204,826 research outputs found
Images in cardiovascular medicine : multiphoton microscopy for three-dimensional imaging of lymphocyte recruitment into apolipoprotein-E-deficient mouse carotid artery
Two recent elegant studies have shown that in apolipoprotein-E– deficient mice, the lamina adventitia is a major site of arterial wall inflammation associated with lymphocyte infiltration into atherosclerotic arteries and with formation of adventitial lymphoid-like tissues.1,2 These results suggest that lymphocyte responses in the lamina adventitia may play a crucial role in atherosclerosis development.1,
The organisation of spinoparabrachial neurons in the mouse
The anterolateral tract (ALT), which originates from neurons in lamina I and the deep dorsal horn, represents a major ascending output through which nociceptive information is transmitted to brain areas involved in pain perception. Although there is detailed quantitative information concerning the ALT in the rat, much less is known about this system in the mouse, which is increasingly being used for studies of spinal pain mechanisms because of the availability of genetically modified lines. The aim of this study was therefore to determine the extent to which information about the ALT in the rat can be extrapolated to the mouse. Our results suggest that as in the rat, most lamina I ALT projection neurons in the lumbar enlargement can be retrogradely labelled from the lateral parabrachial area, that the great majority of these cells (~90%) express the neurokinin 1 receptor (NK1r), and that these are larger than other NK1r-expressing neurons in this lamina. This means that many lamina I spinoparabrachial cells can be identified in NK1r-immunostained sections from animals that have not received retrograde tracer injections. However, we also observed certain species differences, in particular we found that many spinoparabrachial cells in lamina III-IV lack the NK1r, meaning that they cannot be identified based solely on expression of this receptor. We also provide evidence that the vast majority of spinoparabrachial cells are glutamatergic, and that some express substance P. These findings will be important for studies designed to unravel the complex neuronal circuitry that underlies spinal pain processing
Nondirected axonal growth on basal lamina from avian embryonic neural retina
The vitreous surface of the embryonic avian retinal neuroepithelium was isolated by mechanical disruption of the retina mounted between 2 adhesive substrata. The 200-micron-thick sheath covered an area of up to 1 cm2 and consisted of the vitreal basal lamina with a lamina densa, 2 laminae rarae, and a carpet of ventricular cell endfeet on top of the lamina. The vitreal endfeet were removed by detergent treatment and an extracellular basal lamina was obtained. The laminae were further characterized by immunohistochemistry and immunoblotting. A 190 kDa laminin protein was detected in laminae with and without vitreal endfeet, whereas the membrane-bound neural cell adhesion molecule (N- CAM) was detectable only on the endfeet of the ventricular cells and was absent in the detergent-treated basal laminae. Neither immunoblotting nor immunostaining revealed fibronectin in these preparations. Explants of retina, sensory ganglia, and cerebellum from chick, quail, and mouse were cultured on the basal lamina as a substratum. In all cases axonal outgrowth was excellent, with a growth rate similar to that in situ. Outgrowing axons from sensory ganglia and cerebellar explants were accompanied by migratory cells, which, in the case of sensory ganglia, were flat cells and, in the case of cerebellar explants, resembled granular neurons. Optic axons grew on the laminae in an asymmetric, explant-inherent pattern specific for the position of origin of the explant. On detergent-treated basal laminae, as well as on laminin, the retinal axons grew in a clockwise orientation. This axonal growth pattern was specific for retinal tissue and was not observed with axons from other neural explants. In spite of the excellent substrate properties provided by the substratum, cues for growing axons (toward or away from the optic disk) were not detectable in the basal lamina preparations
Bayesian P-Splines to investigate the impact of covariates on Multiple Sclerosis clinical course
This paper aims at proposing suitable statistical tools to address heterogeneity in repeated measures, within a Multiple Sclerosis (MS) longitudinal study. Indeed, due to unobservable sources of heterogeneity, modelling the effect of covariates on MS severity evolves as a very difficult feature. Bayesian P-Splines are suggested for modelling non linear smooth effects of covariates within generalized additive models. Thus, based on a pooled MS data set, we show how extending Bayesian P-splines to mixed effects models (Lang and Brezger, 2001), represents an attractive statistical approach to investigate the role of prognostic factors in affecting individual change in disability
Isolation, characterization, and substrate properties of the external limiting membrane from the avian embryonic optic tectum
The external limiting membrane of the avian embryonic optic tectum is isolated by mechanically separating the neuronal mesencephalon from the overlying mesenchymal tissue. The preparation consists of a basal lamina which is covered on its neural side by endfeet of neuroepithelial cells and has attached to it on its meningeal side a collageneous stroma, containing blood vessels. The external limiting membrane can be flat-mounted on a piece of nitrocellulose filter as mechanical support. It covers an area between 0.3 and 1 the cm2, depending on the age of me donor embryo. The endfeet can be removed together with all cellular components of the meninges by treatment with 2% Triton-X-100 or with distilled water. The basal lamina itself is approximately 80 nm thick and consists of two laminae rarae and a central lamina densa. Immunohistochemical staining reveals that the basal lamina in the embryo, after isolation and after detergent extraction of the isolated preparation, contains type IV collagen, nidogen, laminin, and low density heparan sulfate proteoglycan as do other basement membranes. Antibodies against the neural cell adhesion molecule (N-CAM), chondroitin sulfate proteoglycan, and fibronectin fail to stain the external limiting membrane, but these proteins were clearly identified in the blood vessel-containing meninges or in the optic tectum.
The flat-mounted external limiting membrane preparation was used as substrate to culture several different neural tissues of central and peripheral origin. Explants of neural crest cells, dorsal root ganglia, and sympathetic ganglia can be cultured on the external limiting membrane. All explants grow well on the basal lamina preparations whether the endfeet are attached or detergent-extracted prior to explantation; however, neurite outgrowth from sympathetic ganglia is reduced in the presence of the endfeet. Although the endfoot-lined external limiting membrane represents at least part of the immediate environment encountered by retinal axons as they invade the optic tectum and despite its excellent properties as a substrate for retinal axons in vitro, cues guiding the orientation of axons were not detected in the flat-mounted preparation
Lack of evidence for sprouting of Aβ afferents into the superficial laminas of the spinal cord dorsal horn after nerve section
The central arborizations of large myelinated cutaneous afferents normally extend as far dorsally as the ventral part of lamina II in rat spinal cord. Woolf et al. (1992) reported that after nerve injury some of these afferents sprouted into lamina I and the dorsal part of lamina II, and it has been suggested that this could contribute to allodynia associated with neuropathic pain. Part of the evidence for sprouting was on the basis of the use of cholera toxin B subunit as a selective tracer for A-fibers, and the validity of this approach has recently been questioned; however, sprouting was also reported in experiments involving intra-axonal labeling of chronically axotomized afferents.
We have used intra-axonal labeling in the rat to examine central terminals of 58 intact sciatic afferents of presumed cutaneous origin and 38 such afferents axotomized 7-10 weeks previously. Both normal and axotomized populations included axons with hair follicle afferent-like morphology and arbors that entered the ventral half of lamina II; however, none of these extended farther dorsally. We also performed bulk labeling of myelinated afferents by injecting biotinylated dextran into the lumbar dorsal columns bilaterally 8-11 weeks after unilateral sciatic nerve section. We observed that both ipsilateral and contralateral to the sectioned nerve, arbors of axons with hair follicle afferent-like morphology in the sciatic territory extended only as far as the ventral half of lamina II. Therefore these results do not support the hypothesis that Aβ afferents sprout into the superficial laminas after nerve section
Reliability analysis of continuous fiber composite laminates
A composite lamina may be viewed as a homogeneous solid whose directional strengths are random variables. Calculation of the lamina reliability under a multi-axial stress state can be approached by either assuming that the strengths act separately (modal or independent action), or that they interact through a quadratic interaction criterion. The independent action reliability may be calculated in closed form, while interactive criteria require simulations; there is currently insufficient data to make a final determination of preference between them. Using independent action for illustration purposes, the lamina reliability may be plotted in either stress space or in a non-dimensional representation. For the typical laminated plate structure, the individual lamina reliabilities may be combined in order to produce formal upper and lower bounds of reliability for the laminate, similar in nature to the bounds on properties produced from variational elastic methods. These bounds are illustrated for a (0/plus or minus 15)sub s Graphite/Epoxy (GR/EP) laminate. And addition, simple physically plausible phenomenological rules are proposed for redistribution of load after a lamina has failed. These rules are illustrated by application to (0/plus or minus 15)sub s and (90/plus or minus 45/0)sub s GR/EP laminates and results are compared with respect to the proposed bounds
Recommended from our members
Clitoral development in the mouse and human.
The goal of this report is (a) to provide the first detailed description of mouse clitoral development, and (b) to compare mouse and human clitoral development. For this purpose, external genitalia of female mice were examined by wholemount microscopy, histology and immunohistochemistry from 14 days of gestation to 10 days postnatal. Human clitoral development was examined by these techniques as well as by scanning electron microscopy and optical projection tomography from 8 to 19 weeks of gestation. The adult mouse clitoris is an internal organ defined by a U-shaped clitoral lamina whose development is associated with the prenatal medial and distal growth of the female preputial swellings along the sides of the genital tubercle to form the circumferential preputial lamina. Regression of the ventral aspect of the preputial lamina leads to formation of the U-shaped clitoral lamina recognized as early as 17 days of gestation. While the adult U-shaped mouse clitoral lamina is closely associated with the vagina, and it appears to be completely non-responsive to estrogen as opposed to the highly estrogen-responsive vaginal epithelium. The prominent perineal appendage in adult females is prepuce, formed via fusion of the embryonic preputial swellings and is not the clitoris. The human clitoris is in many respects a smaller anatomic version of the human penis having all of the external and internal elements except the urethra. The human clitoris (like the human penis) is derived from the genital tubercle with the clitoral glans projecting into the vaginal vestibule. Adult morphology and developmental processes are virtually non-comparable in the mouse and human clitoris
Ingrowth by photoreceptor axons induces transcription of a retrotransposon in the developing Drosophila brain
The development of the lamina, the first optic ganglion of the fly visual system, depends on inductive cues from the innervating photoreceptor axons. lacZ expression from a P-element insertion, A72, occurs in the anlage of the lamina coincident with axon ingrowth from the eye imaginal disc. In eyeless mutants lacking photoreceptor axons, lacZ expression did not occur. The P-element was found to have inserted within the 3′ long terminal repeat (LTR) of a ‘17.6′ type retrotransposon. The expression pattern of 17.6 transcripts in the brain in wild-type and eyeless mutants paralleled the expression of the lacZ reporter. Analysis of 17.6 cis-regulatory sequences indicates that the lamina-specific expression is due to the combined action of an enhancer element in the LTR and a repressor element within the internal body of the retrotransposon. The regulation of the 17.6 retrotransposon provides a model for the study of innervation-dependent gene expression in postsynaptic cells during neurogenesis
- …
