108 research outputs found

    Optimal intrinsic descriptors for non-rigid shape analysis

    Get PDF
    We propose novel point descriptors for 3D shapes with the potential to match two shapes representing the same object undergoing natural deformations. These deformations are more general than the often assumed isometries, and we use labeled training data to learn optimal descriptors for such cases. Furthermore, instead of explicitly defining the descriptor, we introduce new Mercer kernels, for which we formally show that their corresponding feature space mapping is a generalization of either the Heat Kernel Signature or the Wave Kernel Signature. I.e. the proposed descriptors are guaranteed to be at least as precise as any Heat Kernel Signature or Wave Kernel Signature of any parameterisation. In experiments, we show that our implicitly defined, infinite-dimensional descriptors can better deal with non-isometric deformations than state-of-the-art methods

    Graph Spectral Characterization of Brain Cortical Morphology

    Full text link
    The human brain cortical layer has a convoluted morphology that is unique to each individual. Characterization of the cortical morphology is necessary in longitudinal studies of structural brain change, as well as in discriminating individuals in health and disease. A method for encoding the cortical morphology in the form of a graph is presented. The design of graphs that encode the global cerebral hemisphere cortices as well as localized cortical regions is proposed. Spectral metrics derived from these graphs are then studied and proposed as descriptors of cortical morphology. As proof-of-concept of their applicability in characterizing cortical morphology, the metrics are studied in the context of hemispheric asymmetry as well as gender dependent discrimination of cortical morphology.Comment: arXiv admin note: substantial text overlap with arXiv:1810.1033

    BrainPrint: Identifying Subjects by Their Brain

    Get PDF
    Introducing BrainPrint, a compact and discriminative representation of anatomical structures in the brain. BrainPrint captures shape information of an ensemble of cortical and subcortical structures by solving the 2D and 3D Laplace-Beltrami operator on triangular (boundary) and tetrahedral (volumetric) meshes. We derive a robust classifier for this representation that identifies the subject in a new scan, based on a database of brain scans. In an example dataset containing over 3000 MRI scans, we show that BrainPrint captures unique information about the subject’s anatomy and permits to correctly classify a scan with an accuracy of over 99.8%. All processing steps for obtaining the compact representation are fully automated making this processing framework particularly attractive for handling large datasets.Alexander von Humboldt-StiftungAthinoula A. Martinos Center for Biomedical Imaging (P41-RR014075)Athinoula A. Martinos Center for Biomedical Imaging (P41-EB015896)National Alliance for Medical Image Computing (U.S.) (U54-EB005149)Neuroimaging Analysis Center (U.S.) (P41-EB015902
    • …
    corecore