a Support vector machine classifier is deployed to classify the writing styles of the various handwriters. In this way, the test scripts can be classified by the CNN training model for further classification. The proposed approach was evaluated based on Arabic Historical datasets; Islamic Heritage Project (IHP) and Qatar National Library (QNL). The obtained results demonstrated that the proposed model achieved superior performances when compared to some similar method

    Face Anti-Spoofing and Deep Learning Based Unsupervised Image Recognition Systems

    Get PDF
    One of the main problems of a supervised deep learning approach is that it requires large amounts of labeled training data, which are not always easily available. This PhD dissertation addresses the above-mentioned problem by using a novel unsupervised deep learning face verification system called UFace, that does not require labeled training data as it automatically, in an unsupervised way, generates training data from even a relatively small size of data. The method starts by selecting, in unsupervised way, k-most similar and k-most dissimilar images for a given face image. Moreover, this PhD dissertation proposes a new loss function to make it work with the proposed method. Specifically, the method computes loss function k times for both similar and dissimilar images for each input image in order to increase the discriminative power of feature vectors to learn the inter-class and intra-class face variability. The training is carried out based on the similar and dissimilar input face image vector rather than the same training input face image vector in order to extract face embeddings. The UFace is evaluated on four benchmark face verification datasets: Labeled Faces in the Wild dataset (LFW), YouTube Faces dataset (YTF), Cross-age LFW (CALFW) and Celebrities in Frontal Profile in the Wild (CFP-FP) datasets. The results show that we gain an accuracy of 99.40\%, 96.04\%, 95.12\% and 97.89\% respectively. The achieved results, despite being unsupervised, is on par to a similar but fully supervised methods. Another, related to face verification, area of research is on face anti-spoofing systems. State-of-the-art face anti-spoofing systems use either deep learning, or manually extracted image quality features. However, many of the existing image quality features used in face anti-spoofing systems are not well discriminating spoofed and genuine faces. Additionally, State-of-the-art face anti-spoofing systems that use deep learning approaches do not generalize well. Thus, to address the above problem, this PhD dissertation proposes hybrid face anti-spoofing system that considers the best from image quality feature and deep learning approaches. This work selects and proposes a set of seven novel no-reference image quality features measurement, that discriminate well between spoofed and genuine faces, to complement the deep learning approach. It then, proposes two approaches: In the first approach, the scores from the image quality features are fused with the deep learning classifier scores in a weighted fashion. The combined scores are used to determine whether a given input face image is genuine or spoofed. In the second approach, the image quality features are concatenated with the deep learning features. Then, the concatenated features vector is fed to the classifier to improve the performance and generalization of anti-spoofing system. Extensive evaluations are conducted to evaluate their performance on five benchmark face anti-spoofing datasets: Replay-Attack, CASIA-MFSD, MSU-MFSD, OULU-NPU and SiW. Experiments on these datasets show that it gives better results than several of the state-of-the-art anti-spoofing systems in many scenarios

    Configraphics:

    Get PDF
    This dissertation reports a PhD research on mathematical-computational models, methods, and techniques for analysis, synthesis, and evaluation of spatial configurations in architecture and urban design. Spatial configuration is a technical term that refers to the particular way in which a set of spaces are connected to one another as a network. Spatial configuration affects safety, security, and efficiency of functioning of complex buildings by facilitating certain patterns of movement and/or impeding other patterns. In cities and suburban built environments, spatial configuration affects accessibilities and influences travel behavioural patterns, e.g. choosing walking and cycling for short trips instead of travelling by cars. As such, spatial configuration effectively influences the social, economic, and environmental functioning of cities and complex buildings, by conducting human movement patterns. In this research, graph theory is used to mathematically model spatial configurations in order to provide intuitive ways of studying and designing spatial arrangements for architects and urban designers. The methods and tools presented in this dissertation are applicable in: arranging spatial layouts based on configuration graphs, e.g. by using bubble diagrams to ensure certain spatial requirements and qualities in complex buildings; and analysing the potential effects of decisions on the likely spatial performance of buildings and on mobility patterns in built environments for systematic comparison of designs or plans, e.g. as to their aptitude for pedestrians and cyclists. The dissertation reports two parallel tracks of work on architectural and urban configurations. The core concept of the architectural configuration track is the ‘bubble diagram’ and the core concept of the urban configuration track is the ‘easiest paths’ for walking and cycling. Walking and cycling have been chosen as the foci of this theme as they involve active physical, cognitive, and social encounter of people with built environments, all of which are influenced by spatial configuration. The methodologies presented in this dissertation have been implemented in design toolkits and made publicly available as freeware applications

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    3D shape matching and registration : a probabilistic perspective

    Get PDF
    Dense correspondence is a key area in computer vision and medical image analysis. It has applications in registration and shape analysis. In this thesis, we develop a technique to recover dense correspondences between the surfaces of neuroanatomical objects over heterogeneous populations of individuals. We recover dense correspondences based on 3D shape matching. In this thesis, the 3D shape matching problem is formulated under the framework of Markov Random Fields (MRFs). We represent the surfaces of neuroanatomical objects as genus zero voxel-based meshes. The surface meshes are projected into a Markov random field space. The projection carries both geometric and topological information in terms of Gaussian curvature and mesh neighbourhood from the original space to the random field space. Gaussian curvature is projected to the nodes of the MRF, and the mesh neighbourhood structure is projected to the edges. 3D shape matching between two surface meshes is then performed by solving an energy function minimisation problem formulated with MRFs. The outcome of the 3D shape matching is dense point-to-point correspondences. However, the minimisation of the energy function is NP hard. In this thesis, we use belief propagation to perform the probabilistic inference for 3D shape matching. A sparse update loopy belief propagation algorithm adapted to the 3D shape matching is proposed to obtain an approximate global solution for the 3D shape matching problem. The sparse update loopy belief propagation algorithm demonstrates significant efficiency gain compared to standard belief propagation. The computational complexity and convergence property analysis for the sparse update loopy belief propagation algorithm are also conducted in the thesis. We also investigate randomised algorithms to minimise the energy function. In order to enhance the shape matching rate and increase the inlier support set, we propose a novel clamping technique. The clamping technique is realized by combining the loopy belief propagation message updating rule with the feedback from 3D rigid body registration. By using this clamping technique, the correct shape matching rate is increased significantly. Finally, we investigate 3D shape registration techniques based on the 3D shape matching result. Based on the point-to-point dense correspondences obtained from the 3D shape matching, a three-point based transformation estimation technique is combined with the RANdom SAmple Consensus (RANSAC) algorithm to obtain the inlier support set. The global registration approach is purely dependent on point-wise correspondences between two meshed surfaces. It has the advantage that the need for orientation initialisation is eliminated and that all shapes of spherical topology. The comparison of our MRF based 3D registration approach with a state-of-the-art registration algorithm, the first order ellipsoid template, is conducted in the experiments. These show dense correspondence for pairs of hippocampi from two different data sets, each of around 20 60+ year old healthy individuals

    Visual Analytics Methods for Exploring Geographically Networked Phenomena

    Get PDF
    abstract: The connections between different entities define different kinds of networks, and many such networked phenomena are influenced by their underlying geographical relationships. By integrating network and geospatial analysis, the goal is to extract information about interaction topologies and the relationships to related geographical constructs. In the recent decades, much work has been done analyzing the dynamics of spatial networks; however, many challenges still remain in this field. First, the development of social media and transportation technologies has greatly reshaped the typologies of communications between different geographical regions. Second, the distance metrics used in spatial analysis should also be enriched with the underlying network information to develop accurate models. Visual analytics provides methods for data exploration, pattern recognition, and knowledge discovery. However, despite the long history of geovisualizations and network visual analytics, little work has been done to develop visual analytics tools that focus specifically on geographically networked phenomena. This thesis develops a variety of visualization methods to present data values and geospatial network relationships, which enables users to interactively explore the data. Users can investigate the connections in both virtual networks and geospatial networks and the underlying geographical context can be used to improve knowledge discovery. The focus of this thesis is on social media analysis and geographical hotspots optimization. A framework is proposed for social network analysis to unveil the links between social media interactions and their underlying networked geospatial phenomena. This will be combined with a novel hotspot approach to improve hotspot identification and boundary detection with the networks extracted from urban infrastructure. Several real world problems have been analyzed using the proposed visual analytics frameworks. The primary studies and experiments show that visual analytics methods can help analysts explore such data from multiple perspectives and help the knowledge discovery process.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    • …
    corecore