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Abstract

A composite lamina may be viewed as a homogeneous solid whose

directional strengths are random variables. Calculation of the lamina

rehability under a multi-axial stress state can be approached by either

assuming that the strengths act separately (modal or independent ac-

tion), or that they interact through a quadratic interaction criterion.

The independent action reliability may be calculated in closed form,

while interactive criteria require simulations; there is currently insuffi-

cient data to make a final determination of preference between them.

Using independent action for illustration purposes, the lamina reliabil-

ity may be plotted in either stress space or in a non-dimensional rep-

resentation. For the typical laminated plate structure, the individual

lamina reliabilities may be combined in order to produce formal upper

and lower bounds of reliability for the laminate, similar in nature to

the bounds on properties produced from variational elastic methods•

These bounds are illustrated for a [0/t+ 15], Graphite/Epoxy(GR/EP)

laminate. In addition, simple physically plausible phenomenological

rules are proposed for redistribution of load after a lamina has failed.

These rules are illustrated by application to [0/± 15], and [90/4-45/0],

GR/EP laminates and results are compared with respect to the pro-

posed bounds.

°Graduate Student

tAssociate Professor



1 Introduction

The role of composite materials in advanced engineering applications has

created a need for improved failure analysis capabilities. The major ex-

isting failure theories in present use (Maximum Stress, Tsai-Wu, Tsai-Hill,

Maximum Distortional Energy, etc.) are deterministic models borrowed or

adapted from use with conventional homogeneous isotropic materials. How-

ever, composite materials inherently possess a high variability in material

strengths. This is due in part to the heterogeneous make-up of composites,

as well as from effects of the manufacturing process. In order to utilize com-

posites most effectively, their failure analysis must be approached from a

probabilistic standpoint. This will allow us to meet desired reliability goals,

while avoiding costly overdesign. Before engaging in a probabilistic descrip-

tion of fracture, however, we must consider the exact mechanics of failure

which we will model for a composite laminate.

Composite laminates under in-plane loadings typically fail through a

combination of the following modes: matrix normal stress, matrix shear,

delamination, and fiber failure. These failure modes have been the focus of

much research in recent years, and the results of these efforts have proven

useful in understanding the mechanisms behind the failure modes. Many

of the published articles deal with the micro-mechanic(fiber and matrix)

level, especially for fiber failure. Unfortunately, the complex nature of the

failure process has hindered the development of a failure analysis scheme

which would be capable of considering modal interactions over an element

of practical volume, let alone the interaction between laminae of finite vol-

ume. In this paper a macroscopic approach to failure has been been chosen,

thus allowing the development of phenomenological models to analytically

describe the reliability limits of the composite as well as the load redistri-

butions occurring within the laminate as internal failures develop.

Of the four modes of failure mentioned, matrix normal and shear cracking

and fiber failure come as a result of in-plane stresses. Both categories of

delamination, namely free edge delaminations and localized delaminations

which occur internally at matrix crack tips, are due to the development of

interlaminar stresses[I,2]. Careful design of the lay-up can help reduce or

eliminate the stresses which cause delamination. It will be assumed that

this is the case here, and that the failure of the laminates under study will

not be dominated by delaminations. This enables the failure function to be

considered as a function of only in-plane stresses.

In applying reliability methods to composite laminates, we will first con-



siderlaminafailureprobabilities,thenproposeformallimits for laminate re-

liability. These limits are reliability bounds similar in nature to the bounds for

elastic properties. By proposing sensible load sharing rules for failed laminae within

a laminate, we will assess the importance of load-sharing on laminate reliability.

Recent publications considering reliability analysis of laminates have proceeded

in a similar direction, but with somewhat less general results. Yang[13] utilized

an interactive criterion only, did not account for localized effects during load

redistribution, and relied on the use of a failure tree(the drawbacks of which are

discussed in Section(4) of this paper). Fukunaga et al. [ 14] accounted for localized

effects through the use of strain concentration factors, but they too relied on an

interactive criterion and the use of failure trees. Additionally, the strength parameters

used in this model are laminate specific.

2 Reliability Analysis of a Single Layer

The reliability analysis used in this paper for the uniaxial strengths of a

lamina are based upon a Weibull weak link formulation. For the present re-

search_ the volume of interest will be taken to be the volume of an individual

lamina. The lamina is assumed to be statistically homogeneous in its elastic

and strength properties, thus making the Weibull parameters constant over

the volume of the lamina. The layer's strengths, Xi, are assumed to each

have a Weibull distribution of the form,

Fx,(a/) : 1 - exp [-¢i] (1)

where

¢, = 1,2,6 (2)

The Weibull parameters (ai,gi) describing the strength distribution for the

material are determined experimentally from uniaxial tests[3,4]. If the vol-

ume from which gi was experimentally based is not the same as the lamina

volume to which the analysis is being applied, the following volume correc-

tion to gi is applied.

where:

g_ is the value of the scale parameter for the test specimen



V'

V

is the desired scale parameter for the lamina

is the volume of the test specimen

is the volume of the lamina

The stresses el, o2, and a6 have the usual meaning of longitudinal, transverse
and shear stresses in the lamina material coordinates. While it is clear that

the probability of failure per unit volume as given in Equation(2) may be

used for uniaxial cases, it is not sufficient to describe cases where the lamina

is under a state of plane stress. For such instances, a multiaxial failure

density function, ¢(al,a2,cr6), must be formulated. Both interactive and

non-interactive forms for the failure function will be investigated.
Non-interactive Failure Criterion:In a non-interactive failure criterion,

the stresses present on an element are assumed to act independently of one

another towards the failure of that element, thus lending the name Prin-

ciple of Independent Action(PIA) to this analysis. Utilizing the two

parameter Weibull distribution for strength that was given in Equation(2)

yields the following form for the reliability of a single layer,

i=1,2,6

and where ¢i is further defined in more general terms as below to allow

consideration of both tensile and compressive stress values.

] +. . (s)

--- = 0, ff x < 0;

z, ifx > O.t.

T T
cti , _5i : Weibull parameters for tension

a c, f_c : WeibuU parameters for compression

Interactive Failure Criterion: An interactive approach considers the stresses

to work collectively towards the failure of the element, which certainly seems

more physically plausible than PIA. The disadantage of such a law is that

it only allows a fail/no fail determination for the lamina. No additional

information(i.e, key stresses, mode of fracture, etc.) can be extracted. To

the knowledge of the authors, a satisfactory model for an interactive failure



functionperunit volumeis not availablein closedformandmusttherefore
beconsideredusingsimulationtechniques.Thisapproachis takenwith the
understandingthat shoulda suitablemodelfor ¢ be found,its implemen-
tation canbemadein a straightforwardmanner.

Many of the typical failurefunctions(Tsai-Wu,MaximumDistortional
Energy,etc.) havebeeninvestigatedand found to produce similar results

[5]. For purposes of illustration, the Maximum Distortional Energy

failure function, MDE, has been chosen as the foundation for the interactive

reliability analysis in this paper. It is given in its deterministic form in

Equation(6),

s= + + (6)
where the o'i are the known applied stresses, and the Xi are the deterministic

strength values. In its deterministic form, ] < 1 denotes survival, and

f > 1 denotes failure; from this_ no probabilistic inference can be made. If,

however, the strength values used in Equation(6) are considered as random

variables, then the reliability of a layer under a specified load can be stated

as the probability that the value of f is less than one for that load.

Rza_,, = Pr(f < 1) (7)

The integrations necessary for a direct calculation of the reliability are

intractable. For this reason, a Monte Carlo computer simulation is nor-

mally used for the analysis[6,7,9,11]. Through inversion of the probability

distribution function for the Weibull random variable Xi, a set of realiza-

tions for Xi is obtained. Applying the failure function given in Equation(6)

to the simulated sample population allows for a statistical determination

of the reliability [i.e. Pr(f < 1)] for a given stress state. If the volume of

the test specimen is different from the volume of the lamina under consid-

eration, there is only one way to apply a volume correction consistent with

weak link modelling, mainly this is to scale the reliability itself using the

known volume of the test specimen, and not to scale the individual strengths

independently.

where:

R'

R

V'

V

R = (R')v/v' (s)

is the value of the reliability for the test specimen

is the desired reliabilty for the lamina

is the volume of the test specimen

is the volume of the lamina
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Weibull Strength Parameters

MYa (103psi)

X1 25. 37.5 1516. 220.

X2 10. 15. 51.7 7.5

X6 15. 22.5 68.9 10.

Table 1: Weibull strength parameters for Graphite/Epoxy [3]

Reliability Surfaces: Failure surfaces plotted in stress space are a com-

mon design aid for conventional materials as well as for composite materials.

This concept can be expanded to the idea of plotting surfaces of constant re-

liability[5,8]. A range of reliability surfaces using a PIA analysis for a Gr/Ep

lamina, are shown in Figure(l). Model strength parameters for Gr/Ep are

given in Table(l).

It is possible to standardize these surfaces by mapping them into a non-

dimensionallzed space. Introducing a new term of the form:

d -=¢_ i = 1,2,6 (9)

the failure density function, ¢, becomes,

¢ = d + d + (_ (10)

Equation(10) provides a direct octant to octant mapping of the surface from

a stress space to a reliability oriented space where the surface becomes spher-

ical nature. Non-dimensionalized surfaces for the same Gr/Ep material are

illustrated in Figure(2). Note that in (-space the reliability surfaces will be

material independent; this results in a series of concentric reliability sur-

faces which are spherically symmetric about the coordinate axes. This is

not necessarily the case in a stress space, as has already been demonstrated

by Figure(I).

3 Bounds on the Reliability of a Laminate

In expanding the analysis from a lamina to a laminate, formal bounds for the

reliability limits of a laminate may be determined. First however, the unit

of failure to be considered must be defined. Two such units are proposed
here:
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1. Ply failu_ considerations assume that the units of failure are the in-

dividual plies which make up the laminate; thus in an n-ply laminate

there are n failure units. This assumption is implicit in using an in-
teractive criterion.

2. Modal failure considerations allow for the recognition of three potential

modes of failure(longitudinal, transverse and shear) within each of

these plies, thereby resulting in 3n failure units for am n-ply laminate.

This assumption is naturally attuned to the use of PIA criteria.

Establishing the Reliability Limits: A lower bound limit for the reliabil-

ity may be found by applying a weakest link criterion to the laminate. This

can take the form of either a first ply or a first mode failure theory, and in

essence neglects all in-situ responses such as constraint effects and reload-

Lug of damaged plies. The individual failure units are assumed to behave

independently, therefore the lower bound laminate reliability is given as the

product of the individual unit reliabilities. For the case of the ply failure

consideration, this results in

n

RL,,, = 1-[ R, (11)
i=1

where Ri are the ply reliabilities computed using either a PIA or MDE

analysis. For the modal failure considerations, the resulting expression is

n

II 17 (12)
i=l j=1,2,6

where P_j is the reliability of the jth mode of layer i and is computed by

appropriately partitioning Equation(4).

An upper bound reliability limit determination can be made by taking

an opposite approach, that is to say by assuming a strongest link theory.

Such a statement assumes the influence of the laminate upon the individual

failure elements to dominate, so that ultimate failure of the laminate will not

occur until every individual unit has failed. Thus the probability of failure

for the laminate is given by the product of the probabilities of failure for the

individual units. In terms of reliabilities this gives the following expressions

for the upper bound limits: for ply failure considerations,

n

=1- II(1-
{----1

(13)



.Xi

Weibull Strength Parameters

j = ac = Zc
MPa (103psi)

X1 25. 1516. 220.

X_ 10. 51.7 7.5

X_ 15. 68.9 10.

Table 2: Weibull strength parameters for Graphite/Epoxy [3]

and for modal failure considerations,

Ru,_o_,, = 1- I2I II (1- Rqj)

i=1 j=1,2,6

(14)

Note that in this formulation, ifa particular mode is not loaded, and thus has

a modal reliability value of///j = 1.0, the product term in Equation(14) will

become exactly zero thereby returning a value of unity for Rr:,,,o_,_. In order

to compensate for this occurrence, only modes which are actively loaded

during the life of the laminate should be included in Equation(14). As an

example, consider a cross-ply laminate under uniaxial loading. Regardless

of the magnitude reached by the loading, the shear stresses within the plies

will remain at zero, and therefore the Ri_ terms should be omitted from the

calculation.

The reliability limits have been applied to a [0/± 15], GR/EP laminate

having layer thicknesses of t = 0.005in. and uniaxial loading conditions

present(i.e. N = IN:: 0 0 ]y). To clarify the results, the shape parameters

for tension and compression have been set equal, see Table(2). The elastic

material properties for GR/EP are given in Table(3). In Figure(3) the results

of the limit analysis have been shown in the form of a plot of reliability

versus applied load. Note that the interactive or ply failure curves show

lower failure loads than the modal failure curves; this is an indication of the

dominance of one of the strength terms. In ply failure, this one strength

causes failure of the lamina; while in modal failure, this effect is diluted

since all strengths are considered.

Reliability Surfaces: The idea of a surface of constant reliability from

may be extended to encompass upper and lower bound reliability limits for

a composite laminate. Upon defining the laminate(i.e, layer orientations

and layup), the loading ratios(Nx : N_, 2,_ : 2Vxy) and the desired reliability

value, an iteration scheme may be employed to solve for the loading mag-

10
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Fi_m_.re 3: Reliability limit analysis for a [0/4- 15], GR/EP using both ply
and modal failure criterion
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Elastic Properties 1

E1 125. x 103MPa (18.2 × 10_psi)

E_ 11.2 x 103MPa (1.63 × 106psi)

GI_ 7.38 × 103MPa (1.07 × 106p_i)

vl: 0.236

Table 3: Elastic material properties for Graphite/Epoxy [3]

nitudes where the upper and lower reliability limits have the desired value.

A computer program may be written to systematically determine the neces-

sary data points to generate surfaces of constant reliability for the laminate

in a load(N_,Nv,N_) space. This can be done for both PIA and ]VIDE

analyses. Limit surfaces for a constant 90 percent reliabilty are shown in

Figure(4) for a [0/4- 15], Gr/Ep laminate under a state of biaxiai loading

0]r).

4 Load Redistribution Considerations

The failure models presented thus far for laminate analysis have only been

able to provide bounds of reliability for a given problem. These bounds

are often too far apart to be of practical use; therefore it becomes essential

to be able to determine a more precise reliability value. The next step in

trying to achieve a better reliability analysis is to more closely model the

physics of the failure process. Note that the key phrase here is more closely

and not ezactly. This is because in order to exactly model the process, the

development and interaction of cracks on the microscopic scale would have

to be considered. Attempting to consider all the possible failure sequences

at this level would be impossible. However, by moving to a macroscopic level

and making certain simplifying assumptions, a phenomenological model can

be reached which is both tractable and emulates the actual failure sequence.

4.1 Reliability Determination Using Computer Simulations

In this section two different failure algorithms, corresponding to interactive

and non-interactive criteria will be presented along with various load re-

distribution schemes. First, however, the process to be modeled should be

stated in a more detailed manner. The laminate is assumed to be loaded

multi-axially, from zero to the designated load in the manner of a load con-

trolled test. As the loading is applied, various failure mechanisms (such as

12
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Figure 4: Limit surfaces of constant 90 percent reliability for [0/ = 15],

GR/EP using a PIA analysis
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Figure 5: Load - Displacement diagram

those discussed in the introduction) are induced within the individual layers.

These failures result in stiffness degradations and load redistributions. The

general form of the load-displacement diagram would appear as in Figure(5).

Thus the problems which must be addressed are:

• Defining what constitutes a failure and when it occurs.

• Detailing the method of load redistribution from the failed element.

• ModeUing the corresponding stiffness degradations induced by the fail-

ures.

The ideal modeling of the failure process would create a failure tree

with all possible fracture sequences and their redistributions. This failure

tree suffers from two problems: the number of branches and their attendant

failure rules quickly becomes very large, and the addition ofla_finae requires

the entire tree to be rebuilt. A more appropriate method then. is to simulate

strengths in the manner of Section(2) and to arrive at a set of realizations

for lanfinate strengths according to the rules we select. In this fashion.

the lanfinate re]Jab[li D- can be calculated, and the load sharing rules easily

14



changed. In a simplification for clarity, we shall neglect the effect of bending-

extensional coupling, i.e. sylmnetry of lamina strengths is assumed.

Simulation With an Interactive Failure Criterion: For an interactive fail-

ure criterion, the failure element is an individual ply. Defining failure in this

way has the adantage of satisfying an intuitive feeling that all stress com-

ponents should contribute in some collective fashion towards the failure of

the layer. However, it has the disadvantage of giving no information as to

the mode by which failure occurred; namely longitudinally, transversely or

by shear. The lack of such information requires the assumption of uniform

reductions in the load carried by the layer(i.e, o"1, a2 and ae are all reduced

by the same factor) and in the layer's stiffness matrix (i.e. all the elements

of layer stiffness matrix must also be reduced by this same factor). As a

conservative estimate, it will be assumed that the failed layer completely

unloads and the stiffness matrix becomes a zero matrix. All that remains is

to determine the manner in which to redistribute the load which had been

carried by the now failed element. Several physically plausible possibilities

exist, and are explained below.

Global Redistribution: The load is redistributed anmng all remain-

ing unfailed plies in accordance with the laminate constitutive law which

accounts for the relative stiffnesses of the layers(including the failed layers

in which the appropriate stiffness elements have been set equal to zero) and

with the deformation assumptions requiring plane sections to remain planar

and perpendicular to the mid-surface.

Local Redistribution, Orientation Insensitive: The load is evenly

distributed between the two adjacent layers. If either of these plies has

already failed, that portion of the load is globally redistributed.

Local Redistribution, Orientation Sensitive: The load is distributed

between the two adjacent layers, with the fraction of the load going to each

layer being a function of the relative angles between the respective layers

and the failed layer. This uses the physical intuition that fibers in one layer

tend to reinforce the matrix direction of neighboring layers if the layers are

perpendicular. The functional dependence should result in the layer with

the smallest relative orientation accepting the smaller share of the redis-

tributed load. The following relationship has been chosen to determine the

percentage of the load from failed layer i to be distributed to the neighboring

layers i-1 and i+].

r;-1 + r_.l = I (20)

15



{ cos2(_e,-11ri-1 -= co,_(z0,+, r2, if AOi+l _ 90 ° (16)
1, if A0i+l = 90°

where the r's and A0's represent the load percentages and the relative angles,

respectively. As in the orientation sensitive case, any load which cannot be

locally redistributed due to previous failures in the neighboring plies will be
globally distributed.

Tapered Redistribution, Orientation Insensitive: The load is dis-

tributed among the four neighboring layers. The two immediately adjacent

layers receive one third of the total load each, and the two outside layers

each accept one sixth of the loading. Here again, arty load which cannot be

distributed locally is done so globally.

Tapered Redistribution, Orientation Sensitive: The load is re-

distributed among the four neighboring plies with a functional dependence
existing between the fractional distribution of the load and the relative an-

gles between the respective layers and the failed layer. The redistribution

scheme is presented below, using similar notation to above:

2

r_-i + ri+l = _ (17)

1

ri-2 q- ri+2 = _ (18)

/ co02(AOi_l_ .ri-1 = _o,2(_o,+,1 r'+l' if A0i+a _ 90 ° (19)
1, if AOi+l = 90 °

{ cos2(AOi_2)ri_2 = ¢oo2(_0,+21ri+2' if A0i+_ _ 90 ° (20)
I, ifAOi+_ = 90°

Once again, any load remaining after local redistribution is redistributed

globally. A more detailed discussion of the loading, redistribution and reli-

ability determination is given in Appendix A.

Simulation With a Non-interactive Modal Failure Criterion"

With a non-interactive modal failure criterion, there are three potential

modes of failure in each layer - longitudinal, transverse and shear. With the

failure function for each mode being given by the absolute value of the ratio

of the appropriate stress to the corresponding strength.
Longitudinal:

fl = (21)

16



Transverse:

Shear:

Failure in each case is defined by:

(22)

(23)

fi < 1, i = 1, 2, 6 survival of mode

fi >_ 1, i = 1, 2, 6 failure of mode

As before, the strengths, X1,X2 and X6, are taken to be random variables
with a Weibull distribution.

The advantage of modal definitions of failure is the ability to implement

a more detailed unloading scheme. For example, if a layer experiences a

longitudinal failure the load carried in that direction, al, and the associated

stiffness elements, Qla and Q12, are reduced and the other loading and

stiffness terms remain unchanged. Similarly, for a transverse failure the

stress a2, and the Q22 and Q12 stiffness terms are reduced; and for a shear

failure as and Qs6 are reduced. For the research at hand, all terms to be

reduced will be conservatively set equal to zero.

The redistribution schemes are basically the same as those presented for

an interactive scheme except greater care must be given to defining what

loads must be redistributed and what loads may be accepted by a neighbor-

ing layer. A complete discussion is given in Appendix B.

4.2 Results and Example Calculations for GR/EP Laminates

In this section, example calculations for various laminates will be presented

using the simulation techniques developed in the previous sections.

As a first example, a [0/+ 15], GR/EP laminate under uniaxial loading is

examined using an interactive failure criterion. One thousand failure loads

were simulated for each redistribution scheme, and identical results were

achieved for each scheme. The distribution function was approximated using

a median ranking (see Appendix A). The reliability versus load results are

presented in Figure(6). Figure(6) also contains reliability limit information

calculated using the method of Section(3). It is seen that these limits do

indeed bound the predicted reliability values.

For this particular case, the choice of redistribution scheme used in the

simulation had no effect on the calculated reliability. Though this result is

17



somewhatunexpected, one explanation is that this is due to the small rela-

tive orientation between the layers. The laminate can attain a rather large

load before the ±15 ° layers begin failing. These layers should have approx-

imately the same strengths; thus it is likely that regardless of which layer

fails first, the +15 or -15, the other layer will also fail upon redistribution.

This occurrence would leave the 0 ° layer carrying the entire load ,which it

could not sustain, and lead to failure of the laminate.

Figure(7) displays the results for a noninteractive analysis of the same

situaution. With a modal failure criterion, the choice of redistribution

scheme had a small but noticeable effect. A local, orientation sensitive

redistribution predicted the highest probability of failure for a given load

and a global redistribution predicted the lowest, though the difference was

generally small. The projected limits given in Section(3) properly bound

the predicted reliability.

A similar analysis is presented in Figures(8) and (9), for a [90/± 45/0]a

GR/EP laminate. The results using an interactive failure criterion are shown

in Figures(8). The effect of of the various redistribution methods is much

more pronounced for this case in the high reliability range(_ R > 0.80).

The highest reliability at a given load is predicted by a global redistribu-

tion, followed by tapered orientation insensitive, local orientation insensitive,

tapered orientation sensitive and finally local orientation sensitive. Once

again, the limits bound the predicted reliability values.

In Figure(9) the results using a noninteractive failure criterion are given.

The large difference between the upper and lower bound limits is due to the

large difference in lamina orientations.

5 Summary and Conclusions

This paper has presented two methods, non-interactive(PIA) and interac-

tive(MDE), by which the reliability of a single continuous fiber composite

lamina may be analysed. At this time insufficient experimental data exists to

give any preference to one over the other. The concept of a reliability surface

for the lamina in stress space was also presented, and a mapping technique

was introduced to transform the surfaces to a non-dimensionalized space

where they take on a spherical shape and become material independent.

The individual lamina reliabilities were then combined to produce for-

mal upper and lower bound limits of reliability for a composite laminate

under multiaxial loading. These limits, which do not account for free-edge

18
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induced delamination effects, were derived for both interactive and modal

failure considerations. Surfaces of constant reliability in a load space were

illustrated for an example laminate. Further example cases demonstrated

the bounds over a range of loads. These calculations were found to give con-

sistent results. The proposed load redistribution schemes were implemented

to more closely define the reliability state; the degree of dependence of the

reliability on the particular load redistribution scheme depends on the lam-

inate stacking sequence. Present research is under way to more accurately

model the failure modes and load redistributions.
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A Laminate Reliability Analysis With Interac-

tive Failure Criterion and Load Redistribution

Considerations

Part One: Predicting the Failure Load
It is desired to have the simulation emulate a load-controlled test with

ramp loading. Thus the applied load must increase from zero to some

specified magnitude along a line of constant loading ratios(i.e. Nffi : N_

= constant, N_ : N_ = constant). In order to predict the first failure

load a nominal loading must initially be applied and the resulting stress

state calculated. This initial loading is derived from the applied load in

a way such that the ratios of all the corresponding loading elements re-

main unchanged, but the value of the initial loading element in the max-

imum loading direction is set equal to unity. For example, for a specified

applied load of N = [400. 100. 0. ]T the reduced initial load would be

Ni_it_t = [ 1.00 0.25 0.00 ]T.

At this loading, the stress state in each layer may be determined through

application of the constitutive relationship. With the stress states known

the f-values may be calculated for each layer using Equation(6). From these

values, the loading at which the first failure occurs may be predicted using

the following expression.

1

N__new = V/[(fold)i],na=N.Nozd (24)

where i corresponds to the various layers.
At failure, the load is redistributed. If further failures occur, the loads

corresponding to the newly failed layers must also be redistributed and the

layers now remaining checked for further failures. If no additional failures

have occurred, the process just described in this section may be used to

predict the next failure load.

Part Two: Redistributing the Load of a Failed Ply

The f-value of each layer is computed, and if failure has occurred its

stiffness matrix is set equal to zero and its loading redistributed locally in

the following general manner for all of the redistribution schemes outlined
in Section 4.1.

Step 1. Moving to the appropriate neighboring layer: H that layer has
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either failed or does not exist(i.e, the layer that has failed is an outside layer

thus having no neighbor on the one side), its portion of the redistribution

load is stored for global redistribution. If however that layer has not failed,

this load is stored in a buffer of local stress effects corresponding to the

layer(i.e, the neighboring layer).

Having carried out step(l) for each layer, the entire loading has now been

characterized and stored into three groups: original stresses still carried by

the surviving layers, local stress effect buffers(one corresponding to each

layer) and a global buffer. Here it is assumed that the original stresses and

the global stresses are distributed according to the laminate constitutive

law, and that the local stresses are distributed locally and do not obey the

deformation assumptions. This seems is reasonable in that localized stresses

should cause localized displacements. Proceeding on,

Step 2. The portion of the applied load conforming to constitutive the-

ory, which will be defined here to be called N', is given by summing the

stresses carried by the surviving layers and the global stresses and multiply-

ing by the layer thickness.

N_' = t X ¢rycaR_IB D + Global_

N ' i=1 Global=yxy T_CARRIED i

(25)

Step 3. Via laminate constitutive theory, the stress state, (r'_ is calcu-

lated in geometric coordinates using the re-evaluated stiffness matrices(which

will take into account any failed plies) and the primed load calculated in

step(2).

= 1%' (26)
N i7"=Y I i zy

Step 4. The redistributed stress state in each layer is then calculated by

adding the local effects directly to the primed stresses determined in step(3).

}_LOCAL

a_ = a_' + a_LOC_L (27)

TzY i Txp I i TXYLOCAL i

The f-values are recalculated under the newly redistributed stress state.

In the event that new failures have occurred, the redistribution scheme is

repeated. If however, no new failures occur, and there are surviving pries
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remaining, the load is incremented to the next predicted failure load using

the method presented in Part One.

Part Three: Reliability Determination

The reliability of the laminate under the applied load is determined using

the results of a Monte Carlo analysis. An n sized sample space of loads

corresponding to complete laminate failure are simulated using the methods

of Parts One and Two. This data may be ranked using a median ranking[12]

to approximate the probability of failure distribution function,

j - 0.3 (28)
P/- n+0.4 j=l,2,...,n

The value of the distribution function at the applied load may be determined

through a linear interpolation, and subtracting this value from unity yields

the laminate reliability for the specified load.

R = 1 - PjIN__pL_ (29)

The value of n should be chosen such that there are a reasonable number of

both successes and failures(-,_ 20 minimum of each).

B Laminate Reliability Analysis With a Non-interactive

Modal Failure Criterion and Load Redistribu-

tion Considerations

Part One: Predicting the Failure Load

As discussed in Part One of Appendix A, the simulation should portray

a load-controlled test to failure. To this end, an initial loading relatively

close to zero is derived from the specified applied loading as demonstrated

in Appendix A. Using the constitutive law, the stress state in each layer can

be determined under the initial loading. This information can then be used

with the failure functions of Equations(21-23) to compute the f-values for

individual modes of each layer.

Potentially, there are three possible failure modes(longitudinal, trans-

verse and shear) in each layer. However, depending on the type of loading

and the ply orientations, all of these modes may not be active. That is, some

lamina may not be stressed in a particular mode either during initial loading

or after partial failure of the laminate. The number of active modes is equal
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to the number of non-zero f-values calculated under the initial loading. This

leads to the following definition of laminate failure:

Final laminate failure has occurred when all active failure modes have

failed

The load corresponding to the first modal failure can be predicted with

the following expression.

1

= N_o d (30)

At failure, the load is redistributed. If no further failures have occurred, the

same process is used to predict the next failure load.

Part Two: Redistributing the Load of a Failed Mode

If one or more modal failures have occurred in a layer, the following

general procedure is followed for any of the local load redistribution schemes

discussed in Section 4.1.

Step 1. Within the layer containing the modal failure, the loads to be

maintained, or carried, and those to be redistributed axe defined. Both of

these loading vectors are transformed from material to geometric coordi-

nates.

Step 2. Moving to the appropriate neighboring layer: If there is no

neighboring layer, its portion of the distribution vector is stored for global

distribution. Otherwise, the distribution vector is transformed to the ma-

terial coordinates of the neighboring ply. The stress terms corresponding

to the survivng modes(if any) of the neighboring ply axe stored in a buffer

of local stress effects for that layer, and the stress terms corresponding to

the failed modes(if any) axe stored in a global buffer. The elements of both

buffers are transformed back to the geometric coordinate system and stored.

After performing steps(l) and (2) for all layers, the total loading vector

has been divided into three groups: the stresses still carried by the survivng

modes, local stress effect buffers and a global stress buffer. As previously

assumed, the stresses carried by the surviving modes and the global stresses

are taken to obey laminate constitutive laws, and the local stress effects do

not. Continuing with the redistribution procedure:

Step 3. Same as Step 2 in Appendix A.

Step 4. Same as Step 3 in Appendix A.

Step 5. Same as Step 4 in Appendix A.

There are two criterions by which complete laminate failure is defined.
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the first was given in Part One to be when all active modes have failed.

The second is when the [A] matrix, which represents the in-plane stiffness

response, becomes singular. This happens when the only unfailed modes

remaining in the layers are the shear modes. In this case the resulting

stiffness matrices become,

Ii° °01[Q]i = 0 (31)

0 Q6s

The occurrence of this event is analogous to reaching the yield stress in

a linear elastic-perfectly plastic material; the application of any additional

load causes an indeterminantly large deflection.

Part Three: Reliability Determination

See Part Three of Appendix A.
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