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BAYESIAN P-SPLINES TO INVESTIGATE THE IMPACT OF
COVARIATES ON MULTIPLE SCLEROSIS CLINICAL COURSE

CLELIA DI SERIO AND CLAUDIA LAMINA

Abstract. This paper aims at proposing suitable statistical tools to ad-
dress heterogeneity in repeated measures, within a Multiple Sclerosis
(MS) longitudinal study. Indeed, due to unobservable sources of hetero-
geneity, modelling the effect of covariates on MS severity evolves as a
very difficult feature.
Bayesian P-Splines are suggested for modelling non linear smooth ef-

fects of covariates within generalized additive models. Thus, based on a
pooled MS data set, we show how extending bayesian P-splines (Lang
and Brezger, 2001) to mixed effects models, represents an attractive sta-
tistical approach to investigate the role of prognostic factors in affecting
individual change in disability.

1. Introduction.

Many clinical studies collect repeated measures data which allow for assessing
the disease process over time when analysed longitudinally. Multiple Sclerosis (MS)
is an example of a multifactorial genetic neurological disease where the analysis is
commonly focused on the change of the disease status over time. Modelling this kind
of chronic diseases is a difficult task due to: i) the difficult definition of the outcome
variable, ii) a large number of individual observations at a small number of time
points, iii) the high inter-individual variability. In fact, these data are heterogeneus
in their structure as regarding different levels of heterogeneity: the time intervals
between measurements can vary among individuals and not even the number of
observations has to be the same due to skipped examinations or withdrawals from
the study. Furthermore, the correlation between repeated measurements within
subjects has to be included. These complications are difficult to account for in a
conventional analysis focused on investigating and interpreting the role of covariates
on the disease course.
Mixed effect models for repeated measures data have become popular in these

frameworks because of their flexible covariance structure which allows for non-
constant correlation among the observations. More, they have also a natural inter-
pretation. Random effects are introduced to include an unobservable heterogeneity
among individuals which represents another source of variation in addition to the
residual variance. In practice, you not only want to incorporate subject-specific ef-
fects by random effects, but also population-specific effects that are constant among
all individuals, the so called fixed effects.

.
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In this paper the main interest lies on combining the mixed effect models theory
with a non-parametric extension of generalized linear models: the generalized ad-
ditive models (GAM). We aim at showing how this modelling represents a suitable
tool to describe and to handle heterogeneity within a MS setting.
Let us give some notation about general linear models (GLM).Generalized linear

models (McCullagh and Nelder, 1980) extend classical linear regression models to
allow also for non-normally distributed response variables. As in linear regression,
the effect of the covariates X1, ...,Xp on the response variable Y on covariates
X1, ...,Xpis explained by the linear predictor

η = α+X1β1 + ...+Xpβp(1.1)

where β = (β1, ...,βp)
0 is the unknown parameter vector and the distribution of

the response belongs to an exponential family. By taking the normal distribution,
the familiar linear regression is returned as a special case.
The second step of generalization is done by the so called link-function: The

linear predictor η is related to the mean µ = E(Y ) of the response variable Y of
interest by a monotone one-to-one link-function g and its unique inverse function
h by

g(µ) = η ⇐⇒ µ = h(η).(1.2)

Thus, not the mean itself is modelled, but rather a transformation of the mean,
introduced by the link-function and its inverse function.
Starting from the simplest type of GLM, the linear regression models, mixed

effects are introduced in Section 3. First, two types of mixed effect models are
illustrated within a simple linear regression framework: a random intercept and a
random slope model. This type of modelling assumes a Gaussian distribution for the
response variable. Given that the disability scale of interest has an ordinal nature
an alternative ordinal threshold model is then presented. Section 4 extends these
concepts to a nonparametric framework, thus introducing the generalized additive
models (Hastie and Tibshiriani, 1990). Within this class of models, Bayesian P-
Splines with mixed effect (Lang and Brezger, 2001; Fahrmeir and Lang, 2001) are
presented in Section 5. Section 6 illustrates how these statistical tools apply to the
MS data set, comparing results from three different mixed effect models. Discussion
of the results is provided in Section 7.
In the next section we introduce some basics about Multiple Sclerosis and the

related topics.

2. EDSS change as a measure of MS disability.

Multiple Sclerosis (MS) is a chronic progressive disease that affects the brain
and spinal cord (central nervous system). This disease is classified among the mul-
tifactorial genetic diseases (or complex diseases): the causes and potential triggers
of MS are thought to be based both on genetic predisposition and on biological
and environmental patients characteristics. The variability of the MS symptoms
and the potentially long duration of the latent period of the disease from onset
make MS extremely difficult to measure. The disease markers that are used in MS
literature to measure disease activity are typically related either to impairments of
functional status or to dissemination of lesions. This latter, which is not the ob-
ject of our analysis are becoming crucial to measure early disease activity. In this
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class of measures are included magnetic resonance imaging (MRI), cerebrospinal
fluid (CSF) and visual lesions. In this paper we consider as outcome variable the
degree of functional disability usually measured by the so called Kurtzke Expanded
Disability Status Scale (EDSS ). The EDSS measures MS-related impairments of
functional systems (FS). The values of these systems, ranging between 0 - normal
function - and 5 -severe disability (sometimes 0 to 6)- are used to define the cate-
gorical EDSS score. EDSS is therefore an ordinal discrete variable ranging from 0
(no MS symptoms) to 10 (death due to MS) in half point increments.
This paper is motivated by a worldwide research program that has been estab-

lished at the Sylvia Lawry Centre for Multiple Sclerosis Research1 (SLCMSR). The
general aim of the research is the better understanding of the determinants of MS
course in order to improve the efficiency of therapies for MS patients. Within this
program a database has been created, that contains data on untreated patients
from natural history studies and on placebo patients from major therapeutic stud-
ies conducted worldwide by academic research groups and pharmaceutical industry.
Specifically, this paper is based on 897 patients randomly sampled from 17 placebo
controlled clinical trials with 8716 repeated measures. In fact, data from clinical
trials allow for a good monitoring and comparable time spans (1 to 4 months)
between to subsequent observations) whereas natural history data do not.

The EDSS has many shortcomings, one of them being nonlinear and discon-
tinuous. Thus, common alternative outcome measures in clinical trials have been
time to reach a certain level (4.0 or 6.0) in EDSS, or time to worsening, defined by
an increase of 1 point in EDSS. Actually these outcomes cannot be used whenever
the interest of the analysis lies on the whole EDSS course during the clinical trial.
Therefore we focused the analysis on the ”EDSS change” over time.
The decision, to take the change in EDSS at all, may be criticized, but measures

have been taken, to ensure that the variable ”change” means the same thing for
each patient. There is a broad consensus within experts, that, when higher values
of EDSS are already reached, changes have higher clinical significance. Since higher
EDSS-values are dominated by ambulation, a change of 1 from e.g. EDSS 7 to 8 is
more severe than from 1 to 2, where only a slight increase in one of the functional
scores is needed. The European Agency for the Evaluation of Medicinal Products
stated that ”Based on EDSS values, treatment failure or progression should be
predefined e.g. as the achievement of a specified degree of disability or of a sustained
worsening of relevant magnitude (1 point when EDSS scores ≤ 0.5; 0.5 points if
baseline score is > 5.5)” (EMEA (2001)). According to this guidelines, changes
in EDSS-values higher than 5.5 have been weighted twice as much than changes
below this level. This weighted change (”changew”) is a measure of severeness in
changes of disability and cannot be related to the original EDSS-values any more.
At a first attempt, this weighted change, although an ordinal variable, has been
assumed to be metrical, since there are 25 ordered categories, ranging from -3.5 to
9.5. Furthermore, in a first analysis the variable ”changew” has been assumed to
be normally distributed. To understand whether it is justified to use the change
in EDSS as a metric outcome variable an additional model as been performed by
taking ”changew” as ordinal variable.

3.

1SLCMSR was founded in 2001 at the Technical University of Munich with financial support
of the Multiple Sclerosis International Foundation (MSIF).
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4. Mixed effect models: a brief overview.

Mixed effect models, as mentioned in the introduction, are an appropriate statis-
tical tool to describe relationships between a response variable and some covariates
in data where fixed and random effects describe the population-specific and subject-
specific parameters respectively. In the recent statistical literature (Pinheiro and
Bates 2000; Fahrmeir and Tutz, 2001) it has been shown how they provide a flexible
and powerful tool for the analysis of repeated measures and how they are intuitively
appealing in complex settings such as biomedical frameworks. Actually, fixed effects
are associated to an average population trend that is constant among all individu-
als, whereas random effects account for how the individual randomly deviates from
the population trend. Thus, these models incorporates both observable and unob-
servable heterogeneity among patients. A fundamental issue in this framework is
how large is the variance component associated to random effects when compared
to the residual variance.

For the sake of simplicity let us introduce the basic notation and concepts for
mixed effect models within a GLM where the linear predictor coincides with the
link function: that is a a linear regression model.

Linear mixed effect (LME) models assume that the normal response yi for the
i-th subject depends linearly on population-specific effects β and subject-specific
effects bi :

Yi = Xiβ + Zibi + ²i for i = 1, ...N individuals(4.1)

The response vector Yi = (Yi1, ..., YiTi)
0consists of repeated observations for sub-

ject i at time points t = 1, ...Ti. The p fixed effects β describe average trends,
whereas the q subject-specific parameters bi describe how the evolution of the i-th
subject deviates from the average evolution in the population. Xi and Zi are (Ti
× p)- and (Ti × q) design matrices that contain the known covariates. Finally, the
(Ti × 1)-vector εi is the usual vector of residuals, mutually independent on b0is,
and it is assumed to be independent normally distributed, εi v N(0,σ2Ri), with
Ri being the covariance matrix containing the temporal correlations between εit0s.
Usually Ri is chosen to be equal to the identity matrix ITi of dimension Ti, so that
cov(εi) = σ2ITi . In that case, the Ti responses on individual i are independent,
conditional on bi and β. In a random effects model the unobservable heterogeneity
among subjects can be expressed by a random variable with a distribution function.
This so called mixing distribution is often assumed to be a (multivariate) normal
distribution, so that bi ∼ N(0,Q), with Q being a positive semi-definite (q × q)-
matrix and it is usually assumed to be unstructured.
In mixed effect modelling any number of random effects can be specified. Though,

identifiability problems and computational complications may arise when introduc-
ing too many random components. The type and number of random effects are
crucially related to the focus of the analysis in the extent that they are chosen to
model the most important sources of unobserved heterogeneity.
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Figure 1. The random-intercepts model

4.1. Random-intercept and random-slopes models. In the MS previously

presented MS setting a high portion of unexplained variation is commonly thought
to depend on the initial EDSS level and on the intensity of progression. Therefore it
is reasonable in our modelling to allow for both the intercept as well as the slope of
evolution profiles of each patient to vary randomly. The resulting random-intercept
and random slope models are next described.

Definition 1. Random-intercepts model.
Let a response variable yi be affected by a cluster- or subject effect with constant

slope coefficient γ, then a random-intercept model is described as

yi = τ i + γwi + εi with εi ∼ N(0,σ2)(4.2)

The intercepts are assumed to be iid N(τ ,σ2) distributed. That means graphically,
that the effect for each subject is parallel to the population trend (see Fig. 1). With
β0 = (τ , γ0), X 0

i = (1, w
0
i), Z

0
i = 1 and bi = (τ i− τ) , bi ∼ N(0,σ2τ ), a linear random

effects model of the form (4.1) is obtained.

In practice, a random-intercepts model is achieved by taking the subject identifi-
cation number as a random variable, as by Fig (1). In a MS setting this support the
clinical hypothesis that the initial MS severity affects the MS course with a random
impact whereas patients are thought to have an average profile as regarding the
MS progression. Thus, random-intercepts models can be restrictive in that they
require the slope coefficients to be equal for each subject. A random slope model
allows the intensity of evolution to vary among subjects.

Definition 2. Random-slopes model.
Let a response variable yi represent the evolution profiles for each subject that

have specific intercepts and and slopes (see Fig. 2); then yi is described by the
following model

yi = τ i + γiwi + εi with εi ∼ N(0,σ2)(4.3)

Suppose, that the regression coefficients β0i = (τ i, γ
0
i) vary independently across

subjects according to a normal density with βi ∼ N(β, Q),where E(βi) = β can
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Figure 2. The random slopes model

be interpreted as the population effect. That means that the subject-specific effect
can be written as bi = (βi − β) with bi ∼ N(0, Q). Rewriting the regressors as
X 0
i = Z

0
i = (1, w

0
i) returns the linear random effects model of the form (4.1).

In practice, one gets a random-slopes model by taking the subject identification
number (id) as well as the interaction of this subject id with time (in a longitudinal
setting) as random (Fig.2) . Obviously, choosing the appropriate fixed and random
effects in a model is not an easy task.
Several methods have been used to estimate the parameters for the fixed effects.

These methods are usually based on a marginal model, that is a model that does
not explicitly assume the presence of random effects. Two are the most common
estimation procedures: the maximum likelihood (ML) and restricted maximum
likelihood (REML) methods. Detailed descriptions and comparisons of the various
estimation methods used for LME models can be found, for example, in Searle et
al. (1992), Vonesh and Chinchilli (1997) and Verbeke and Molenberghs (2000).
In longitudinal studies where an unmeasured source of heterogeneity is thought

to affect the response, the interest often lies on comparisons between the variance
components attributable to the random effects and the residual variance of the
marginal model. This is a measure of deviation of subject-specific profiles from
the population trend, thus allowing also for the detection of outlying subjects or
even a group of outlying subjects. In estimating the parameters for random effects
Bayesian techniques are commonly provided as efficient tools (Fahrmeir and Tutz
(2001). Empirical Bayes estimates, bbi = E(bi|Yi = yi), are based on the posterior
distribution of the parameters given the observed data, f(bi|yi). These are computed
conditionally on all the parameters of the marginal model, that is on the fixed effects
estimated with ML and RML-methods. MCMC techniques are then commonly used
as approximation procedures to handle the complex calculation of the postestior
mean and covariance matrix structure. Detailed description and tools are provided
in Gilks et al. (1996).
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The previous mixed models assume a Gaussian response that is linearly affected
by the fixed and random effect. This assumption might be restrictive whenever the
response of interest is based on an ordinal variable, such as EDSS. Thus, we next
introduce an alternative model that allow the response to have an ordinal structure:
the ordinal threshold model with mixed effect.

4.2. The ordinal threshold model with mixed effect. The threshold model
is based on the idea, that there is a latent non-observable metric variable and that
the observed variable merely is a categorized version of this latent variable. The
relationship between the latent variable eY and the observable variable Y can then
be described as follows:

Y = r ⇐⇒ θr−1 < eY ≤ θr(4.4)

with −∞ = θ0 < θ1 < ... < θk =∞ for r = 0, ...k categories.
That means, if the latent variable lies between the boundaries θr−1and θr, the

observable variable takes the value r. fY is explained by the regressor variables in
the linear form

fY = −X 0δ + ε(4.5)

where the nuisance parameter has the distribution function F with E(ε) = 0. Thus,
the conditional mean of fY can be written as E(fY |X) = −X 0δ. These assumptions
result in the cumulative model

P (Y ≤ r|X) = F (θr +X 0δ)(4.6)

The cumulativity refers to the following property:

P (Y ≤ r|X) = P (Y = 1|X) + ...+ P (Y = r|X)(4.7)

So far, no intercept has been included in the model formulation (4.6). Including
an intercept would make identifiability of the thresholds θ0 < ... < θr−1impossible,
that is ensured by setting the intercept equal to 0.
The choice of the distribution function F naturally influences the appearance

of the model. Common choices are the logistic or the normal distribution. In
the following, the normal distribution will be used. A detailed description of the
cumulative threshold model and more information on other modelling strategies
within the framework of a threshold approach can be found in (Tutz, 2000).
Choosing the normal distribution gives the so called ordinal probit model :

P (Y ≤ r|X) = φ(θr +X
0δ)(4.8)

with

φ(ν) =
1√
2π

Z ν

−∞
e−

x2

2 dx.(4.9)

The model can have the following intuitive interpretation: By means of the
relationship (4.4) between the observable and underlying variable the density is cut
into k parts. The areas defined by the density curve and the thresholds θr and θr+1
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Figure 3. The densities of population 1 (dashed line) and popu-
lation 2 (full line), cut into 3 parts by thresholds θ1 and θ2

can then be interpreted as the probability of being in category r. An example is
provided for a three categories variable by Fig. (3).
The ordinal probit model can be included in the class of generalized linear mod-

els (GLM) that allows for non-normally distributed response variables. In this
formulation the link function gr depends on the number of categories and for the
distribution in (4.9) is given by

g(µ) = gr (π1,π2, ....,πk) = θr +X
0δ,(4.10)

r = 1, ..., k; πr = P (Y = r|X)(4.11)

Let us now formulate an ordinal probit model where mixed effects are included
for repeated observations (t = 1, ...Ti) with an ordinal response structure and a
random intercept.

Definition 3. Let x0it be the design vector for the fixed effects, θr the rth threshold
and bi ∼ N(0,σ2) the subject-specific effects. Then, the linear predictor has the
form

ηitr = θr + bi + x
0
itδ.(4.12)

This can be interpreted as subject-specific shifting of the thresholds where

θir = θr + bi.(4.13)

Thus, the conditional response probabilities are given by

πit1 = F (θi1 + x
0
itδ), πitr = F (θir + x

0
itδ)− πit,r−1, for r = 2, ...k.(4.14)

In the previous modelling the interest lies on estimating both the parameters of
the ordinal model θ and δ as well as the parameters of the random effects σ. Details
about the estimation procedures are provided by Hedeker and Gibbons (1994).

5. Generalized additive models.

To formulate the final models for our analysis we place the previously presented
concepts in a non-parametric framework. Actually, this paper is aimed at combining
mixed effects with a non-parametric relationship between the response (ordinal or
Gaussian) and the predictors. This will be done within a Bayesian approach.
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The proposed models are based on the following idea: when the dependence be-
tween the response variable Y and the explanatory variables X1,X2, ...,Xp cannot
be described by a linear predictor η as by (1.1) then it is modelled nonparametri-
cally by a smooth function fj(Xj), j = 1, 2, ..p.
Notice that these models can be used for exploring the data structure and dis-

covering unknown trend in the data rather than for prediction purposes. A big
advantage of using smooth functions is that they let the data decide on the func-
tional form producing an estimate of the trend that is less variable than Y itself.
The shape of each of the covariate effects is data-driven. The analyst can then use
the smooth to suggest parametric form for the term and then apply the appropriate
transformation to predict the response.
In this so called generalized additive model (GAM), introduced by Hastie and

Tibshirani [1990], the linear predictor is then assumed to be a sum of smooth
functions and has the form

η = α+ f1(X1) + ...+ fp(Xp).(5.1)

There are many different approaches for modelling the functions f1, ...fp. In prin-
ciple, any known smoother can be used to estimate the function, such as polynomial
smoothing Splines or regression Splines.
Note, that the generalized additive model consists of a sum of such smooth

functions. That is, additivity of effects is assumed. This concept retains the in-
terpretability of the familiar linear model and allows, that some predictors can be
modelled with smooth functions f(x), and others with constant estimators.
In this paper we deal with a particular class of smooth functions out of the

big set of Splines: the P-Splines (Marx and Eilers 1998). These are based on the
assumption that the effect f of a covariate x on the response can be approximated
by a linear combination of basis functions. Obviously, the choice of appropriate basis
functions is crucial to the final regression Splines. Basic Splines Curves (B-Splines)
are a popular choice for basis functions due to their numerical stable behavior.
They are defined as it follows.

Definition 4. B-Splines
Let Ψ = {ξi}, i ∈ Z be a set of knots with ξi < ξi+1, ξi −→ −∞ for i −→ −∞ and

ξi −→ ∞ for i −→ ∞. The set of all possible Splines of degree k to Ψ is called
space of Splines Sk(Ψ).
The B-Splines of degree k to the knot ξi of Ψ is defined recursively as:

k = 1 : B1i (x) =


x−ξi

ξi+1−ξi : ξi 5 x < ξi+1
ξi+2−x

ξi+2−ξi+1 : ξi+1 5 x < ξi+2
0 otherwise

k > 1 : Bki (x) =
x−ξi

ξi+1−ξiB
k−1
i (x) +

ξi+k+1−x
ξi+k+1−ξi+1B

k−1
i+1 (x)

The Splines curve s ∈ Sk(Ψ) can then be described as a linear combination of
the separate B-Splines and their coefficients βi :

s(x) =
m−1X

i=−k+1
βiB

k
i (x), x ∈ [ξ1, ξm](5.2)
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B-Splines depend only on the degree k and the values of Ψ. They are non-zero
functions in a defined interval and zero outside of this interval. This then makes
them numerically superior to other basis functions.
A crucial problem in Splines theory is the choice of the number and the position

of knots. In fact, to allow for flexibility in capturing the variability of the data
structure, a large number of knots is recommended. Nevertheless, this may lead to
overfitting.
To address this problem we start noticing that the coefficients β0is can be con-

sidered as a measure of the basis amplitude in the extent that they regulate the
roughness of the curves. The higher the difference between adjacent β0is is, the
rougher the curve is. On this idea is based the approach of Eilers and Marx (1996).
They introduce a penalization term in the maximum likelihood estimation. To
combine the opposite requisites of the modelling, that is enough flexibility without
a large overfitting, a relatively large number of equally distant knots is suggested.
The high variation of the curves is then reduced by penalizing the likelihood with
a l difference penalty term on adjacent B-Splines coefficients as it follows:

λ
rX

i=l+1

¡
∆lβi

¢2
(5.3)

The Penalized Likelihood is then given by

PL = l(y,β)− λ
rX

i=l+1

¡
∆lβi

¢2
.(5.4)

Fisher-Scoring-Algorithm is used to conduct the maximization on the Penalized
Likelihood with respect to the unknown regression coefficients.
Other features of Penalized B-Splines, also called P-Splines are:

• P-Splines can fit polynomial data exactly. If the response variable y is a
polynomial in x of degree k, then P-Splines of degree k or higher will exactly
fit the data for any λ.

• P-Splines conserve the moments of the data
• The limit of a P-Splines fit of degree k or higher with a large smoothing
parameter is a polynomial of degree k-1

The smoothness of the function is now regulated by the smoothing parameters
λj , j = 1, ...p. The method recommended by Eilers and Marx is to minimizing the
Akaike information criterion (AIC). Details about this criterion can be found in
Hastie and Tibshirani (1990). The computation of AIC’s for many values of λ is
very time-consuming and becomes very impracticable in higher dimensions. Fur-
thermore, the function AIC(λ) doesn’t need to have a global minimum. Actually,
it often has several local minima, which makes it difficult to decide on one optimal
λ value. It has been shown (Brezger, 2000), that even in cases of a unique mini-
mum, the choice of λ is not optimal, in the extent that it produces a curve, that is
too rough. Alternatives to AIC are cross-validation methods (Fahrmeir and Tutz,
2001).

6. Bayesian P-Splines and mixed effects models.
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Figure 4. Prior distribution for RW(1) (left) and RW(2) (right)

To avoid the problem of the choice of an optimal λ value a Bayesian approach to
P-Splines is suggested. Following Fahrmeir and Lang (2001) the Bayesian version
of P-Splines allows for considering the smoothing parameters as random and for a
simultaneous estimation together with the other model parameters. Starting from
the general formulation in (5.2) the difference penalty term on adjacent B-Splines
coefficients given by (5.3) is replaced by a Bayesian analogue: a random walk. For
instance, first and second differences penalty terms correspond to first and second
order random walks, given respectively by:

RW(1) : βi = βi−1 + ui,(6.1)

with ui ∼ N(0, τ2) and β1 ∝ const.

RW(2) : βi = 2 ∗ βi−1 + βj−2 + ui,

ui ∼ N(0, τ2), β1 ∝ const and β2 ∝ const.(6.2)

Another possibility are second order random walks (RW(2)). Likewise, RW(2)
corresponds to second differences in classical P-Splines. Note, that the priors for
the initial values, β1 for RW(1), and β1and β2 for RW(2) respectively, are diffuse,
that is:

ui ∼ N(0, τ2) and β1 ∝ const.
with ui ∼ N(0, τ2), β1 ∝ const and β2 ∝ const.
The illustration of this concept in Fig. (4) shows that ui, or equivalently the

variance parameter V ar(ui) = τ2, regulates the smoothness of the function. The
coefficient βi is restricted to deviate at most by ui from the preceding coefficient
βi−1, or alternatively from the interpolating line between βi−2 and βi−1, in the
case of a second order random walk. Bayesian P-Splines

It can be shown (Brezger, 2000), that the joint distribution of the prior is given
by
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β ∝ exp(− 1

2τ2
β0Kβ)

with the symmetric penalty matrix K.
In addition to the coefficients, the variance parameter τ i has to be supplemented

with a prior distribution as well. Thus, this parameter is also assumed to be
random and is estimated simultaneously with the coefficients by means of the single-
component Metropolis-Hastings-Algorithm. The advantage of this procedure is,
that the problem of choosing a smoothing parameter is avoided. The variance
parameter τ i corresponds to the smoothing parameter λ in the classical approach
of P-Splines, but it is data-driven and therefore more reliable than λ. The priori
for the variance parameter, also called hyperparameter, is often chosen within the
family of inverse Gamma distributions, that is:

τ2 ∼ IG(a, b).
By setting a = 1 and b = 0.005 a flat distribution is obtained, which resemble

a situation of no prior knowledge on the entire parameter space, that is a Jeffrey’s
non-informativeness.

We next describe how random effects can be easily included in a Bayesian P-
Splines setting, thus leading to a mixed effect model with non-parametric effect
f of a covariates x on the response.

Two P-Splines models with mixed effects are proposed to handle gaussian and
ordinal responses respectively.

6.1. Unobserved heterogeneity with a Gaussian response. Suppose, that
repeated measurements have been taken on n individuals and a mixed effects model
is used. Bayesian P-Splines are considered to model the non parametric effect of
the covariates on a Gaussian response. Fixed effect are very likely to be included
in the model in addition to the random effect and the P-Splines components.
For the sake of simplicity let now present Bayesian P-Splines within a random

intercept model as it follows:

yi = bi +

pX
j=1

fj(xij) +
KX
k=1

βkwik + εi(6.3)

where bi, i = 1, 2, ...., N is the random intercept. f 0js , j = 1, 2, ..., p, denote the
Bayesian P-Splines and model the non-parametric effect of p individual covariates
x0ijs on the response yi. The β

0
ks are the fixed effects parameters of theK individual

population-specific covariates.
In a Bayesian context, in addition to the above discussed variance component for

the random walk regulating the smoothness of the P-Splines, random components
are also assigned. In our modelling the following priors are chosen:
1) residual variance component: εi ∼ N(µi,σ2) with σ2being the scale parame-

ter. An inverse Gamma distribution is commonly assigned as
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σ2 ∼ IG(aσ, bσ)(6.4)

Again, setting aσ to 1 and bσ to 0.005 we obtain an approximately non-informative
distribution.
2) variance component for the random effects: b0is, i = 1, ..., n are generally

assumed to be i.i.d. Gaussian, i.e.

bi ∼ N(0, τ2ra)(6.5)

Similarly to the hyperparameter in the random walk approach, the variance pa-
rameter V ar(bi) = τ2ra is assumed to be random. In this case, the Inverse Gamma
distribution is taken as well, so that

τ2ra ∼ IG(ara, bra) with ara = 1 and bra = 0.005.(6.6)

3) fixed effects: in a Bayesian framework diffuse priors are chosen to express no
prior knowledge about the parameters of the fixed effects; this means:

βi ∝ const
Notice that in these framework two assumptions are required:i) conditional in-

dependence of y0is given the covariates, ii) mutual independence of the prior distri-
butions for variance components and fixed effects.
Inference procedures in the models described in this section are based on Bayesian

techniques to estimate the posterior distribution functions. It can be shown, that
the full conditional distributions of β,and b are multivariate Gaussian, whereas the
full conditionals of τ2, τ2ra and σ2 are all inverse Gamma distributions. Since all
distributions are known, a simple Gibbs sampler can be used to update the param-
eters of the model either in single component steps or blockwise. It is reasonable
to update the parameters β of function evaluations and the random effects jointly
by block moves. A detailed updating algorithm and mean and variance parameters
of the full conditionals can be found in Lang and Brezger (2001).

6.2. Unobserved heterogeneity with an ordinal response. Consider an or-
dinal response variable Y , that is assumed to be a categorized version of a latent
variable eY with thresholds −∞ = θ0 < θ1 < ... < θk = ∞. Thus, there are
k − 1 parameters to estimate in addition to the unknown coefficient parameters.
The thresholds θ = (θ1, ..., θk−1)0 are considered as random. Like fixed effects (see
(??)), they are supplemented with diffuse priors, i.e.

p(θ) ∝ const.(6.7)

The additive model with an ordinal response does not differ from the (6.3) except
for the meaning of the response latent variable eY .The full conditional distribution
of the latent variable is a truncated standard normal distribution, with truncation
points determined by the thresholds as

P (Y |eY ) = kX
r=1

I(θr−1 < eY ≤ θr)I(Y = r)(6.8)
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Drawing out of a truncated normal distribution evolves as numerically difficult
and almost not solvable together with random effects. Thus, estimation procedures
based on separated steps are needed. For details on sampling schemes on ordinal
data and reparametrization strategies see Fahrmeir and Lang (2001).

7. P-Splines with mixed effects to investigate MS clinical
prognostic factors.

In this section we propose P-Splines with mixed effects as a suitable model to
address the MS clinical data. As discussed in section 2 a crucial issue in MS research
is to investigate the impact of covariates in determining the severity of the disease.
We now apply the P-Splines mixed effects models to the SLCMSR data set above
introduced to show how this modelling can afford the high level of heterogeneity of
MS data and can provide important information about the role of the prognostic
factors in the disease. The included covariates which are some of the most important
prognostic factors for MS are described in Table A in Appendix I. The results are
provided on the analysis of MS data with the following models:

1. P-Splines random intercept model
- with a Gaussian response
- with an ordinal response

2. P-Splines random slope model

7.1. P-Splines random intercept model with a Gaussian response. The
influence of the covariates on the change in EDSS is estimated with Bayesian tech-
niques.For the metric variables, P-Splines of degree 3 and a second order random
walk penalty were considered. For the benefit of estimating a smooth function for
time, a random slope term has been left out. Thus, possible non-linear effects of
time may be detected. The further introduction of a random slope will require a
linear term for time.
Let now take the response variable as normally distributed. The prior distribu-

tion functions for the parameters are those chosen in the previous section as referred
to the general model (6.3).
The model can be specified by the formula

changewit = f1(ti) + f2(agei) + f3(edssi) + f4(duri) + β1 ∗ course(1)i
+β2 ∗ course(2)i + β3 ∗ genderi + bi + εit,(7.1)

where bi, i = 1, ...N is the random intercept, identified by an unique index vari-
able. Bayesian P-Splines functions are modelling non-parametrically the impact of
four covariates. Fixed effect are acting additively as above specified.
The estimates are perfomed with the software BayesX (www.stat.uni-muenchen.de/∼lang/bayesx/bayesx.html)

The posterior mean plots illustrate the role of the risk factors on the EDSS change.
Before looking at the parameter estimates, the convergence and mixing behavior of
the MCMC procedure is of interest. Test runs with a small number of iterations
suggested taking a burn-in period of 20000 and step width 500. The number of it-
erations was therefore set to 520000, so that 1000 samples were stored. With these
parameters, a good behavior of the chain was obtained. Fig. 5 shows the sampling
and autocorrelation plots of the constant effects and gender, and of one parameter
for the time effect. All other autocorrelation and sampling plots are comparable to
the examples showed.
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Figure 5. Autocorrelations of fixed effects and parameters for
time (top) and mixing behavior of the estimate for gender and one
time parameter (bottom)

source of
variation

Mean Std.Dev. 10% Qu. 50% Qu. 90% Qu.

within-patients
between-patients

0.593373 0.009933 0.580887 0.593407 0.606655
0.536405 0.000929 0.498304 0.535726 0.573733

Table 1. Estimates of variance components

The results of the variance components and fixed effects estimates are reported
in Tables (1) and (2).
We notice that the two variance components have similar magnitude. This sug-

gests that the unobservable heterogeneity between patients explains a portion of
total variation similar to that explained by the observable covariates. This leads
to conclude that the prognostic factors included depict an average patient profile
which is not representative of the population.
As concerning the fixed effects Table (2) shows how the gender of the patients (fe-

male are reference category) has a negligible impact on the EDSS change, although
a slight increased risk is detected for men consistently with the MS literature. Ac-
tually, an effect of the variable ”course” can is revealed: patients entering the study
in a progressive phase (course (1) ,course (2) ) show a higher risk of worsening than
those who enter in a relapsing-remitting phase (reference category). Notice that
this result can be interpreted as a short term predictors only. In fact, it is very

Variable Mean Std.Var. 10% Qu. 50% Qu. 90% Qu.
gender -0.053879 0.065302 -0.140182 -0.054003 0.031402
course(1) 0.323480 0.104238 0.185648 0.321651 0.460414
course(2) 0.339837 0.098472 0.210783 0.339599 0.469657

Table 2. Estimates of constant effects
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difficult to attribute any other role to this predictivity given that the course may
change during the disease course.
Posterior means are plotted in Fig.s 7a, 7b, 7c, 7d.. These plots show an increas-

ing linear effect of ”time” on EDSS change (Fig. 7a), thus suggesting that longer
studies allow to observe a higher worsening in the patients. The variable ”age at
onset” (Fig.7b) has a negligible impact on the EDSS change (credible interval of the
posterior mean includes zero) although a slight negative trend after 30 years might
suggest a decreasing risk impact of age on MS. This results seems to be inconsistent
with MS literature where age is known to have an increasing risk effect on the MS
severity. An explanation can be found to this apparent inconsistency. Actually, it
can be shown (Di Serio, 2003) that age affects increasingly MS as regarding the
initial level of the disease severity, but it doesn’ t show a significative impact on
the intensity of progression of MS. Thus, age effect is not detected whenever the
response variable is the EDSS change over time representative of the MS trend over
time.
More informative are the variables ”EDSS baseline” and ”duration”. We can

notice by Fig. 7c that patient with low initial EDSS present a lower probability of
worsening, whereas this effect reverts for patients who enter the study with high
initial EDSS (EDSS = 5÷ 6). Furthermore, a constant trend is detected between
level 2 and 5 of EDSS baseline: these patients are in MS literature revealed to
be relatively stable regarding ambulation disability. Indeed, a remarkable trend
is attributable at the lowest and highest EDSS baseline levels. The direction of
the trend depends on how ambulation and other functional status are weighted in
the EDSS computation. Patients with high initial EDSS are likely to worse their
general functional status rapidly (at these levels EDSS is also computed for 0.5
steps amplitude). Finally we notice that the variable ”duration” (Fig. 7d) shows
also a surprising decreasing risk effect. Again this can be interpreted together with
the above discussed effect of ”age at onset” in the extent that these two variables
might include the same information.
It can be noticed that the credible intervals at the Splines tails oft happen to

widen. This can be explained by noticing that, due to standard inclusion criteria,
in the clinical trials pooled for this analysis a lower number of patients presents
extreme values for the analysed covariates.
Overall, it has to be noted, that not all included effects influence the response

variable significantly. This is also affected by the modelling. The plot of the popula-
tion residuals (Fig. ??) shows a skewed distribution with negative outliers. That is,
the fixed part of the predictor highly underestimates the observed outcome variable
for many patients. The introduction of random effects causes a shrinkage towards
zero. In particular in Fig. (7) shows a systematic trend in the residuals: Negative
values of the response are overestimated by the predictor, whereas positive values
are underestimated. In general, the fitted values tend to be more conservative and
estimations are shifted towards less change in EDSS. This again support the idea
that a high amount of variation is explained by the random effects.
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thresholds changeord

≤ θ1 big decrease (<<)
(θ1; θ2) small decrease (<)
(θ2; θ3) stable (=)
(θ3; θ4) small increase (>)
≥ θ4 big increase (>>)

Table 3. Boundaries of thresholds and their corresponding categories
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Figure 7d. P-spline for duration

7.2. P-Splines random intercept model with an ordinal response. In the
previous modelling the ordinal nature of the weighted EDSS change was not taken
into account. Let now include in the P-Splines analysis the ordinal structure of the
data. Based on a comparison between the two modelling we aim at understanding
whether different results arise concerning the effect of MS prognostic factors.
In an ordinal model, as above discussed, the posterior mean estimates depend

also on the thresholds parameter vector θ = (θ1 , ...θk−1)0 . For the sake of sim-
plicity the 25 categories of EDSS change where reduced to 5 , as in Table B in
Appendix I: Each category included at least a change of 1.0 on the EDSS-score to
be confident, according with MS literature (Noseworthy et al., 1990), that a real
change in disability occurred. The new response variable, ”changeord” ranges, with
5 categories, from ”big decrease” to ”big increase” over a ”stable” phase.

The general ordinal threshold model, according with the Gaussian response P-
Splines model can be now written as

changeordit = f1(ti) + f2(agei) + f3(edssi) + f4(duri) + β1 ∗ course(1)i
+β2 ∗ course(2)i + β3 ∗ genderi + bi + εit.(7.2)

The ordinal response variable is categorized as described in table (3). The prior
distributional assumptions are the same described for model (6.3). In addition, a
diffuse non-informative prior p(θ) ∝ const was chosen.
The ordinal mixed effect model results are obtained by a combination of Bayesian

and classical estimation procedures. First, Bayesian estimates for the fixed ef-
fects are derived as above. These estimates constitute the basis for the marginal
likelihood estimation of the random effect, as performed by the software MIXOR
(www.uic.edu/∼hedeker/mix.html). In the first Bayesian step, as in the Gaussian re-

sponse model, P-Splines of degree 3 with second order random walk penalty where
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Figure 9. Sampling plots of threshold parameters

considered. Convergence and mixing behavior of the MCMC procedure show a
much larger number of iterations needed. Actually, to guarantee an almost ideal
behavior for the samples and autocorrelation plots of all P-Splines parameters, a
burn-in period of 500000 and a step-width of 1000 was chosen.
The diagnosis plots of the constant effects, shown in Fig. 8, are also satisfying.

However, the trace plots of the threshold parameter samples (Fig. 9) illustrate a
bad mixing behavior. Positive and negative correlations seem to alternate. Hence,
the estimation of threshold parameters is not very stable.

Fixed effects Bayesian estimates provide information to reduce the number of
parameters and to construct an appropriate ordinal regression model where the
smooth functions are chosen as polynomial. For details see Lamina (2002).
Let now present the final estimation results obtained by this mixing two-steps

procedure.
The estimated threshold parameters are given in Table 4.
The fixed effect estimates are reported in Table (5).The estimates of both courses

are significant showing progressive and can be so interpreted: the estimated effect
of ”course (2)”, for instance, is about 0.62, then it lies between θ1 and θ2 and the
category ”small decrease” in disability corresponds then to the predicted outcome,
according to Table (4).
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threshold Estimator std.error z-value p-value

θ1 0 — — —
θ2 1.46894 5.66944 44.35629 <0.0001
θ3 4.59204 0.03922 117.09799 <0.0001
θ4 5.66944 0.04102 138.22608 <0.0001

Table 4. Estimates of threshold parameters

Estimate Std.Error z-value p-value
gender -0.08919 0.08839 -1.00902 0.31297
course(1) 0.54872 0.17777 3.08677 0.00202
course(2) 0.62386 0.12768 4.88632 0.00000

Table 5. Estimates of constant effects
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10 61 47 0 0
16 120 556 4 0
85 128 4684 278 6
2 15 704 661 17
0 6 154 453 261

118
696
5181
1399
874

Total 113 330 6145 1396 284 8268

Table 6. Crosstab of observed and fitted response

In the next plots the Splines obtained in each of the two estimation steps of the
ordinal modelling are compared.

Fig. 9A. STEP I STEPII
(estimation with no (estimation with mixed effect)
random effect)
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Preserving the ordinal nature of EDSS change did not provide evidence of a
change in the interpretation of the estimated parameters with respect to the Gauss-
ian model. Results (Fig. 9A), that appear very different in the first sight, like the
regression Splines for duration and age at onset, don’t show such a discrepancy,
when looked at closer. Due to different outcome variables, the estimates cannot be
compared directly. Yet the hypothesis that effects appear to be of bigger influence
in the ordinal model, has been confirmed. Furthermore, the variance of the esti-
mations has to be taken into account. Unfortunately, confidence bands couldn’t be
added in the plots of regression Splines obtained in MIXOR. But the P-Splines of
the ordinal model in BayesX as well as the rough plots can serve as indicators, how
accurate the estimation is.
As in the Gaussian model, the model fit is analyzed by comparing the fitted

values against the observed values. The crosstab in Table 6 also indicates a sys-
tematic error. Only 69.4% of all observations are classified correctly. A good fit is
only achieved in the category, that defines a ”stable” disease progression. All other
fitted values are shifted towards this same category. That is, observations on both
extreme ends of disease progression cannot be explained very well by the ordinal
model as well as the Gaussian model. Moreover it has to be noted, that many
computational problems occured during the estimation of the ordinal model. The
autocorrelation and trace plots of the threshold samples (Fig.s 9 ,8) showed a bad
mixing and convergence behavior, although random effects havn’t been included
in this stage of modelling. Analyzing the mixed-effects ordinal regression model in
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MIXOR also led to numerical difficulties. Adjustments had to be made to improve
the chances of convergence. Thus, a Gaussian model should be preferred. Using
the Gaussian model also seems to be justified, as the results of both approaches
don’t differ substantially.
From the reported analyses of the fitted values against observed values concern-

ing both the random intercept models, a systematic bias has been revealed. The
analysis of residuals also suggested that additional random components should be
included in the analysis.
We next formulate, as last step of our modelling, a random slopes model.

7.3. P-Splines random slopes model. Heterogeneity in individual MS progres-
sion is observed as regarding both the magnitude and the speed: The disability
of one patient may rise fast in the beginning and then stabilize, whereas it rises
steadily, but slow for another patient. This might be the cause of the bias in
the fitted values derived by the random intercept models: They underestimate the
change for patients, whose disability greatly decreased or increased within the time
frame of a clinical study. Thus, the introduction of a random slope together with
a quadratic random effect should account for both the different magnitude of MS
progression as well as the different curvature in the progression of disability. The
choice of a quadratic random slopes model is also suggested by the nonparametric
effect of time detected in the Splines.
We recall that in a random slopes model the patients in a clinical trial are

considered to different from the average trend of the populations as regarding both
the initial disability level (random intercept) and the intensity of the MS clinical
progression (random slopes). The proposed model is therefore given by

changewit = f1(agei) + f2(edssi) + f3(duri) +(7.3)

β1 ∗ course(1)i + β2 ∗ course(2)i +

β3 ∗ genderi + (bi0 + β0) +

(bi1 + β4) ∗ ti + (bi2 + β5) ∗ t2i + εit,

where βi0 is the random intercept, βi1 the random slope and βi2 the quadratic
random slope parameter. The fixed intercept is denoted by β0, the fixed time by
β4 and the fixed quadratic time effect by β5. As in the Gaussian model, prior
distributions of all fixed effects are diffuse, whereas all random effects are assumed
to be normally distributed.
To ensure comparability of the random intercept and random slopes model, cal-

culation in BayesX was performed with the same number of iterations, i.e. a burn-in
of 20000 and a step-width of 500. The convergence and mixing behavior was com-
parable to the ones obtained in the random intercepts model (Fig. 5). Hence, non
of the Gaussian models is numerically superior.
Let next present the results of this modelling. In Table (7) we notice how the

variance components of the random effects are significantly lower than the residual
variance. This suggests a significant improvement in the modelling when compared
to the random intercept models.
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source of
variation

Mean Std.Dev. 10% Qu. 50% Qu. 90% Qu.

scale 0.360485 0.006067 0.352562 0.360414 0.368427
intercept 0.024117 0.009096 0.012335 0.024135 0.036359
linear slope 0.000449 3.66*10−5 0.000404 0.000448 0.000495
quadr. slope 1.77*10−5 9.30*10−7 1.65*10−5 1.76*10−5 1.89*10−5

Table 7. Estimates of variance components

The estimation of the constant effect are provided in Table (8). We notice that
the fixed effects for time and quadratic time are positive, thus indicating that
the disability averaged over the population is increasing over time. Furthermore
the positive estimates of the progressive course are smaller than before. It seems,
that some amount of information, that was given by the course of disease in the
previous model, is captured by the individual linear or quadratic slopes. To confirm
this assumption, a closer look has been taken into the distribution of the random
slope estimates within each group. Table 9 shows the mean values for the linear
and quadratic random slope parameters. Slopes for progressive patients (sp, pp
or pr) are generally higher than for relapsing-remitting patients (rr). Hence, the
categorization into disease courses reflects the kind of progression over time, so
that a time-dependent effect rather than a constant effect per group could be an
alternative.
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Variable Mean Std.Var. 10% Qu. 50% Qu. 90% Qu.

intercept 0.017732 0.006067 0.352562 0.360414 0.368427
time 0.004538 0.001049 0.003242 0.004499 0.005897
time2 1.19*10−5 0.000156 0.000191 0.000209 0.000218
course(1) 0.129323 0.049309 0.070234 0.128142 0.192123
course(2) 0.089652 0.042889 0.032993 0.089353 0.144362
gender -0.070236 0.030946 -0.11044 -0.06945 -0.110436

Table 8. Estimates of constant effects

course
mean of random
linear slope

mean of random
quadratic slope

pp or pr (course(1)) -0.000024 0.013340
sp (course(2)) 0.000927 0.000060
rr (reference category) -0.000561 -0.001539
Table 9. Mean of random slope estimates, stratisfied for courses

P-Splines curves plotted for the metric variables ”age at onset”, ”baseline EDSS”
and ”duration” are here omitted given that it didn’t change substantially the in-
formation obtained by the previous analysis, except for the credible intervals that
resulted noticeably narrower than before.
Finally, by looking at the plot of fitted against observed values (Fig. ??) we can

still observe a systematic trend. But as the dashed line, indicating a linear regression
fit, lies closer to the diagonal, model fit is improved significantly. However, outliers
can still be crucially detected on both extreme ends of the weighted EDSS change.

8. Conclusions.

This paper was aimed at providing a suitable statistical tool to capture the het-
erogenous structure of longitudinal MS data. A non-parametric approach allowed
to avoid restrictive assumptions about the analytical form of the relation between
explicative covariates and prognostic factors. Therefore generalized additive models
(GAM) have been suggested as a natural tool to investigate non-parametrically, by
means of Splines, the role of MS prognostic factors. Furthermore, this modelling
was combined with mixed effects theory, thus allowing for including both observed
and unobserved heterogeneity.
In the presented analysis we addressed two main issues.
i) Most of the statistical modelling in MS consider EDSS as a metric variable,

regardless of the ordinal nature of this measure. Does this assumption affect the
estimation of the effect of the prognostic factors?
ii) Unobserved sources of heterogeneity affect individual MS development. Does

this source of heterogeneity create difference among patients as regarding how they
enter the study or also how large and fast is the progression?

To provide an answer to the first question mixed effect Splines models have
been compared for Gaussian and ordinal responses. Overall it was shown, that the
numerically demanding and time-consuming estimation of an ordinal mixed effects
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model is not justified by a real gain in the results. Actually, the interpretation of
the role of prognostic factors didn’t change dramatically. Thus, a Gaussian model
is suggested.
Overall, the entry EDSS appears to be of big influence on the weighted change

in EDSS. Patients enrolled in a study with an EDSS lower than 2 or bigger than
5.5 can be expected to experience a higher increase in disability as patients in
between. The effects of duration of disease, age at onset and gender are marginal
and even negligeable. However, there is a general ”positive” time trend during a
clinical study. That is, the more time elapses, the higher is the change in EDSS.
The course of the disease also emerged as a predictive factor. This variable can
be seen as a summary of the past disease progression. As soon as there are more
variables available, that hopefully explain the previous disease course of a patient,
a shrinkage of this effect can be expected. In general, the disability of patients,
that are categorized in one of the progressive courses, increases more.
Introducing random slopes models allow for investigating the second issue men-

tioned above. The random slopes model explains a ”within-patients” variability
which is much higher than the ”between-patients” variability, whereas this was
not the case in the random intercept model. This implies that accounting for the
variability in the progression of the individual disability allows for a much better
classification of the patients. Furthermore, a comparison between the estimates of
the fixed effect of time in random slopes model (Table 8) and the posterior mean
estimate of time in random intercept models can be made: the stabilization of the
effect of time after an increasing phase suggested by the random intercept model
might be attributable to a random effects for the quadratic time effect. This is
consistent with the hypothesis that unobserved heterogeneity plays a crucial role
in evaluating the individual intensity of progression. Finally, the influence of the
disease course is much smaller in the random slopes model. It was shown, that this
is due to deviating random effects between the 3 groups of patients. Thus, it is
advisable to think about time-dependent effects, i.e. to estimate one slope for each
group of patients.
Bayesian methods, based on MCMC algorithms, emerged as extremely flexible.

Models, that are too complex for classical maximum likelihood estimation, can be
estimated in a Bayesian context. The software BayesX was used which incorporates
of smooth P-Splines for metric covariates. Alternatively, a combination of Bayesian
techniques and marginal likelihood estimation procedures were used for estimating
ordinal threshold model .
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9. APPENDIX I

changew weigthed change in EDSS from first observation
t time in weeks from first observation
edss EDSS at first observation
age age at disease onset
dur duration in months from onset to first observation

gender =

½
0 for female
1 for male

course

course(1) =

½
1 if course = pp or pr
0 otherwise

course(2) =

½
1 if course = sp
0 otherwise

Reference category is relapsing-remitting

Table A: Description of the covariates included in the analysis of SLCMSR data
set.

weighted
change

ordinal
change

label
number of
observations

≤ −2 big decrease << 126
−1.5;−1 small decrease < 721
−0.5; 0; 0.5 stable = 5438
1; 1.5 small increase > 1440
≥ 2 big increase >> 893

Table B: Categorization of EDSS change.
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