1,716 research outputs found

    Lai-Massey Scheme Revisited

    Get PDF
    Lai-Massey scheme is a well-known block cipher structure which has been used in the design of the ciphers PES, IDEA, WIDEA, FOX and MESH. Recently, the lightweight block cipher FLY applied this structure in the construction of a lightweight 8Ɨ88 \times 8 S-box from 4Ɨ44 \times 4 ones. In the current paper, firstly we investigate the linear, differential and algebraic properties of the general form of S-boxes used in FLY, mathematically. Then, based on this study, a new cipher structure is proposed which we call generalized Lai-Massey scheme or GLM. We give upper bounds for the maximum average differential probability (MADP) and maximum average linear hull (MALH) of GLM and after examination of impossible differentials and zero-correlations of one round of this structure, we show that two rounds of GLM do not have any structural impossible differentials or zero-correlations. As a measure of structural security, we prove the pseudo-randomness of GLM by the H-coefficient method

    A Survey of ARX-based Symmetric-key Primitives

    Get PDF
    Addition Rotation XOR is suitable for fast implementation symmetric ā€“key primitives, such as stream and block ciphers. This paper presents a review of several block and stream ciphers based on ARX construction followed by the discussion on the security analysis of symmetric key primitives where the best attack for every cipher was carried out. We benchmark the implementation on software and hardware according to the evaluation metrics. Therefore, this paper aims at providing a reference for a better selection of ARX design strategy

    Symmetric Cryptography : Report from Dagstuhl Seminar 12031

    Full text link

    Pseudorandomness Analysis of the Lai-Massey Scheme

    Get PDF
    At Asiacryptā€™99, Vaudenay modified the structure in the IDEA cipher to a new scheme, which they called as the Lai-Massey scheme. It is proved that 3-round Lai-Massey scheme is sufficient for pseudorandomness and 4-round Lai-Massey scheme is sufficient for strong pseudorandomness. But the author didnā€™t point out whether three rounds and four rounds are necessary for the pseudorandomness and strong pseudorandomness of the Lai-Massey Scheme. In this paper we find a two round pseudorandomness distinguisher and a three-round strong pseudorandomness distinguisher, thus prove that three rounds is necessary for the pseudorandomness and four rounds is necessary for the strong pseudorandomness

    On the Design of Secure and Fast Double Block Length Hash Functions

    Get PDF
    In this work the security of the rate-1 double block length hash functions, which based on a block cipher with a block length of n-bit and a key length of 2n-bit, is reconsidered. Counter-examples and new attacks are presented on this general class of double block length hash functions with rate 1, which disclose uncovered flaws in the necessary conditions given by Satoh et al. and Hirose. Preimage and second preimage attacks are presented on Hirose's two examples which were left as an open problem. Therefore, although all the rate-1 hash functions in this general class are failed to be optimally (second) preimage resistant, the necessary conditions are refined for ensuring this general class of the rate-1 hash functions to be optimally secure against the collision attack. In particular, two typical examples, which designed under the refined conditions, are proven to be indifferentiable from the random oracle in the ideal cipher model. The security results are extended to a new class of double block length hash functions with rate 1, where one block cipher used in the compression function has the key length is equal to the block length, while the other is doubled

    Construction of secure and fast hash functions using nonbinary error-correcting codes

    Get PDF

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    The History of the Quantitative Methods in Finance Conference Series. 1992-2007

    Get PDF
    This report charts the history of the Quantitative Methods in Finance (QMF) conference from its beginning in 1993 to the 15th conference in 2007. It lists alphabetically the 1037 speakers who presented at all 15 conferences and the titles of their papers.
    • ā€¦
    corecore