12,856 research outputs found

    Language-based Feedback Control Using Monte Carlo Sensing *

    Get PDF
    Abstract-Landmark-based graphs are a useful and parsimonious tool for representing large scale environments. Relating landmarks by means of feedback-control algorithms encoded in a motion description language provides a level of abstraction that enables autonomous vehicles to navigate effectively by composing strings in the language to form complex strategies that would be difficult to design at the level of sensors and actuators. In such a setting, feedback control requires one to pay attention not only to sensor and actuator uncertainty, but also to the ambiguity introduced by the fact that many landmarks may look similar when using a modest set of observations. This work discusses the generation of language-based feedback control sequences for landmark-based navigation together with the problem of sensing landmarks sufficiently well to make feedback meaningful. The paper makes two contributions. First, we extend previous work to include the costs of sensing with varying degrees of accuracy. Second, we describe a Monte Carlo based approach to landmark sensing which relies on the use of particle filters. We include simulation results that illustrate our approach

    It’s a long way to Monte-Carlo: probabilistic display in GPS navigation

    Get PDF
    We present a mobile, GPS-based multimodal navigation system, equipped with inertial control that allows users to explore and navigate through an augmented physical space, incorporating and displaying the uncertainty resulting from inaccurate sensing and unknown user intentions. The system propagates uncertainty appropriately via Monte Carlo sampling and predicts at a user-controllable time horizon. Control of the Monte Carlo exploration is entirely tilt-based. The system output is displayed both visually and in audio. Audio is rendered via granular synthesis to accurately display the probability of the user reaching targets in the space. We also demonstrate the use of uncertain prediction in a trajectory following task, where a section of music is modulated according to the changing predictions of user position with respect to the target trajectory. We show that appropriate display of the full distribution of potential future users positions with respect to sites-of-interest can improve the quality of interaction over a simplistic interpretation of the sensed data

    Embodied Artificial Intelligence through Distributed Adaptive Control: An Integrated Framework

    Full text link
    In this paper, we argue that the future of Artificial Intelligence research resides in two keywords: integration and embodiment. We support this claim by analyzing the recent advances of the field. Regarding integration, we note that the most impactful recent contributions have been made possible through the integration of recent Machine Learning methods (based in particular on Deep Learning and Recurrent Neural Networks) with more traditional ones (e.g. Monte-Carlo tree search, goal babbling exploration or addressable memory systems). Regarding embodiment, we note that the traditional benchmark tasks (e.g. visual classification or board games) are becoming obsolete as state-of-the-art learning algorithms approach or even surpass human performance in most of them, having recently encouraged the development of first-person 3D game platforms embedding realistic physics. Building upon this analysis, we first propose an embodied cognitive architecture integrating heterogenous sub-fields of Artificial Intelligence into a unified framework. We demonstrate the utility of our approach by showing how major contributions of the field can be expressed within the proposed framework. We then claim that benchmarking environments need to reproduce ecologically-valid conditions for bootstrapping the acquisition of increasingly complex cognitive skills through the concept of a cognitive arms race between embodied agents.Comment: Updated version of the paper accepted to the ICDL-Epirob 2017 conference (Lisbon, Portugal

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Formal and Informal Methods for Multi-Core Design Space Exploration

    Full text link
    We propose a tool-supported methodology for design-space exploration for embedded systems. It provides means to define high-level models of applications and multi-processor architectures and evaluate the performance of different deployment (mapping, scheduling) strategies while taking uncertainty into account. We argue that this extension of the scope of formal verification is important for the viability of the domain.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Multimodal, Embodied and Location-Aware Interaction

    Get PDF
    This work demonstrates the development of mobile, location-aware, eyes-free applications which utilise multiple sensors to provide a continuous, rich and embodied interaction. We bring together ideas from the fields of gesture recognition, continuous multimodal interaction, probability theory and audio interfaces to design and develop location-aware applications and embodied interaction in both a small-scale, egocentric body-based case and a large-scale, exocentric `world-based' case. BodySpace is a gesture-based application, which utilises multiple sensors and pattern recognition enabling the human body to be used as the interface for an application. As an example, we describe the development of a gesture controlled music player, which functions by placing the device at different parts of the body. We describe a new approach to the segmentation and recognition of gestures for this kind of application and show how simulated physical model-based interaction techniques and the use of real world constraints can shape the gestural interaction. GpsTunes is a mobile, multimodal navigation system equipped with inertial control that enables users to actively explore and navigate through an area in an augmented physical space, incorporating and displaying uncertainty resulting from inaccurate sensing and unknown user intention. The system propagates uncertainty appropriately via Monte Carlo sampling and output is displayed both visually and in audio, with audio rendered via granular synthesis. We demonstrate the use of uncertain prediction in the real world and show that appropriate display of the full distribution of potential future user positions with respect to sites-of-interest can improve the quality of interaction over a simplistic interpretation of the sensed data. We show that this system enables eyes-free navigation around set trajectories or paths unfamiliar to the user for varying trajectory width and context. We demon- strate the possibility to create a simulated model of user behaviour, which may be used to gain an insight into the user behaviour observed in our field trials. The extension of this application to provide a general mechanism for highly interactive context aware applications via density exploration is also presented. AirMessages is an example application enabling users to take an embodied approach to scanning a local area to find messages left in their virtual environment
    • …
    corecore