106,608 research outputs found

    Language Modeling Approaches to Information Retrieval

    Get PDF
    This article surveys recent research in the area of language modeling (sometimes called statistical language modeling) approaches to information retrieval. Language modeling is a formal probabilistic retrieval framework with roots in speech recognition and natural language processing. The underlying assumption of language modeling is that human language generation is a random process; the goal is to model that process via a generative statistical model. In this article, we discuss current research in the application of language modeling to information retrieval, the role of semantics in the language modeling framework, cluster-based language models, use of language modeling for XML retrieval and future trends

    A database approach to information retrieval:The remarkable relationship between language models and region models

    Get PDF
    In this report, we unify two quite distinct approaches to information retrieval: region models and language models. Region models were developed for structured document retrieval. They provide a well-defined behaviour as well as a simple query language that allows application developers to rapidly develop applications. Language models are particularly useful to reason about the ranking of search results, and for developing new ranking approaches. The unified model allows application developers to define complex language modeling approaches as logical queries on a textual database. We show a remarkable one-to-one relationship between region queries and the language models they represent for a wide variety of applications: simple ad-hoc search, cross-language retrieval, video retrieval, and web search

    Automatic query expansion: A structural linguistic perspective

    Get PDF
    A user’s query is considered to be an imprecise description of their information need. Automatic query expansion is the process of reformulating the original query with the goal of improving retrieval effectiveness. Many successful query expansion techniques ignore information about the dependencies that exist between words in natural language. However, more recent approaches have demonstrated that by explicitly modeling associations between terms significant improvements in retrieval effectiveness can be achieved over those that ignore these dependencies. State-of-the-art dependency-based approaches have been shown to primarily model syntagmatic associations. Syntagmatic associations infer a likelihood that two terms co-occur more often than by chance. However, structural linguistics relies on both syntagmatic and paradigmatic associations to deduce the meaning of a word. Given the success of dependency-based approaches and the reliance on word meanings in the query formulation process, we argue that modeling both syntagmatic and paradigmatic information in the query expansion process will improve retrieval effectiveness. This article develops and evaluates a new query expansion technique that is based on a formal, corpus-based model of word meaning that models syntagmatic and paradigmatic associations. We demonstrate that when sufficient statistical information exists, as in the case of longer queries, including paradigmatic information alone provides significant improvements in retrieval effectiveness across a wide variety of data sets. More generally, when our new query expansion approach is applied to large-scale web retrieval it demonstrates significant improvements in retrieval effectiveness over a strong baseline system, based on a commercial search engine

    Dense Text Retrieval based on Pretrained Language Models: A Survey

    Full text link
    Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval

    Bias-variance analysis in estimating true query model for information retrieval

    Get PDF
    The estimation of query model is an important task in language modeling (LM) approaches to information retrieval (IR). The ideal estimation is expected to be not only effective in terms of high mean retrieval performance over all queries, but also stable in terms of low variance of retrieval performance across different queries. In practice, however, improving effectiveness can sacrifice stability, and vice versa. In this paper, we propose to study this tradeoff from a new perspective, i.e., the bias-variance tradeoff, which is a fundamental theory in statistics. We formulate the notion of bias-variance regarding retrieval performance and estimation quality of query models. We then investigate several estimated query models, by analyzing when and why the bias-variance tradeoff will occur, and how the bias and variance can be reduced simultaneously. A series of experiments on four TREC collections have been conducted to systematically evaluate our bias-variance analysis. Our approach and results will potentially form an analysis framework and a novel evaluation strategy for query language modeling

    Table2Vec: Neural Word and Entity Embeddings for Table Population and Retrieval

    Full text link
    Tables contain valuable knowledge in a structured form. We employ neural language modeling approaches to embed tabular data into vector spaces. Specifically, we consider different table elements, such caption, column headings, and cells, for training word and entity embeddings. These embeddings are then utilized in three particular table-related tasks, row population, column population, and table retrieval, by incorporating them into existing retrieval models as additional semantic similarity signals. Evaluation results show that table embeddings can significantly improve upon the performance of state-of-the-art baselines.Comment: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '19), 201

    DCU@FIRE2010: term conflation, blind relevance feedback, and cross-language IR with manual and automatic query translation

    Get PDF
    For the first participation of Dublin City University (DCU) in the FIRE 2010 evaluation campaign, information retrieval (IR) experiments on English, Bengali, Hindi, and Marathi documents were performed to investigate term conation (different stemming approaches and indexing word prefixes), blind relevance feedback, and manual and automatic query translation. The experiments are based on BM25 and on language modeling (LM) for IR. Results show that term conation always improves mean average precision (MAP) compared to indexing unprocessed word forms, but different approaches seem to work best for different languages. For example, in monolingual Marathi experiments indexing 5-prefixes outperforms our corpus-based stemmer; in Hindi, the corpus-based stemmer achieves a higher MAP. For Bengali, the LM retrieval model achieves a much higher MAP than BM25 (0.4944 vs. 0.4526). In all experiments using BM25, blind relevance feedback yields considerably higher MAP in comparison to experiments without it. Bilingual IR experiments (English!Bengali and English!Hindi) are based on query translations obtained from native speakers and the Google translate web service. For the automatically translated queries, MAP is slightly (but not significantly) lower compared to experiments with manual query translations. The bilingual English!Bengali (English!Hindi) experiments achieve 81.7%-83.3% (78.0%-80.6%) of the best corresponding monolingual experiments

    Gibbs Sampling for (Coupled) Infinite Mixture Models in the Stick Breaking Representation

    Full text link
    Nonparametric Bayesian approaches to clustering, information retrieval, language modeling and object recognition have recently shown great promise as a new paradigm for unsupervised data analysis. Most contributions have focused on the Dirichlet process mixture models or extensions thereof for which efficient Gibbs samplers exist. In this paper we explore Gibbs samplers for infinite complexity mixture models in the stick breaking representation. The advantage of this representation is improved modeling flexibility. For instance, one can design the prior distribution over cluster sizes or couple multiple infinite mixture models (e.g. over time) at the level of their parameters (i.e. the dependent Dirichlet process model). However, Gibbs samplers for infinite mixture models (as recently introduced in the statistics literature) seem to mix poorly over cluster labels. Among others issues, this can have the adverse effect that labels for the same cluster in coupled mixture models are mixed up. We introduce additional moves in these samplers to improve mixing over cluster labels and to bring clusters into correspondence. An application to modeling of storm trajectories is used to illustrate these ideas.Comment: Appears in Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence (UAI2006
    • …
    corecore