197 research outputs found

    Language components for modular DSLs using traits

    Get PDF
    Recent advances in tooling and modern programming languages have progressively brought back the practice of developing domain-specific languages as a means to improve software development. Consequently, the problem of making composition between languages easier by emphasizing code reuse and componentized programming is a topic of increasing interest in research. In fact, it is not uncommon for different languages to share common features, and, because in the same project different DSLs may coexist to model concepts from different problem areas, it is interesting to study ways to develop modular, extensible languages. Earlier work has shown that traits can be used to modularize the semantics of a language implementation; a lot of attention is often spent on embedded DSLs; even when external DSLs are discussed, the main focus is on modularizing the semantics. In this paper we will show a complete trait-based approach to modularize not only the semantics but also the syntax of external DSLs, thereby simplifying extension and therefore evolution of a language implementation. We show the benefits of implementing these techniques using the Scala programming language

    Reify Your Collection Queries for Modularity and Speed!

    Full text link
    Modularity and efficiency are often contradicting requirements, such that programers have to trade one for the other. We analyze this dilemma in the context of programs operating on collections. Performance-critical code using collections need often to be hand-optimized, leading to non-modular, brittle, and redundant code. In principle, this dilemma could be avoided by automatic collection-specific optimizations, such as fusion of collection traversals, usage of indexing, or reordering of filters. Unfortunately, it is not obvious how to encode such optimizations in terms of ordinary collection APIs, because the program operating on the collections is not reified and hence cannot be analyzed. We propose SQuOpt, the Scala Query Optimizer--a deep embedding of the Scala collections API that allows such analyses and optimizations to be defined and executed within Scala, without relying on external tools or compiler extensions. SQuOpt provides the same "look and feel" (syntax and static typing guarantees) as the standard collections API. We evaluate SQuOpt by re-implementing several code analyses of the Findbugs tool using SQuOpt, show average speedups of 12x with a maximum of 12800x and hence demonstrate that SQuOpt can reconcile modularity and efficiency in real-world applications.Comment: 20 page

    Building-Blocks for Performance Oriented DSLs

    Full text link
    Domain-specific languages raise the level of abstraction in software development. While it is evident that programmers can more easily reason about very high-level programs, the same holds for compilers only if the compiler has an accurate model of the application domain and the underlying target platform. Since mapping high-level, general-purpose languages to modern, heterogeneous hardware is becoming increasingly difficult, DSLs are an attractive way to capitalize on improved hardware performance, precisely by making the compiler reason on a higher level. Implementing efficient DSL compilers is a daunting task however, and support for building performance-oriented DSLs is urgently needed. To this end, we present the Delite Framework, an extensible toolkit that drastically simplifies building embedded DSLs and compiling DSL programs for execution on heterogeneous hardware. We discuss several building blocks in some detail and present experimental results for the OptiML machine-learning DSL implemented on top of Delite.Comment: In Proceedings DSL 2011, arXiv:1109.032

    Liberating Composition from Language Dictatorship

    Get PDF
    Historically, programming languages have been—although benevolent—dictators: fixing a lot of semantics into built-in language constructs. Over the years, (some) programming languages have freed the programmers from restrictions to use only built-in libraries, built-in data types, or built-in type checking rules. Even though, arguably, such freedom could lead to anarchy, or people shooting themselves in the foot, the contrary tends to be the case: a language that does not allow for extensibility, is depriving software engineers from the ability to construct proper abstractions and to structure software in the most optimal way. Instead, the software becomes less structured and maintainable than would be possible if the software engineer could express the behavior of the program with the most appropriate abstractions. The new idea proposed by this paper is to move composition from built-in language constructs to programmable, first-class abstractions in the language. As an emerging result, we present the Co-op concept of a language, which shows that it is possible with a relatively simple model to express a wide range of compositions as first-class concepts

    Solving the Expression Problem in C++, à la LMS

    Get PDF

    A Golden Age of Hardware Description Languages: Applying Programming Language Techniques to Improve Design Productivity

    Get PDF
    Leading experts have declared that there is an impending golden age of computer architecture. During this age, the rate at which architects will be able to innovate will be directly tied to the design and implementation of the hardware description languages they use. Thus, the programming languages community stands on the critical path to this new golden age. This implies that we are also on the cusp of a golden age of hardware description languages. In this paper, we discuss the intellectual challenges facing researchers interested in hardware description language design, compilers, and formal methods. The major theme will be identifying opportunities to apply programming language techniques to address issues in hardware design productivity. Then, we present a vision for a multi-language system that provides a framework for developing solutions to these intellectual problems. This vision is based on a meta-programmed host language combined with a core embedded hardware description language that is used as the basis for the research and development of a sea of domain-specific languages. Central to the design of this system is the core language which is based on an abstraction that provides a general mechanism for the composition of hardware components described in any language
    • …
    corecore