
DCU@FIRE2010: Term Conflation, Blind Relevance
Feedback, and Cross-Language IR with Manual and

Automatic Query Translation

Johannes Leveling
Centre for Next Generation

Localisation
School of Computing
Dublin City University

Dublin 9, Ireland

Debasis Ganguly
Centre for Next Generation

Localisation
School of Computing
Dublin City University

Dublin 9, Ireland

Gareth J. F. Jones
Centre for Next Generation

Localisation
School of Computing
Dublin City University

Dublin 9, Ireland

ABSTRACT
For the first participation of Dublin City University (DCU)
in the FIRE 2010 evaluation campaign, information retrieval
(IR) experiments on English, Bengali, Hindi, and Marathi
documents were performed to investigate term conflation
(different stemming approaches and indexing word prefixes),
blind relevance feedback, and manual and automatic query
translation. The experiments are based on BM25 and on
language modeling (LM) for IR. Results show that term
conflation always improves mean average precision (MAP)
compared to indexing unprocessed word forms, but differ-
ent approaches seem to work best for different languages.
For example, in monolingual Marathi experiments indexing
5-prefixes outperforms our corpus-based stemmer; in Hindi,
the corpus-based stemmer achieves a higher MAP. For Ben-
gali, the LM retrieval model achieves a much higher MAP
than BM25 (0.4944 vs. 0.4526). In all experiments using
BM25, blind relevance feedback yields considerably higher
MAP in comparison to experiments without it. Bilingual
IR experiments (English→Bengali and English→Hindi) are
based on query translations obtained from native speakers
and the Google translate web service. For the automatically
translated queries, MAP is slightly (but not significantly)
lower compared to experiments with manual query trans-
lations. The bilingual English→Bengali (English→Hindi)
experiments achieve 81.7%-83.3% (78.0%-80.6%) of the best
corresponding monolingual experiments.

Categories and Subject Descriptors
H.3.1 [INFORMATION STORAGE AND RETRIE-
VAL]: Content Analysis and Indexing—Indexing methods;
H.3.3 [INFORMATION STORAGE AND RETRIE-
VAL]: Information Search and Retrieval—Query formula-
tion, Relevance feedback, Search process

1. INTRODUCTION
The Forum for Information Retrieval Evaluation (FIRE)

provides document collections, topics, and relevance assess-
ments for information retrieval (IR) experiments on Indian
languages. Similar to other IR evaluation initiatives such

as TREC1, NTCIR2, or CLEF3, FIRE4 aims at compar-
ing the retrieval performance of different systems and ap-
proaches and at investigating evaluation methods for IR.
FIRE started in 2008 with document collections for English,
Bengali, Hindi, and Marathi.

This paper describes the participation of Dublin City Uni-
versity (DCU) in the FIRE 2010 evaluation. Monolingual
and bilingual IR experiments for English and for the Indian
languages Bengali, Hindi, and Marathi have been performed
to investigate aspects of term conflation (stemming and pre-
fix indexing), blind relevance feedback (BRF), and manual
and automatic query translation.

The rest of this paper is organized as follows: Section 2
introduces related work. Section 3 describes preparations for
the retrieval experiments and the experimental setup. The
experiments and results for monoliongual and bilingual IR
experiments are presented in Section 4. The paper concludes
with an outlook on future work in Section 5.

2. RELATED WORK
Larkey, Connell et al. normalize Hindi multi-byte charac-

ters using manually crafted rules for the TIDES (Translin-
gual Information Detection, Extraction, and Summariza-
tion) surprise language exercise for Hindi IR experiments
[10]. More recently, research on information retrieval on
Indian languages has been encouraged by the FIRE 2008
evaluation campaign.

Dolamic and Savoy [3] used language modeling (LM) and
divergence from randomness (DFR) for Indian language IR
in the FIRE 2008 evaluation. Their approach employs light
stemming [20], stopword removal based on small stopword
lists, and Rocchio-style feedback with α = β = 0.75.

Xu and Oard [22] apply a Perl Search engine on the FIRE
data for English-Hindi CLIR. They employ a stopword list
with 275 words for Hindi IR.

McNamee employs n-grams and skipgrams (n-grams with
wildcards) as indexing units for IR on English, Bengali,
Hindi, and Marathi documents using language modeling (LM)
as a retrieval model [13]. He experimented with different
but fixed numbers of expansion terms for different indexing

1http://trec.nist.gov/
2http://research.nii.ac.jp/ntcir/
3http://www.clef-campaign.org/
4http://www.isical.ac.in/~fire/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11309943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

methods: 50 feedback terms for words, 150 for 4-grams and
5-grams, and 400 for skip-grams. Additional experiments on
the FIRE 2008 data use n-grams on running text, and word
truncation (prefixes) [14]. Significant improvements for in-
dexing n-grams compared to the baseline of indexing words
are observed. The best effectiveness for Hindi and Bengali
is achieved when using 4-grams, highest MAP for Marathi
by word-internal 4-grams.

Stemming approaches can be classified into different cat-
egories, e.g. by the results produced by the stemmer (light
stemming [19] vs. aggressive stemming [11]) or by the re-
sources used (corpus-based [21] vs. dictionary-based [9, 12]).

The most widely used stemming approach for English is
the rule-based Porter stemmer [16], which successively ap-
plies rules to transform a word form into its base form. The
successive removal of affixes means that words with a recur-
sive morphological structure are reduced to their base form,
e.g. words such as ‘hopelessness’ may be reduced to ‘hope’
by removing the suffixes ‘ness’ and ‘less’.

Light stemming focuses on removing only few but the
most frequent suffixes from word forms. Recently, light
stemming has been researched as a less aggressive means to
reduce words to their root form. For English, the s-stemmer
which removes only the ‘-s’, ‘-es’, and ‘-ies’ suffixes from
words and other light stemming approaches have been pro-
posed (see, for example, [7] and [20]).

YASS is a clustering-based suffix stripper which has been
applied to English, French, and Bengali [12]. YASS identi-
fies clusters of equivalence classes for words by calculating
distance measures between strings. This stemmer does not
handle morphologic prefixes and relies on several dictionaries
which have to be extracted from documents, i.e. all words
starting with the same character have to be collected in the
same word list in a scan over all documents.

Xu and Croft [21] use a combination of aggressive suf-
fix removal with co-occurrence information from small text
windows to identify stemming classes. This technique is
corpus-based and requires little knowledge about the docu-
ment language. The original stemmer was developed for a
Spanish document collection [21] and shows an increase in
recall for Spanish.

Goldsmith [6] identified suffixes employing a minimum de-
scription length (MDL) approach. MDL reflects the heuris-
tic that words should be split into a relatively common root
part and a common suffix part. Every instance of a word
(token) must be split at the same breakpoint, and the break-
points are selected so that the number of bits for encoding
documents is minimal.

Oard, Levow et al. [15] apply the Linguistica tool by
Goldsmith [6] to create a statistical stemmer. Suffix fre-
quencies are computed for a subset of 500,000 words in a
document collection. The frequencies of suffixes up to a
length of 4 were adjusted by subtracting the frequency of
subsumed suffixes. Single-character suffixes were sorted by
the ratio between their final position likelihood and their
unconditional likelihood. Suffixes were sorted in decreasing
order of frequency, choosing a cutoff value where the second
derivate of the frequency vs. rank was maximized.

3. EXPERIMENTAL SETUP
The following subsections describe the experimental setup

for the participation of DCU in the FIRE 2010 ad hoc re-
trieval task. Three approaches to term conflation are em-

ployed: n-prefixes, corpus-based stemming, and a rule-based
stemming.

3.1 Term conflation

3.1.1 N-prefixes
The goal of term conflation is to reduce different deriva-

tional or inflectional variants of the same word to a single
indexing form to increase performance in IR. Full word forms
can be conflated by truncating words after n characters.
This approach is inexpensive and language-independent, be-
cause it does not rely on additional external language re-
sources. For experiments on the FIRE 2008 document col-
lections and topics, we found that n = 5 or n = 6 produced
the highest MAP for all languages tested (English, Bengali,
Hindi, Marathi).

3.1.2 Corpus-based Stemming
A corpus-based, language-independent stemming approach

was implemented following a morpheme induction approach
described by Dasgupta and Ng [1, 2], which has been eval-
uated for English and Bengali. On a manually annotated
set of Bengali words this approach achieved a substantially
higher F-score than Linguistica [6].

For the retrieval experiments described in this paper, the
first steps of the morpheme induction were implemented
to obtain a stemmer. The additional morpheme induction
steps described in [2] mainly test the validity of compos-
ite suffix candidates and suffix attachments. The morpheme
induction produces a list of candidate suffixes based on a fre-
quency analysis of potential word roots and suffixes. For ex-
ample, the English word ‘hopeful’ is split into the root-suffix
pairs ‘hop’+‘eful’, ‘hope’+‘ful’, and ‘hopef’+‘ul’. The mid-
dle variant is chosen, because its root and suffix frequency
are highest.

In a second step, suffix combinations (forming compos-
ite suffixes) are determined via the frequency of potential
root forms, which allows for a recursive morphological word
structure. A word is stemmed by removing the longest suf-
fix found in the generated suffix lists or by not removing a
suffix, otherwise.

The list of candidate suffixes is produced following a method
suggested by [8]. In the first step, all words w are analyzed
by successively selecting all possible segmentation points
splitting them into a potential root form r and a suffix s.
Thus, w is the concatenation of r and s. If the potential root
form r can also be found in the set of raw word forms (e.g. it
is part of the collection vocabulary and the root frequency is
higher than 0), s is added to the list of suffix candidates and
r is added to the list of root candidates. Candidate suffixes
are filtered as follows:

1. As a minor variation of the approach proposed by Das-
gupta and Ng [2], suffixes with a frequency less than a
given threshold tf are removed (in this case, tf < 5).

2. A score is assigned to each suffix by multiplying the
suffix frequency and the suffix length in characters.
Using suffix length as a scoring factor is motivated by
the observation that short, low-frequency suffixes are
likely to be erroneous [6].

The suffix candidates are then ranked to obtain the top K
suffixes. For the experiments described here, a fixed value of

Table 1: Bengali examples for corpus-based stem-
ming.

Stemming rule Example

A[khani] → A [chhobikhani]→ [chhobi]
A[khana] → A [tukrokhana]→ [tukro]
A[bhaabe]→ A ∗ [bistaaritobhaabe]→ [bistaarito]
A[chhe] → A [bhaaschhe]→ [bhaas]
A[der] → A ∗ [gyanider]→ [gyan]
A[goner] → A [jonogoner]→ [jono]
A[Taake] → A [poribeshTaake]→ [poribesh]
A[Tike] → A [monTike]→ [mon]
A[Taay] → A ∗ [jaigaTaay]→ [jaiga]
A[Tite] → A [jomiT ite]→ [jomi]
A[Tiro] → A [ghorT iro]→ [ghor]
A[Tuku] → A ∗ [sonchoyTuku]→ [sonchoy]
A[gaami] → A [kolkatagaami]→ [kolkata]

K = 50 was used for all languages tested. Dasgupta and Ng
used the same number of suffixes for morpheme induction for
English [2]. Considering that about 60 affix removal rules
are defined by the Porter stemmer this seems a plausible
setting for mildly aggressive stemming.

In a second step, composite suffixes are detected by com-
bining all suffixes in the induced candidate list, e.g. ‘less-
ness’ in ‘fearlessness’. The detection of composite suffixes
s1+s2, builds on the assumption that a root form r will also
combine with part of the suffix (s1). This property typically
does not hold for non-composite suffixes. The morpheme
induction method presumes that s1+s2 is a composite suffix
if s1+s2 and s1 are similar in terms of the words they can
combine with. Specifically, s1+s2 and s1 are considered to
be similar if their similarity value – which is calculated as
shown in Equation 1 – is greater than a threshold ts (specif-
ically, ts > 0.6 was used).

similarity(si + sj , si) = P (si|si + sj) =
|W iji|
|W ij | (1)

where |W iji| is the number of distinct words that combine
with both si+sj and si, and |W ij | is the number of distinct
words that combine with si+sj .

The corpus-based stemmer reads the lists of suffixes and
processes words which are longer than a given threshold tl
(tl = 3). All other words remain unstemmed. The stem-
mer determines the one longest suffix in the suffix lists (if
any) and removes it from the word to produce a root form.
Some example suffixes which are removed by the corpus-
based stemmer for Bengali words are shown in Table 1 (∗ in-
dicates cases also handled by the rule-based stemmer, which
is described in the next subsection). Throughout this paper
we have used italicized Romanized phonetic transliteration
enclosed within square braces to represent Bengali strings.
Stemming rules are specified as A[suffix] → A where ’A’
denotes a string in Bengali and ’Cond.’ represents a condi-
tion that has to be satisified before a stemming rule can be
applied.

3.1.3 Rule-based Stemming
A simple (but requiring a-priori linguistic knowledge) ap-

proach towards stemming is to successively apply rules to a

Table 2: Rules for simple suffixes with transliterated
Bengali examples.

Stemming rule Cond. Example

A[i] → A |A|> 4 [aadhikyai]→ [aadhikya]
A[o] → A |A|> 4 [bigyaaniraao]→ [bigyaaniraa]

Table 3: Rules for compound suffixes with translit-
erated Bengali examples.

Stemming rule Cond. Example

A[Taa] → A |A|>4 [mukhoshTaa]→ [mukhosh]
A[Ti] → A |A|>4 [phoolTi]→ [phool]
Ax[taa] → A |A|>4 [satarkataa]→ [satarka]
A[raa] → A |A|>4 [konishthoraa]→ [konishtho]
A[er] → A |A|>4 [bhaarater]→ [bhaarat]
A[der] → A |A|>4 [shilpider]→ [shilpi]
A[ke] → A |A|>5 [deshbaashike]→ [deshbaashi]
A[Taar] → A |A|>5 [duniyaaTaar]→ [duniyaa]
A[Taay] → A |A|>5 [dwipTaai]→ [dwip]
A[taar] → A |A|>5 [deshadrohitaar]→ [deshadrohi]
A[taay] → A |A|>5 [maanoshikataay]→ [maanoshik]
A[shil] → A |A|>5 [sthitishil]→ [sthiti]
A[tuku] → A |A|>5 khaadyatuku]→ [khaadya]
A[debi] → A |A|>5 [karunadebi]→ [karuna]
A[baabu] → A |A|>5 [anupambaabu]→ [anupam]
A[bhaai] → A |A|>5 [munnabhaai]→ [munna]
A[bhaabe]→ A |A|>5 [byapakbhaabe]→ [byapak]

given word form to remove the most common suffixes. The
advantages of a rule-based stemmer over a clustering-based
approach are that firstly it is much faster and secondly it
does not require any pre-processing on the indexed docu-
ments, hence making it a suitable candidate for retrieval
tasks where the document collection is not large enough for
statistical training. A disadvantage is that the stemming
rules may have to be created manually and for each lan-
guage. For the rule-based stemmer employed for Bengali
IR, the stemming rules were compiled manually by one of
the authors who is a native Bengali speaker.

The set of rules for stemming Bengali words and examples
are shown in Tables 2, 3 and 4. Rule-based stemming is
carried out by the following method:

1. Apply the rules as specified in Table 2.

2. Iteratively apply in sequence the rules from Table 3
until none of them can be applied any more.

3. Apply the rules in Table 4 to remove plural inflections.

Table 4: Rules for plural suffixes with transliterated
Bengali examples.

Stemming rule Cond. Example

A[gulo] → A |A|>5 [dingulo]→ [din]
A[guli] → A |A|>5 [chaakaaguli]→ [chaakaa]
A[gulote]→ A |A|>5 [boigulote]→ [boi]
A[gulite]→ A |A|>5 [shahargulite]→ [shahar]

Step 2 is executed iteratively because of composite suffixes
in Bengali. For example, the Bengali word shaharguliteo
(meaning in the cities too) comprises of the root word shahar
and the suffix guliteo which in turn is built up of smaller
viable Bengali suffixes gulite and o.

3.2 Blind Relevance Feedback and LM
Blind relevance feedback (or Pseudo-Relevance Feedback)

builds on the assumption that the top-ranked documents
provide useful information for query expansion (QE) or for
query rewriting. Typically, additional terms are extracted
from the top ranked documents and all query terms are
reweighted.

For the experiments with the BM25 retrieval model, 20
feedback terms were extracted from the top ranked 10 doc-
uments. The blind relevance feedback approach employed
follows the one described in [18] and [17].

LM assumes that given a relevant document, queries are
generated by the explicit generation of important terms and
unimportant terms. The important terms are supposed to
be drawn at random from the document. The unimportant
terms are supposed to be drawn at random from the full
collection. So, in addition to the random variables D for the
document and the Ti for the query terms, the model asso-
ciates indicator random variables Ii with each query term
denoting if a query term is important (Ii = 1) or unimpor-
tant (Ii = 0).

The document scoring equation in LM is

P (D,T1, . . . , Tn)

= P (D)

nY
i=1

((1− λi)P (Ti) + λiP (Ti|D))
(2)

where n is the number of query terms and λi is P (Ii = 1),
i.e. the probability that term Ti is an important term in
the query. Similarily, 1 − λi is the probability of Ti being
unimportant.

Dividing Equation 2 by
Qn

i=1(1− λi)P (Ti) would not af-
fect the ranking because λi and P (Ti) have the same value
for each document. In fact, any monotonic transformation of
the document ranking function will produce the same rank-
ing of the documents. Because of possible numeric under-
flow for multiplication of low probabilities, the logarithm of
probabilities is used. Therefore, Equation 2 is re-written as

P (Dj = dj , T1 = t1, . . . , Tn = tn)

=

nX
i=1

log(1 +
λitf(ti, d)

P
t df(t)

(1− λi)df(ti)
P

t tf(t, d)
)

(3)

Also we can associate non uniform prior probabilities to
document relevance (favoring longer documents) resulting in

P (Dj = dj , T1 = t1, . . . , Tn = tn)

= log(
X

t

tf(t, d)) +

nX
i=1

log(1 +
λitf(ti, d)

P
t df(t)

(1− λi)df(ti)
P

t tf(t, d)
)

(4)
The queries vectors are formed by considering term fre-

quencies alone (no idf and no length normalization). This is
referred to as nnn weighting scheme in the SMART system.5

For nnn query weights i.e. qk = tf and

dk = log(1 +
tf × (sum of dfs)

df × document length ×
λk

1− λk
) (5)

5ftp://ftp.cs.cornell.edu/pub/smart/

the dot product of the two vectors is identical to the
RHS of Equation 3 and hence is an useful estimation of
P (Dj = dj , T1 = t1, . . . , Tn = tn) acting as measure for sim-
ilarity ranking. For a system with the vector data structure
implemented in it, reweighting the document vectors and
using simple term frequencies as weights of the query vec-
tors gives the LM scores with the dot product operation on
vectors.

In computing the dot product based similarity scores ei-
ther of Equation 3 or 4 can be used. The documents were
indexed by using Equation 3 and provision was made for
adding the term log(

P
t tf(t, d)) during the retrieval step.

This process of adding up the extra term is subsequently
referred to as document length correction in this paper.

Success of query expansion for the LM relies heavily on
assigning appropriate λs for the new query terms. Since the
λi values are indicative of the importance of the ith query
term and since the expansion terms are not chosen directly
by the user, an intuitive approach is to set these λi to a
somewhat lower value and simultaneously giving the λi of
the original query terms a boost.

We describe the LM approach used in our experiments
with the FIRE 2010 document collections below (parameters
for this approach are r, p, α, and β).

1. Select the top r documents from the results of the ini-
tial retrieval step as feedback documents which are pre-
sumed to be relevant. The other N − r documents are
assumed not to be relevant where N is the total num-
ber of documents to be retrieved.

2. Select p feedback terms from the r documents. Typi-
cally, the most frequently occuring terms are selected
and added to the query.

3. Choose λi for the ith query term qi as follows:

λi =

β if qi is a term in the original query
α otherwise

(6)

where α ≤ λ ≤ β (λ is the value assigned to all query
terms during the baseline retrieval).

3.3 Query Translation
Several cross-lingual IR experiments were conducted to

compare CLIR performance for automtatic and manual query
translation. The Bengali and Hindi queries were manually
translated from English by native speakers. The Google
translate web service6 has been used for automatic query
translation from English to Hindi.

3.4 Processing and Indexing
The FIRE document collection for ad hoc IR contains

newspaper articles on various topics including sports, pol-
itics, business, and local news. The articles are represented
as structured XML documents in TREC format, using UTF-
8 encoding.

FIRE topics resemble topics from other retrieval cam-
paigns such as TREC in format and content. They com-
prise a brief phrase describing the information need (topic
title, T), a longer description (topic description, D), and
a part with information on how documents are to be as-
sessed for relevance (topic narrative, N). Retrieval queries

6http://translate.google.com/

are typically generated from the title and description fields
of topics (TD). For each language, fifty unique topics and
the relevance assessments were provided together with the
corresponding document collection. For all FIRE topics, rel-
evant documents have been assessed by pooling submissions
from systems participating in the FIRE retrieval track.

Not all documents could be indexed properly: some files
include invalid XML characters or contain otherwise invalid
XML; others contain no valid text at all. These documents
have not been indexed at all, but they make up only a small
portion of each collection.

The stopword lists used for the experiments described
in this paper (stopword lists for English, Bengali, Hindi,
and Marathi) originate from different sources. First, spe-
cial characters (e.g. punctuation marks) were compiled in a
list. For example, ‘|’ is used as a end-of-sentence marker in
Bengali. A second list is created during indexing, contain-
ing the most frequent index terms. Terms occuring in more
than half of all documents in the document collection are
considered as stopwords.

The third source for stopwords is Jacques Savoy’s web
page on multilingual resources for IR at the University of
Neuchâtel7. These stopword lists have been generated fol-
lowing an approach to obtain a general stopword lists for
general text [4, 19], in which the N most frequent words
are extracted from the document collection, numbers are re-
moved from the list, and the resulting stopword list is man-
ually extended with additional word forms. The resulting
stopword lists contain 571 words for English (the SMART
stopword list), 119 for Bengali, 163 for Hindi, and 98 for
Marathi. For the LM experiments, the stopword list for
Bengali provided on the FIRE web site was emplyed (384
stopwords).

Unnormalized text encoded with UTF-8 may use different
multi-byte character encodings for the same character. For
example, the character é in the Spanish name San José may
be encoded as a single byte (for é), as the byte sequence for
e + ´ or as the byte sequence for ´ + e. For the experi-
ments described in this paper, encoded text was normalized
by following the guidelines for canonical decomposition fol-
lowed by canonical composition from the International Com-
ponents for Unicode (ICU) implementing the standard nor-
malization forms described in the Unicode Standard Annex
#15 - Unicode Normalization Forms8. These normalization
steps guarantee a fixed order of characters where multiple
variants are allowed.

In addition, text was processed by applying the following
normalization rules.

1. Internal word space is removed (e.g. characters 200c
and 200d)

2. ’Chandra bindu’ and ’anusvara’ are mapped to ’anus-
vara’.

3. ’Chandra’ followed by a vowel is mapped to the corre-
sponding vowel.

4. ’Virama’ is removed from the text.

5. Combinations of ’nukta’ and a consonant are replaced
by the corresponding consonant character.

7http://members.unine.ch/jacques.savoy/clef/index.
html
8http://www.unicode.org/unicode/reports/tr15/

6. Long vowels are mapped to the corresponding short
form.

7. Some character sequences visually similar to a single
glyph are mapped to a single character (e.g. letter A
+ sign O, letter A + sign AA + sign E, letter A + sign
E + sign AA are mapped to the letter O).

8. Accents (which are typically part of transcribed foreign
names) are removed.

9. Digit symbols in Bengali and Devanagari are mapped
to Arabic numeric literals, because the FIRE data con-
tains both forms.

These rules serve as a means to normalize orthographic vari-
ants.

4. RETRIEVAL EXPERIMENTS AND RE-
SULTS

For the experiments described in this paper, the Lucene IR
toolkit was employed.9 Lucene does not (yet) include state-
of-the-art IR models or blind relevance feedback. Support
for the BM25 model [18, 17] and for the corresponding blind
relevance feedback approach was implemented for Lucene
by one of the authors. Runs with BM25 used 10 feedback
documents and 20 feedback terms.

Additional experiments for the Bengali monolingual ad-
hoc track were performed using LM implemented within the
SMART system by one of the authors [5]. The LM runs
used 35 feedback documents and terms. The LM experi-
ments used different seetings for λ: λ = 0.3 for the baseline
run and λ = 0.25 for the run including blind relevance feed-
back.

The following parameters were varied in our FIRE 2010
experiments:

• the source and target language for topics/queries (EN:
English, MR: Marathi, BN: Bengali, HI: Hindi);

• the translation method for bilingual experiments (Nat:
manual translation by native speaker, GT: the Google
translate web service);

• the type of word processing before indexing (PS: Porter
stemming, P5: 5-prefixes, CS: corpus-based stemming,
RS: rule-based stemming, NP: no processing, raw word
forms);

• the retrieval model (BM25: Okapi BM25, LM: Lan-
guage modeling); and

• the use of blind relevance feedback (Y: yes, N: no).

The results shown in Table 5 include the number of rele-
vant and retrieved documents (rel ret), mean average preci-
sion (MAP), geometric MAP (GMAP), and precision at 10
and 20 documents (P@10 and P@20, respectively).

4.1 Results for Monolingual Experiments
Results for the monolingual IR experiments on the FIRE

document collections are shown in Table 5 (italics indicate
additional experiments). Both stemming approaches, the

9http://lucene.apache.org/

Table 5: Results for monolingual and bilingual FIRE 2010 experiments.

Run Parameters Results

ID lang. transl. index retrieval BRF rel ret MAP GMAP P@10 P@20

FE S1 EN - PS BM25 N 650 0.4647 0.3609 0.4320 0.3300
FE S1TD QE20 EN - PS BM25 Y 652 0.4846 0.3542 0.4380 0.3550
FE P5TD QE20 EN - P5 BM25 Y 652 0.4765 0.3525 0.4420 0.3580

FM B0 MR - NO BM25 N 550 0.2357 0.0120 0.2720 0.2210
FM P5TD QE20 MR - P5 BM25 Y 614 0.3411 0.0230 0.3280 0.2840
FM S2TD QE20 MR - CS BM25 Y 601 0.2910 0.0131 0.3020 0.2540

FB B0 BN - NO BM25 N 489 0.3858 0.2914 0.3300 0.2530
FB P5TD QE20 BN - P5 BM25 Y 502 0.4526 0.3717 0.3800 0.2670
FB S2TD QE20 BN - CS BM25 Y 499 0.4000 0.3269 0.3420 0.2560
LM baseline .25 BN - RS LM N 500 0.4860 0.4160 0.3980 0.2930
LM feedback .25 BN - RS LM Y 502 0.4944 0.4274 0.3920 0.2910
LM baseline .3 BN - RS LM N 500 0.4902 0.4223 0.4080 0.2940
LM feedback .3 BN - RS LM Y 503 0.4981 0.4385 0.3940 0.2910

FH B0 HI - NO BM25 N 846 0.3896 0.2272 0.4520 0.3250
FH P5TD QE20 HI - P5 BM25 Y 895 0.4447 0.2957 0.4440 0.3650
FH S2TD QE20 HI - CS BM25 Y 902 0.4677 0.3299 0.4800 0.3950

FBmt P5TD QE20 EN→BN Nat P5 BM25 Y 451 0.3700 0.2818 0.3413 0.2478
FBmt S2TD QE20 EN→BN Nat CS BM25 Y 447 0.3771 0.2785 0.3130 0.2348

FHan P5TD QE20 EN→HI Nat P5 BM25 Y 725 0.3771 0.2516 0.4480 0.3610
FHan S2TD QE20 EN→HI Nat CS BM25 Y 724 0.3747 0.2442 0.4440 0.3510
FHgt P5TD QE20 EN→HI GT P5 BM25 Y 724 0.3647 0.2402 0.4360 0.3470
FHgt S2TD QE20 EN→HI GT CS BM25 Y 722 0.3684 0.2361 0.4320 0.3450

corpus-based stemmer and the rule-based stemmer, signif-
cantly outperform the baseline for the corresponding lan-
guage. However, for Marathi retrieval experiments, indexing
5-prefixes yields the highest MAP. Query expansion addi-
tionally increases IR performance in these cases. For the
run LM feedback .25 we used (α, λ, β) = (0.05, 0.25, 0.3)
whereas for the other one we used (α, λ, β) = (0.05, 0.3, 0.35).
Using query expansion in pseudo-relevance feedback on LM
baseline retrieval, with the particular choice of assignment
of the λs proved useful.

4.2 Results for Bilingual Experiments
Two sets of bilingual IR experiments have been performed

(English→Bengali and English→Hindi). Experiments us-
ing manual translation of FIRE topics for Bengali→English
achieved 81.7%-94.3% of the MAP for the corresponding
monolingual experiments. Manual query translation for Eng-
lish→Hindi shows 87.0%-92.9% of the MAP for the corre-
sponding monolingual experiments. In comparison, query
translation by the Google translate web service shows a
slightly (but not significantly) lower MAP and achieves 85.6%-
89.8% of the MAP for the best monolingual Hindi run.

5. CONCLUSIONS AND OUTLOOK
This paper described experiments at FIRE 2010, evaluat-

ing stemming, blind relevance feedback and query transla-
tion.

In combination with blind relevance feedback, both stem-
ming approaches performed significantly better than the base-
line of indexing words in all tested languages (English, Ben-
gali, Hindi, and Marathi). An obvious improvement of the

corpus-based stemming approach will be to determine the
cut-off point for the suffixes dynamically. In all experiments
and for all languages, a fixed set of 50 suffixes was used. For
morphologically rich languages such as Bengali (with many
different and composite morphological suffixes), this number
is probably too low. The rule-based stemmer needs some fur-
ther improvement because the inflections in a language like
Bengali can not only be suffixial but also prefixial. More-
over two Bengali words often get merged together to form a
compound word making it a challenging task to obtain com-
pound constituents for indexing. We would like to explore on
these language-specific issues in the coming years of partici-
pation at FIRE. Additional ideas for future research include
indexing at the phrase level for common phrases, extend the
stopword list with common phrases, expanding queries with
hypernyms derived from thesaural information and devising
appropriate λs for them, and combining the EM feedback
with query expansion on baseline LM retrieval, would be
experimented upon.

6. ACKNOWLEDGMENTS
This material is based upon works supported by the Sci-

ence Foundation Ireland under Grant No. 07/CE/I1142. as
part of the Centre for Next Generation Localisation (CNGL)
project. Special thanks to Ankit Srivastava and Sudip Naskar
for translating the queries.

7. REFERENCES
[1] Sajib Dasgupta and Vincent Ng. Unsupervised

morphological parsing of Bengali. Language Resources
& Evaluation, 40:311–330, 2006.

[2] Sajib Dasgupta and Vincent Ng. High-performance,
language-independent morphological segmentation. In
Candace L. Sidner, Tanja Schultz, Matthew Stone,
and ChengXiang Zhai, editors, Proceedings of the
Human Language Technology Conference of the North
American Chapter of the Association of
Computational Linguistics, (NAACL HLT 2007),
April 22–27, 2007, pages 155–163, Rochester, NY,
USA, 2007. ACL.

[3] Ljiljana Dolamic and Jacques Savoy. UniNE at FIRE
2008: Hindi, Bengali, and Marathi IR. In Working
Notes of the Forum for Information Retrieval
Evaluation, December 12–14, 2008, Kolkata, India,
2008.

[4] Christopher Fox. Lexical analysis and stoplists, pages
102–130. Prentice-Hall, NJ, USA, 1992.

[5] Debasis Ganguly. Implementing a language modeling
framework for information retrieval. Master’s thesis,
Indian Statistical Institute, India, 2008.

[6] John Goldsmith. Unsupervised learning of the
morphology of a natural language. Computational
Linguistics, 27:153–198, 2001.

[7] Donna Harman. How effective is suffixing? Journal of
the American Society for Information Science,
42(1):7–15, 1991.

[8] Samarth Keshava and Emily Pitler. A simpler,
intuitive approach to morpheme induction. In
PASCAL Challenge Workshop on Unsupervised
Segmentation of Words Into Morphemes -
MorphoChallenge 2005, April 12, 2006, Venice, Italy,
2006.

[9] Robert Krovetz. Viewing morphology as an inference
process. In Robert Korfhage, Edie Rasmussen, and
Peter Willett, editors, Proceedings of the 16th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
191–202, Pittsburg, USA, 1993. ACM.

[10] Leah S. Larkey, Margaret E. Connell, and Nasreen
Abduljaleel. Hindi CLIR in thirty days. ACM
Transactions on Asian Language Information
Processing, 2(2):130–142, 2003.

[11] Julie Beth Lovins. Development of a stemming
algorithm. Mechanical translation and computation,
11(1-2):22–31, 1968.

[12] Prasenjit Majumder, Mandar Mitra, Swapan K. Parui,
Gobinda Kole, Pabitra Mitra, and Kalyankumar
Datta. YASS: Yet another suffix stripper. ACM
transactions on information systems (TOIS),
25(4):18:1–20, 2007.

[13] Paul McNamee. N-gram tokenization for Indian
language text retrieval. In Working Notes of the
Forum for Information Retrieval Evaluation,
December 12–14, 2008, Kolkata, India, 2008.

[14] Paul McNamee, Charles Nicholas, and James
Mayfield. Addressing morphological variation in
alphabetic languages. In James Allan, Javed A.
Aslam, Mark Sanderson, ChengXiang Zhai, and Justin
Zobel, editors, Proceedings of the 32nd Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
2009, July 19–23, 2009, pages 75–82, Boston, MA,
USA, 2009. ACM.

[15] Douglas W. Oard, Gina-Anne Levow, and Clara I.
Cabezas. CLEF experiments at Maryland: Statistical
stemming and backoff translation. In Carol Peters,
editor, Cross-Language Information Retrieval and
Evaluation, Workshop of Cross-Language Evaluation
Forum, CLEF 2000, Lisbon, Portugal, September
21–22, 2000, Revised Papers, volume 2069 of Lecture
Notes in Computer Science (LNCS), Berlin, 2001.
Springer.

[16] Martin F. Porter. An algorithm for suffix stripping.
Program, 14(3):130–137, 1980.

[17] Stephen E. Robertson, Steve Walker, and Micheline
Beaulieu. Okapi at TREC-7: Automatic ad hoc,
filtering, VLC and interactive track. In Donna K.
Harman, editor, The Seventh Text REtrieval
Conference (TREC-7), NIST Special Publication
500-242, pages 253–264, Gaithersburg, MD, USA,
1998. National Institute of Standards and Technology
(NIST).

[18] Stephen E. Robertson, Steve Walker, Susan Jones,
Micheline M. Hancock-Beaulieu, and Mike Gatford.
Okapi at TREC-3. In Donna K. Harman, editor,
Overview of the Third Text Retrieval Conference
(TREC-3), pages 109–126, Gaithersburg, MD, USA,
1995. National Institute of Standards and Technology
(NIST).

[19] Jacques Savoy. A stemming procedure and stopword
list for general French corpora. Journal of the
American Society for Information Science,
50(10):944–952, 1999.

[20] Jacques Savoy. Light stemming approaches for the
French, Portuguese, German and Hungarian
languages. In Hisham Haddad, editor, Proceedings of
the 2006 ACM Symposium on Applied Computing
(SAC), Dijon, France, April 23–27, 2006, pages
1031–1035. ACM, 2006.

[21] Jinxi Xu and Bruce Croft. Corpus-based stemming
using co-occurence of word variants. ACM transactions
on information systems, 16(1):61–81, 1998.

[22] Tan Xu and Douglas W. Oard. FIRE-2008 at
Maryland: English-Hindi CLIR. In Working Notes of
the Forum for Information Retrieval Evaluation,
December 12–14, 2008, Kolkata, India, 2008.

