6 research outputs found

    Graph-Controlled Insertion-Deletion Systems

    Full text link
    In this article, we consider the operations of insertion and deletion working in a graph-controlled manner. We show that like in the case of context-free productions, the computational power is strictly increased when using a control graph: computational completeness can be obtained by systems with insertion or deletion rules involving at most two symbols in a contextual or in a context-free manner and with the control graph having only four nodes.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Strong inapproximability of the shortest reset word

    Full text link
    The \v{C}ern\'y conjecture states that every nn-state synchronizing automaton has a reset word of length at most (n1)2(n-1)^2. We study the hardness of finding short reset words. It is known that the exact version of the problem, i.e., finding the shortest reset word, is NP-hard and coNP-hard, and complete for the DP class, and that approximating the length of the shortest reset word within a factor of O(logn)O(\log n) is NP-hard [Gerbush and Heeringa, CIAA'10], even for the binary alphabet [Berlinkov, DLT'13]. We significantly improve on these results by showing that, for every ϵ>0\epsilon>0, it is NP-hard to approximate the length of the shortest reset word within a factor of n1ϵn^{1-\epsilon}. This is essentially tight since a simple O(n)O(n)-approximation algorithm exists.Comment: extended abstract to appear in MFCS 201

    Synchronizing Data Words for Register Automata

    Full text link
    Register automata (RAs) are finite automata extended with a finite set of registers to store and compare data from an infinite domain. We study the concept of synchronizing data words in RAs: does there exist a data word that sends all states of the RA to a single state? For deterministic RAs with k registers (k-DRAs), we prove that inputting data words with 2k+1 distinct data from the infinite data domain is sufficient to synchronize. We show that the synchronization problem for DRAs is in general PSPACE-complete, and it is NLOGSPACE-complete for 1-DRAs. For nondeterministic RAs (NRAs), we show that Ackermann(n) distinct data (where n is the size of the RA) might be necessary to synchronize. The synchronization problem for NRAs is in general undecidable, however, we establish Ackermann-completeness of the problem for 1-NRAs. Another main result is the NEXPTIME-completeness of the length-bounded synchronization problem for NRAs, where a bound on the length of the synchronizing data word, written in binary, is given. A variant of this last construction allows to prove that the length-bounded universality problem for NRAs is co-NEXPTIME-complete

    On prefixal one-rule string rewrite systems

    Get PDF
    International audiencePrefixal one-rule string rewrite systems are one-rule string rewrite systems for which the left-hand side of the rule is a prefix of the right-hand side of the rule. String rewrite systems induce a transformation over languages: from a starting word, one can associate all its descendants. We prove, in this work, that the transformation induced by a prefixal one-rule rewrite system always transforms a finite language into a context-free language, a property that is surprisingly not satisfied by arbitrary one-rule rewrite systems. We also give here a decidable characterization of the prefixal one-rule rewrite systems whose induced transformation is a rational transduction

    Synchronizing automata over nested words

    Get PDF
    We extend the concept of a synchronizing word from deterministic finite-state automata (DFA) to nested word automata (NWA): A well-matched nested word is called synchronizing if it resets the control state of any configuration, i. e., takes the NWA from all control states to a single control state. We show that although the shortest synchronizing word for an NWA, if it exists, can be (at most) exponential in the size of the NWA, the existence of such a word can still be decided in polynomial time. As our main contribution, we show that deciding the existence of a short synchronizing word (of at most given length) becomes PSPACE-complete (as opposed to NP-complete for DFA). The upper bound makes a connection to pebble games and Strahler numbers, and the lower bound goes via small-cost synchronizing words for DFA, an intermediate problem that we also show PSPACE-complete. We also characterize the complexity of a number of related problems, using the observation that the intersection nonemptiness problem for NWA is EXP-complete

    Complexity and modeling power of insertion-deletion systems

    Get PDF
    SISTEMAS DE INSERCIÓN Y BORRADO: COMPLEJIDAD Y CAPACIDAD DE MODELADO El objetivo central de la tesis es el estudio de los sistemas de inserción y borrado y su capacidad computacional. Más concretamente, estudiamos algunos modelos de generación de lenguaje que usan operaciones de reescritura de dos cadenas. También consideramos una variante distribuida de los sistemas de inserción y borrado en el sentido de que las reglas se separan entre un número finito de nodos de un grafo. Estos sistemas se denominan sistemas controlados mediante grafo, y aparecen en muchas áreas de la Informática, jugando un papel muy importante en los lenguajes formales, la lingüística y la bio-informática. Estudiamos la decidibilidad/ universalidad de nuestros modelos mediante la variación de los parámetros de tamaño del vector. Concretamente, damos respuesta a la cuestión más importante concerniente a la expresividad de la capacidad computacional: si nuestro modelo es equivalente a una máquina de Turing o no. Abordamos sistemáticamente las cuestiones sobre los tamaños mínimos de los sistemas con y sin control de grafo.COMPLEXITY AND MODELING POWER OF INSERTION-DELETION SYSTEMS The central object of the thesis are insertion-deletion systems and their computational power. More specifically, we study language generating models that use two string rewriting operations: contextual insertion and contextual deletion, and their extensions. We also consider a distributed variant of insertion-deletion systems in the sense that rules are separated among a finite number of nodes of a graph. Such systems are refereed as graph-controlled systems. These systems appear in many areas of Computer Science and they play an important role in formal languages, linguistics, and bio-informatics. We vary the parameters of the vector of size of insertion-deletion systems and we study decidability/universality of obtained models. More precisely, we answer the most important questions regarding the expressiveness of the computational model: whether our model is Turing equivalent or not. We systematically approach the questions about the minimal sizes of the insertiondeletion systems with and without the graph-control
    corecore