137 research outputs found

    Surgical Applications of Compliant Mechanisms:A Review

    Get PDF
    Current surgical devices are mostly rigid and are made of stiff materials, even though their predominant use is on soft and wet tissues. With the emergence of compliant mechanisms (CMs), surgical tools can be designed to be flexible and made using soft materials. CMs offer many advantages such as monolithic fabrication, high precision, no wear, no friction, and no need for lubrication. It is therefore beneficial to consolidate the developments in this field and point to challenges ahead. With this objective, in this article, we review the application of CMs to surgical interventions. The scope of the review covers five aspects that are important in the development of surgical devices: (i) conceptual design and synthesis, (ii) analysis, (iii) materials, (iv) maim facturing, and (v) actuation. Furthermore, the surgical applications of CMs are assessed by classification into five major groups, namely, (i) grasping and cutting, (ii) reachability and steerability, (iii) transmission, (iv) sensing, and (v) implants and deployable devices. The scope and prospects of surgical devices using CMs are also discussed

    Realization of a demonstrator slave for robotic minimally invasive surgery

    Get PDF
    Robots for Minimally Invasive Surgery (MIS) can improve the surgeon’s work conditions with respect to conventional MIS and to enable MIS with more complex procedures. This requires to provide the surgeon with tactile feedback to feel forces executed on e.g. tissue and sutures, which is partially lost in conventional MIS. Additionally use of a robot should improve the approach possibilities of a target organ by means of instrument degrees of freedom (DoFs) and of the entry points with a compact set-up. These requirements add to the requirements set by the most common commercially available system, the da Vinci which are: (i) dexterity, (ii) natural hand-eye coordination, (iii) a comfortable body posture, (iv) intuitive utilization, and (v) a stereoscopic ’3D’ view of the operation site. The purpose of Sofie (Surgeon’s operating force-feedback interface Eindhoven) is to evaluate the possible benefit of force-feedback and the approach of both patient and target organ. Sofie integrates master, slave, electronic hardware and control. This thesis focusses on the design and realization of a technology demonstrator of the Slave. To provide good accuracy and valuable force-feedback, good dynamic behavior and limited hysteresis are required. To this end the Slave includes (i) a relatively short force-path between its instrument-tips and between tip and patient, and (ii) a passive instrument-support by means of a remote kinematically fixed point of rotation. The incision tissue does not support the instrument. The Slave is connected directly to the table. It provides a 20 DoF highly adaptable stiff frame (pre-surgical set-up) with a short force-path between the instrumenttips and between instrument-tip and patient. During surgery this frame supports three 4 DoF manipulators, two for exchangeable 4 DoF instruments and one for an endoscope. The pre-surgical set-up of the Slave consists of a 5 DoF platform-adjustment with a platform. This platform can hold three 5 DoF manipulator-adjustments in line-up. The set-up is compact to avoid interference with the team, entirely mechanical and allows fast manual adjustment and fixation of the joints. It provides a stiff frame during surgery. A weight-compensation mechanism for the platformadjustment has been proposed. Measurements indicate all natural frequencies are above 25 Hz. The manipulator moves the instrument in 4 DoFs (??, , ?? and Z). Each manipulator passively supports its instrument with a parallelogram mechanism, providing a kinematically fixed point of rotation. Two manipulators have been designed in consecutive order. The first manipulator drives with a worm-wormwheel, the second design uses a ball-screw drive. This ball-screw drive reduces friction, which is preferred for next generations of the manipulator, since the worm-wormwheel drive shows a relatively low coherence at low frequencies. The compact ??Zmanipulator moves the instrument in ?? by rotating a drum. Friction wheels in the drum provide Z. Eventually, the drum will be removable from the manipulator for sterilization. This layout of the manipulator results in a small motion-envelope and least obstructs the team at the table. Force sensors measuring forces executed with the instrument, are integrated in the manipulator instead of at the instrument tip, to avoid all risks of electrical signals being introduced into the patient. Measurements indicate the separate sensors function properly. Integrated in the manipulator the sensors provide a good indication of the force but do suffer from some hysteresis which might be caused by moving wires. The instrument as realized consists of a drive-box, an instrument-tube and a 4 DoF tip. It provides the surgeon with three DoFs additional to the gripper of conventional MIS instruments. These DoFs include two lateral rotations (pitch and pivot) to improve the approach possibilities and the roll DoF will contribute in stitching. Pitch and roll are driven by means of bevelgears, driven with concentric tubes. Cables drive the pivot and close DoFs of the gripper. The transmissions are backdriveable for safety. Theoretical torques that can be achieved with this instrument approximate the requirements closely. Further research needs to reveal the torques achieved in practice and whether the requirements obtained from literature actually are required for these 4 DoF instruments. Force-sensors are proposed and can be integrated. Sofie currently consists of a master prototype with two 5 DoF haptic interfaces, the Slave and an electronic hardware cabinet. The surgeon uses the haptic interfaces of the Master to manipulate the manipulators and instruments of the Slave, while the actuated DoFs of the Master provide the surgeon with force-feedback. This project resulted in a demonstrator of the slave with force sensors incorporated, compact for easy approach of the patient and additional DoFs to increase approach possibilities of the target organ. This slave and master provide a good starting point to implement haptic controllers. These additional features may ultimately benefit both surgeon and patient

    Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook

    Get PDF
    Since the emergence of soft robotics around two decades ago, research interest in the field has escalated at a pace. It is fuelled by the industry's appreciation of the wide range of soft materials available that can be used to create highly dexterous robots with adaptability characteristics far beyond that which can be achieved with rigid component devices. The ability, inherent in soft robots, to compliantly adapt to the environment, has significantly sparked interest from the surgical robotics community. This article provides an in-depth overview of recent progress and outlines the remaining challenges in the development of soft robotics for minimally invasive surgery

    Medical robots with potential applications in participatory and opportunistic remote sensing: A review

    Get PDF
    Among numerous applications of medical robotics, this paper concentrates on the design, optimal use and maintenance of the related technologies in the context of healthcare, rehabilitation and assistive robotics, and provides a comprehensive review of the latest advancements in the foregoing field of science and technology, while extensively dealing with the possible applications of participatory and opportunistic mobile sensing in the aforementioned domains. The main motivation for the latter choice is the variety of such applications in the settings having partial contributions to functionalities such as artery, radiosurgery, neurosurgery and vascular intervention. From a broad perspective, the aforementioned applications can be realized via various strategies and devices benefiting from detachable drives, intelligent robots, human-centric sensing and computing, miniature and micro-robots. Throughout the paper tens of subjects, including sensor-fusion, kinematic, dynamic and 3D tissue models are discussed based on the existing literature on the state-of-the-art technologies. In addition, from a managerial perspective, topics such as safety monitoring, security, privacy and evolutionary optimization of the operational efficiency are reviewed

    Robotics-Assisted Needle Steering for Percutaneous Interventions: Modeling and Experiments

    Get PDF
    Needle insertion and guidance plays an important role in medical procedures such as brachytherapy and biopsy. Flexible needles have the potential to facilitate precise targeting and avoid collisions during medical interventions while reducing trauma to the patient and post-puncture issues. Nevertheless, error introduced during guidance degrades the effectiveness of the planned therapy or diagnosis. Although steering using flexible bevel-tip needles provides great mobility and dexterity, a major barrier is the complexity of needle-tissue interaction that does not lend itself to intuitive control. To overcome this problem, a robotic system can be employed to perform trajectory planning and tracking by manipulation of the needle base. This research project focuses on a control-theoretic approach and draws on the rich literature from control and systems theory to model needle-tissue interaction and needle flexion and then design a robotics-based strategy for needle insertion/steering. The resulting solutions will directly benefit a wide range of needle-based interventions. The outcome of this computer-assisted approach will not only enable us to perform efficient preoperative trajectory planning, but will also provide more insight into needle-tissue interaction that will be helpful in developing advanced intraoperative algorithms for needle steering. Experimental validation of the proposed methodologies was carried out on a state of-the-art 5-DOF robotic system designed and constructed in-house primarily for prostate brachytherapy. The system is equipped with a Nano43 6-DOF force/torque sensor (ATI Industrial Automation) to measure forces and torques acting on the needle shaft. In our setup, an Aurora electromagnetic tracker (Northern Digital Inc.) is the sensing device used for measuring needle deflection. A multi-threaded application for control, sensor readings, data logging and communication over the ethernet was developed using Microsoft Visual C 2005, MATLAB 2007 and the QuaRC Toolbox (Quanser Inc.). Various artificial phantoms were developed so as to create a realistic medium in terms of elasticity and insertion force ranges; however, they simulated a uniform environment without exhibiting complexities of organic tissues. Experiments were also conducted on beef liver and fresh chicken breast, beef, and ham, to investigate the behavior of a variety biological tissues

    Determining the Biomechanical Behavior of the Liver Using Medical Image Analysis and Evolutionary Computation

    Full text link
    Modeling the liver deformation forms the basis for the development of new clinical applications that improve the diagnosis, planning and guidance in liver surgery. However, the patient-specific modeling of this organ and its validation are still a challenge in Biomechanics. The reason is the difficulty to measure the mechanical response of the in vivo liver tissue. The current approach consist of performing minimally invasive or open surgery aimed at estimating the elastic constant of the proposed biomechanical models. This dissertation presents how the use of medical image analysis and evolutionary computation allows the characterization of the biomechanical behavior of the liver, avoiding the use of these minimally invasive techniques. In particular, the use of similarity coefficients commonly used in medical image analysis has permitted, on one hand, to estimate the patient-specific biomechanical model of the liver avoiding the invasive measurement of its mechanical response. On the other hand, these coefficients have also permitted to validate the proposed biomechanical models. Jaccard coefficient and Hausdorff distance have been used to validate the models proposed to simulate the behavior of ex vivo lamb livers, calculating the error between the volume of the experimentally deformed samples of the livers and the volume from biomechanical simulations of these deformations. These coefficients has provided information, such as the shape of the samples and the error distribution along their volume. For this reason, both coefficients have also been used to formulate a novel function, the Geometric Similarity Function (GSF). This function has permitted to establish a methodology to estimate the elastic constants of the models proposed for the human liver using evolutionary computation. Several optimization strategies, using GSF as cost function, have been developed aimed at estimating the patient-specific elastic constants of the biomechanical models proposed for the human liver. Finally, this methodology has been used to define and validate a biomechanical model proposed for an in vitro human liver.Martínez Martínez, F. (2014). Determining the Biomechanical Behavior of the Liver Using Medical Image Analysis and Evolutionary Computation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/39337TESI

    From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots

    No full text

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces
    • …
    corecore