54,801 research outputs found

    Complex Langevin Dynamics for chiral Random Matrix Theory

    Full text link
    We apply complex Langevin dynamics to chiral random matrix theory at nonzero chemical potential. At large quark mass the simulations agree with the analytical results while incorrect convergence is found for small quark masses. The region of quark masses for which the complex Langevin dynamics converges incorrectly is identified as the region where the fermion determinant frequently traces out a path surrounding the origin of the complex plane during the Langevin flow. This links the incorrect convergence to an ambiguity in the Langevin force due to the presence of the logarithm of the fermion determinant in the action.Comment: 23 pages, 10 figure

    Memory effects in non-adiabatic molecular dynamics at metal surfaces

    Full text link
    We study the effect of temporal correlation in a Langevin equation describing non-adiabatic dynamics at metal surfaces. For a harmonic oscillator the Langevin equation preserves the quantum dynamics exactly and it is demonstrated that memory effects are needed in order to conserve the ground state energy of the oscillator. We then compare the result of Langevin dynamics in a harmonic potential with a perturbative master equation approach and show that the Langevin equation gives a better description in the non-perturbative range of high temperatures and large friction. Unlike the master equation, this approach is readily extended to anharmonic potentials. Using density functional theory we calculate representative Langevin trajectories for associative desorption of N2_2 from Ru(0001) and find that memory effects lowers the dissipation of energy. Finally, we propose an ab-initio scheme to calculate the temporal correlation function and dynamical friction within density functional theory

    Dynamics of Langevin Simulation

    Get PDF
    This chapter [of a supplement to Prog. Theo. Phys.] reviews numerical simulations of quantum field theories based on stochastic quantization and the Langevin equation. The topics discussed include renormalization of finite step-size algorithms, Fourier acceleration, and the relation of the Langevin equation to hybrid stochastic algorithms and hybrid Monte Carlo.Comment: 20 p

    Brownian Motors driven by Particle Exchange

    Full text link
    We extend the Langevin dynamics so that particles can be exchanged with a particle reservoir. We show that grand canonical ensembles are realized at equilibrium and derive the relations of thermodynamics for processes between equilibrium states. As an application of the proposed evolution rule, we devise a simple model of Brownian motors driven by particle exchange. KEYWORDS: Langevin Dynamics, Thermodynamics, Open SystemsComment: 5 pages, late

    New Langevin and Gradient Thermostats for Rigid Body Dynamics

    Get PDF
    We introduce two new thermostats, one of Langevin type and one of gradient (Brownian) type, for rigid body dynamics. We formulate rotation using the quaternion representation of angular coordinates; both thermostats preserve the unit length of quaternions. The Langevin thermostat also ensures that the conjugate angular momenta stay within the tangent space of the quaternion coordinates, as required by the Hamiltonian dynamics of rigid bodies. We have constructed three geometric numerical integrators for the Langevin thermostat and one for the gradient thermostat. The numerical integrators reflect key properties of the thermostats themselves. Namely, they all preserve the unit length of quaternions, automatically, without the need of a projection onto the unit sphere. The Langevin integrators also ensure that the angular momenta remain within the tangent space of the quaternion coordinates. The Langevin integrators are quasi-symplectic and of weak order two. The numerical method for the gradient thermostat is of weak order one. Its construction exploits ideas of Lie-group type integrators for differential equations on manifolds. We numerically compare the discretization errors of the Langevin integrators, as well as the efficiency of the gradient integrator compared to the Langevin ones when used in the simulation of rigid TIP4P water model with smoothly truncated electrostatic interactions. We observe that the gradient integrator is computationally less efficient than the Langevin integrators. We also compare the relative accuracy of the Langevin integrators in evaluating various static quantities and give recommendations as to the choice of an appropriate integrator.Comment: 16 pages, 4 figure

    Time step rescaling recovers continuous-time dynamical properties for discrete-time Langevin integration of nonequilibrium systems

    Full text link
    When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently-developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.Comment: 15 pages, 2 figures, and 2 table
    • …
    corecore