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Abstract. Lai-Massey scheme is a well-known block cipher structure
which has been used in the design of the ciphers PES, IDEA, WIDEA,
FOX and MESH. Recently, the lightweight block cipher FLY applied
this structure in the construction of a lightweight 8× 8 S-box from 4× 4
ones. In the current paper, firstly we investigate the linear, differential
and algebraic properties of the general form of the S-boxes used in FLY,
mathematically. Then, based on this study, a new cipher structure is
proposed which we call generalized Lai-Massey scheme or GLM. We give
upper bounds for the maximum average differential probability (MADP)
and maximum average linear hull (MALH) of GLM and after examina-
tion of impossible differentials and zero-correlations of one round of this
structure, we show that two rounds of GLM do not have any structural
impossible differentials or zero-correlations. As a measure of structural
security, we prove the pseudo-randomness of GLM by the H-coefficient
method.
Keywords: Generalized Lai-Massey Scheme; S-box; Symmetric Cipher;
H-coefficient method; MADP; MALH.

1 Introduction

Feistel scheme is a well-known and widely used structure in symmetric cryp-
tography. Many block ciphers are designed by this scheme; among them are
DES [2], FEAL [9], SKIPJACK [12], KASUMI [5] and SIMON [1]. Feistel scheme
is also used for construction of S-boxes of the symmetric ciphers CS [13], CRYP-
TON [7] and ZUC [14]. For another example, the FI function of the block cipher
MISTY [8] is based upon the Feistel scheme.
The Lai-Massey scheme was used for the first time in 1990 in the design of
PES (Proposed Encryption Standard) [6] by Lai and Massey. After the advent
of linear and differential cryptanalysis, a modified cipher IDEA (International
Data Encryption Algorithm) was designed by Lai, Massey and Murphy in 1991.
Among other ciphers designed after Lai-Massey scheme are WIDEA, FOX [3] and
MESH [11] families of block ciphers. Recently, the designers of the lightweight
block cipher FLY [4] have used a modified version of Lai-Massey structure in
the design of its S-box Littlun.
In this paper, firstly we examine the cryptographic properties of the general
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form of the S-boxes constructed in the FLY block cipher. More precisely, we
give bounds for maximum differential uniformity and linearity of these kinds of
S-boxes, for some cases. Also, in some spacial cases, we give the algebraic degree
of the mentioned S-boxes.
Then, we propose a new structure for symmetric ciphers which we call general-
ized Lai-Massey scheme or GLM for short, and present lower bounds for maxi-
mum average differential probability (MADP) and maximum average linear hull
(MALH) of one round of this structure. Also, we study impossible differentials
and zero-correlations of one and two rounds of GLM. We show that, two rounds
of GLM do not have any structural impossible differentials or zero-correlations.
We prove the pseudo-randomness of the proposed structure by the H-coefficient
method, as a measure of structural security.
According to the upper bounds for MADP and MALH, GLM is comparable to
three rounds of a classic 2-branch Feistel scheme. An advantage of the proposed
scheme over the Feistel structure is that, the first layer in the construction of
GLM could be implemented in parallel, which could render it faster in software
and hardware implementations.
In Section 2, we give the preliminaries for the rest of the paper. Section 3 is de-
voted to the theoretical examinations of the paper. Section 4 is the conclusion.

2 Preliminaries

The finite field with 2n elements is denoted by F2n and the n-dimensional linear
space over F2 is represented by Fn2 . For a map f on F2n , it can be shown that
f has a representation (unique up to the choice of the representing irreducible
polynomial)

f(x) =

2n−1∑
i=0

aix
i,

where ai ∈ F2n , 0 ≤ i < 2n. The algebraic degree of f is defined as

deg(f) = max
0≤i<2n,ai 6=0

wt(i).

Here, wt(i) means the Hamming weight of i. Also, for a map f on F22n , it is
proved that f has a representation (unique up to the choice of the representing
irreducible polynomial)

f(x, y) =
∑

0≤i,j<2n

ai,jx
iyj ,

where ai,j ∈ F2n , 0 ≤ i, j < 2n. The algebraic degree of f is also defined as

deg(f) = max
0≤i,j<2n,ai,j 6=0

(wt(i) + wt(j)).

These two notions of algebraic degree coincide with each other.
Let f : F2n → F2n . For any a 6= 0, b ∈ F2n , set

Df (a, b) = {x ∈ F2n : f(x)⊕ f(x⊕ a) = b}.
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Here, ⊕ stands for the XOR operation. The maximum differential uniformity of
f is defined as

∆f = max
a6=0,b

Df (a, b).

The table Df (a, b) for a, b ∈ Fn2 is called the differential distribution table (DDT)
of f . Also, for any a, b 6= 0 ∈ F2n , define

Lf (a, b) =
∑
x∈Fn2

(−1)a·x⊕b·f(x).

Here, · stands for the standard dot product in Fn2 , which is viewed as an n-
dimensional linear space over F2. The linearity of f is defined as

Λf = max
a,b 6=0
|Lf (a, b)|.

The table Lf (a, b) for a, b ∈ Fn2 is called the linear approximation table (LAT)
of f .
Let y = F (x,K) with x, y ∈ Fn2 and K ∈ Fm2 be a (keyed) mapping. For given
differentials ∆x,∆y ∈ Fn2 , the average differential probability of F on (∆x,∆y)
is

DPF (∆x,∆y) =
1

2m

∑
K∈Fm2

Px{F (x⊕∆x,K)⊕ F (x,K) = ∆y}.

The MADP of F is defined as

DP (F ) = max
∆x6=0,∆y

DPF (∆x,∆y).

For given masks Γx, Γy ∈ Fn2 , the average linear hull of F on (Γx, Γy) is

LHF (Γx, Γy) =
1

2m

∑
K∈Fm2

|2Px{x · Γx = F (x,K) · Γy} − 1|2.

The MALH of F is defined as

LH(F ) = max
Γx,Γy 6=0

LHF (Γx, Γy).

3 Generalized Lai-Massey Scheme (GLM)

In this section, firstly we investigate the general form of S-boxes presented in
the FLY block cipher and give bounds on their maximum differential unifor-
mities as well as their linearities, in some cases. We compute their algebraic
degrees in some special cases. Then, we propose GLM and give lower bounds
on MADP as well as MALH of one round of this structure. We also investi-
gate impossible diffrentials and zero-correlations of GLM. Finally, we prove the
pseudo-randomness of the proposed structure.
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Fig. 1.

3.1 General form of the S-boxes in FLY

In this subsection, we investigate S-boxes which are constructed based on the
structure of the S-boxes of FLY [4]. Figure 1 is the general form of the Littlun
S-box of the FLY block cipher. Suppose that S1, S2 and S3 are three n × n
S-boxes (maps on Fn2 ) such that S1 and S2 are bijective. We have:

S(y1, y2) = (S1(x1)⊕ S3(S1(x1)⊕ S2(x2)), S2(x2)⊕ S3(S1(x1)⊕ S2(x2))). (1)

Figure 2 depicts the inverse of this S-box. The direct formula for its inverse
is:

S−1(x1, x2) = (S−11 (y1 ⊕ S3(y1 ⊕ y2)), S−12 (y2 ⊕ S3(y1 ⊕ y2))).

In the next lemma, we give a bound for maximum differential uniformity of the
proposed structure, in some cases.

Lemma 1. Suppose that the maximum differential uniformity of S1, S2, S3 and
S are ∆1, ∆2, ∆3 and ∆, respectively. Suppose that the following property holds
for S1 and S3: there are a, b ∈ Fn2 such that DS1

(a, b) = ∆1 and DS3
(b, a) = ∆3,

and a similar property holds for S2 and S3. Then, we have

∆ ≥ max{∆1∆3, ∆2∆3}.

Proof. Put α = a and γ = a⊕ b. Consider

DF ((α, 0), (γ, α)) = {(x1, x2)|S(x1, x2)⊕ S(x1 ⊕ α, x2) = (γ, α)},

or {
S1(x)⊕ S1(x1 ⊕ α) = γ ⊕ α,
S3(S1(x1)⊕ S2(x2))⊕ S3(S1(x1 ⊕ α)⊕ S2(x2)) = α.

Now, considering the first equation, we have x1 ∈ DS1
(α, γ ⊕ α). So, we have

(S1(x1)⊕ S2(x2))⊕ (S1(x1 ⊕ α)⊕ S2(x2)) = S1(x1)⊕ S1(x1 ⊕ α) = γ ⊕ α.
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Put z = S1(x1)⊕ S2(x2). We have

S3(z)⊕ S3(z ⊕ (γ ⊕ α)) = α,

which means that
x2 ∈ S−12 (S1(x1)⊕DS3(γ ⊕ δ, α)).

Since
∆ ≥ DS((α, 0), (γ, α)),

so, we have
∆ ≥ {∆1∆3}.

Similarly, we have
∆ ≥ {∆2∆3}.

Thus,
∆ ≥ max{∆1∆3, ∆2∆3}.

�

Remark 1. In the following three cases, the conditions of Lemma 1 are satisfied
and we have:
a) If S3 = S−11 , then ∆ ≥ max{∆2

1, ∆2∆3}.
b) If S3 = S−12 , then ∆ ≥ max{∆2

2, ∆1∆3}.
c) If S1 = S2 and S3 = S−11 , then ∆ ≥ ∆2

1.

Fig. 2.

In the next lemma, we give a bound on the linearity of the proposed structure,
in some cases.

Lemma 2. Let the linearities of S1, S2, S3 and S be Λ1, Λ2, Λ3 and Λ, re-
spectively. Suppose that the following criterion holds for S1 and S3: there are
a, b ∈ Fn2 such that LS1

(a, b) = Λ1 and LS3
(a, b) = Λ3. Further, a similar crite-

rion holds for S2 and S3. Then

Λ ≥ max{Λ1Λ3, Λ2Λ3}.
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Proof. Supposing that a = α and γ = a⊕ b, we have

|LS((α, 0), (γ, α))| = |
∑

(x,y)∈(Fn2 )2
(−1)(α,0)·(x,y)⊕(γ,α)·S(x,y)|

= |
∑

(x,y)∈(Fn2 )2
(−1)α·x⊕γ·S1(x)⊕γ·S3(z)⊕α·S2(y)⊕α·S3(z)|

= |
∑
x∈Fn2

((−1)α·x⊕(α⊕γ)·S1(x)
∑
y∈Fn2

(−1)α·z⊕(α⊕γ)·S3(z))|

= |
∑
x∈Fn2

(−1)α·x⊕(α⊕γ)·S1(x)Λ3|

= Λ3|
∑
x∈Fn2

(−1)α·x⊕(α⊕γ)·S1(x)|

= Λ1Λ3,

where z = S1(x) ⊕ S2(y). Now, since Λ ≥ |LS((α, 0), (γ, α))|, so Λ ≥ Λ1Λ3.
Similarly, Λ ≥ Λ2Λ3. So,

Λ ≥ max{Λ1Λ3, Λ2Λ3}.

�

Remark 2. In the case that S1 = S2 = S3, the conditions of Lemma 2 are
satisfied and we have Λ ≥ Λ2

1.

In the two following lemmas, we determine the algebraic degree of the pro-
posed S-boxes in some special cases.

Lemma 3. In the case that S1(x) = S2(x) = S3(x) = x−1 = x2
n−2 on F2n , we

have deg(S) ≥ n+ 1.

Proof. Consider the left output argument of (1). Note that for simplicity, we set
x1 = x and x2 = y:

S1(x)⊕ S3(S1(x)⊕ S2(y)) = x2
n−2 ⊕ (x2

n−2 ⊕ y2
n−2)2

n−2

= x2
n−2 ⊕ (x2

n−2)2
n−2 ⊕ (x2

n−2)2
n−4(y2

n−2)2 ⊕ · · · .

Here, we have used the well-known binomial expansion formula. Consider the
monomial (x2

n−2)2
n−4(y2

n−2)2. Since

(2n − 2)(2n − 4) = 3 mod (2n − 1),

2(2n − 2) = 2n − 3 mod (2n − 1),

and
wt(3) = 2, wt(2n − 3) = n− 1,

we have wt(3) + wt(2n − 3) = n+ 1; which means that deg(S) ≥ n+ 1. �
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Lemma 4. In the case that S1(x) = S2(x) = x−1 and S3(x) = x3 on F2n , we
have deg(S) ≥ 2n− 2.

Proof. Without loss of generality, consider the left output argument of (1):

S1(x)⊕ S3(S1(x)⊕ S2(y)) = x2
n−2 ⊕ (x2

n−2 ⊕ y2
n−2)3

= x2
n−2 ⊕ x2

n−4 ⊕ y2
n−4 ⊕ x2

n−3y2
n−2 ⊕ x2

n−2y2
n−3.

Since
wt(2n − 3) + wt(2n − 2) = 2n− 2,

so, we have deg(S) ≥ 2n− 2. �

Remark 3. The proposed structure could be compared with three rounds of a
2-branch Feistel scheme with relevant parameters. Obviously, the resources are
the same, but our proposed structure could be parallelized in the computation
of S1 and S2, which culminates in a lower latency, as stated in [4].

Example 1. Set S1(x) = S2(x) = x−1 and S3(x) = x3 on F24 , defined by the
irreducible polynomial x4+x+1. It is well-known that ∆S1 = ∆S2 = 4, ∆S3 = 2,
and ΛS1

= ΛS2
= ΛS3

= 8. By programming, we see that

∆S = 16, ΛS = 64, deg(S) = 6.

Fig. 3.

3.2 Generalized Lai-Massey Scheme

Here, we propose GLM for the use in symmetric cryptography. As stated before,
this structure resembles the structure of the S-boxes used in the FLY block
cipher. Note that, we could use this structure either as Figure 4 or Figure 5.
One can check that, a relevant form of the following theorems could be proved
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for both of them; but, we use the structure in Figure 6, for simplicity. Of course,
it is not hard to see that it suffices to prove the theorems for Figure 6, due to
the fact that K1 and K2 play the role of randomizers between different rounds
of GLM and could be omitted, without loss of generality. So, in the rest of the
paper, we consider Figure 6.

Fig. 4.

Fig. 5.

Lemma 5. According to Figure 3, we have:
a) The differential pattern (α, 0)→ (γ, 0) is an impossible differential unless f3
is not a permutation, in which DP (F ) ≤ Df1Df3 .
b) Similarly, the differential pattern (0, β) → (0, δ) is either an impossible dif-
ferential or we have DP (F ) ≤ Df2Df3 .
c) For the differential patterns (α, 0) → (γ, δ) and (0, β) → (γ, δ), we have
DP (F ) ≤ Df2Df3 and DP (F ) ≤ Df1Df3 , respectively.
d) The differential patterns (α, 0) → (γ, γ) and (0, β) → (δ, δ) are impossible
differentials.
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e) For the differential pattern (α, β)→ (γ, γ), we have DP (F ) ≤ Df1Df2 .

Here, Dfi =
∆fi
2n , 1 ≤ i ≤ 3.

Proof. a) According to Figure 3, we have β = δ = 0 and ρ = γ, which culminates
in the differential patterns α→ γ for f1 and γ → 0 for f3. Obviously, if f3 is a
permutation, we have a contradiction which means that the corresponding pattern
is an impossible differential. Now, suppose that f3 is not a permutation: we have

Px{F ((x, y)⊕ (α, 0),K)⊕ F ((x, y),K) = (γ, 0)}

= Px{F ((x⊕ α, y),K)⊕ F ((x, y),K) = (0, δ)}.

It follows that:{
f1(x)⊕ f3(f1(x)⊕ f2(y)⊕K)⊕ f3(f1(x⊕ α)⊕ f2(y)⊕K) = 0,

f1(x)⊕ f1(x⊕ α) = γ.
(2)

From the second equation of (2), we have the differential pattern α → γ for f1.
Replacing this equation in the first equation of (2), we get f3(t)⊕ f3(t⊕ γ) = 0,
where t = f1(x)⊕f2(y)⊕K, which culminates in the pattern γ → 0 for f3. Note
that, here, the random key K provides the independence of variables. Therefore,
we have

DP (F ) ≤ Df1Df3 .

b) Similar to Case a.
c) Similar to Case a.
d) Consider the pattern (α, 0) → (γ, γ). According to Figure 3, we have β = 0,
which means that ρ ⊕ γ ⊕ δ = 0. Since γ = δ, we have ρ = 0, which is a
contradiction. The proof of impossibility of the differential pattern (0, β)→ (δ, δ)
is similar.
e) According to Figure 3, we have the patterns α→ ρ and β → ρ for f1 and f2,
respectively. Also, we have γ = δ. Now, similar to Case a, we have

DP (F ) ≤ Df1Df2 .

�

Using Lemma 5, we prove the following theorem. This theorem provides a lower
bound for MADP of GLM.

Theorem 1. Suppose that f1 and f2 are invertible maps and f3 is an arbitrary
map on F2n . Let DP (F ) be the MADP of GLM. In this case, we have

DP (F ) ≤ min{Df1Df2 ,Df1Df3 ,Df2Df3}.

Proof. For any fixed K ∈ F2n , we have

Px{F (x⊕∆x,K)⊕ F (x,K) = ∆y)} =
∆F (∆x,∆y)

22n
.
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According to the definition of DP (F ), it suffices to show that for every K ∈ F2n ,

Px{F (x⊕∆x,K)⊕ F (x,K) = ∆y)} ≤ min{Df1Df2 ,Df1Df3 ,Df2Df3}.

On the other hand, by Figure 3, we have

Px{F (x⊕∆x,K)⊕ F (x,K) = ∆y)} =
∆F (∆x,∆y)

22n

=
1

22n

∑
ρ∈F2n

∆f1(α, ρ)∆f2(β, ρ+ γ + δ)∆f3(γ + δ, ρ+ γ).

Here, ∆x = (α, β) and ∆y = (γ, δ). Note that, in the above equation, we use the
fact that K plays the role of a randomizer and we can use the independence of
variables. Since

∑
x∈F2n

∆f2(β, x) = 2n. So∑
ρ∈F2n

∆f2(β, ρ+ γ + δ) = 2n.

Therefore,∑
ρ∈F2n

∆f1(α, ρ)∆f2(β, ρ+γ+δ)∆f3(γ+δ, ρ+γ) ≤ ∆f1∆f3

∑
ρ∈F2n

Df2(β, ρ+γ+δ)

≤ 2n∆f1∆f3 .

Similarly, it is proved that∑
ρ∈F2n

∆f1(α, ρ)∆f2(β, ρ+ γ + δ)∆f3(γ + δ, ρ+ γ) ≤ 2n∆f1∆f2 ,

and ∑
ρ∈F2n

∆f1(α, ρ)∆f2(β, ρ+ γ + δ)∆f3(γ + δ, ρ+ γ) ≤ 2n∆f2∆f3 .

Now, by Lemma 5 (refrain from the impossible differentials) we have

DP (F ) ≤ min{Df1Df2 ,Df1Df3 ,Df2Df3}. �

Corollary 1. In Theorem 1, if f1 = f2 = f3 = f , then DP (F ) ≤ D2
f .

Corollary 2. The differential patterns (α, 0) → (γ, γ) and (0, β) → (δ, δ) are
impossible differentials for GLM. In the case that f3 is a permutation, the pat-
terns (α, 0)→ (γ, 0) and (0, β)→ (0, δ) are also impossible differentials.

Corollary 3. According to Corollary 2, it is simply proved that two rounds of
GLM do not have any (structural) impossible differentials.

The proof of next lemma is similar to Lemma 5.
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Fig. 6.

Lemma 6. We have:
a) The linear pattern (α, 0) → (γ, 0) is a zero-correlation unless f3 is not a
permutation, in which

LP (F ) ≤ Cf1Cf3 .

b) Similarly, the linear pattern (0, β) → (0, δ) is a zero-correlation unless f3 is
not a permutation, in which

LP (F ) ≤ Cf2Cf3 .

c) For the linear patterns (α, 0)→ (γ, δ) and (0, β)→ (γ, δ), we have LP (F ) ≤
Cf1Cf3 and LP (F ) ≤ Cf2Cf3 , respectively.
d) The linear patterns (α, 0)→ (γ, γ) and (0, β)→ (δ, δ) are zero-correlations.
e) For the linear pattern (α, β)→ (γ, γ), we have LP (F ) ≤ Cf1Cf2 .

The proof of the next theorem is done in the same manner as Theorem 1.

Theorem 2. Suppose that f1 and f2 are permutations and f3 is an arbitrary
map on F2n . Let LH(F ) is the MALH of GLM. In this case, we have

LH(F ) ≤ min{Cf1Cf2 , Cf1Cf3 , Cf2Cf3}.

Corollary 4. The linear patterns (α, 0) → (γ, γ) and (0, β) → (δ, δ) are zero-
correlations for GLM. In the case that f3 is a permutation, the patterns (α, 0)→
(γ, 0) and (0, β)→ (0, δ) are also zero-correlations.

Corollary 5. Lemma 6 shows that, two rounds of GLM do not have (structural)
zero-correlations.

Remark 4. As we stated in Remark 3 and according to Theorem 1 and Theo-
rem 2, GLM could be compared with a three-round (two-branch classic) Feistel
scheme: On one hand, the provable security of both of them has similar results
and both of them need the same resources. On the other hand, the first layer
in GLM could be parallely implemented; which is an important advantage in
hardware and/or software implementations.
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3.3 Pseudo-Randomness of GLM

In this subsection, we prove the pseudo-randomness of GLM. Firstly, we give
some notations and facts which are used to prove the pseudo-randomness of
GLM. The following theorem is proved in [10].

Theorem 3. Let N and q be natural and α and β be real numbers, with α, β > 0.
Let E be a subset of FNq2 such that |E| ≥ (1− β)2Nq. If
(1) For all sequences ai, 1 ≤ i ≤ q, of pairwise distinct elements of FN2 and for
all sequences bi, 1 ≤ i ≤ q , of E, we have

H ≥ |K|
2Nq

(1− α),

Then,
(2) For every CPA with q chosen plaintexts, we have: AdvCPA ≤ α+ β.

Here, CPA stands for chosen plaintext attack and AdvCPA is the advantage of
a random distinguisher with q, CPA queries (cf Definition 1.3 [10]). In the next
theorem, we prove the pseudo-randomness of GLM.

Theorem 4. Let q be a natural number and (Li, Ri) and (Si, Ti), 1 ≤ i ≤ q, be
distinct inputs and outputs of GLM, respectively. Then, there are H number of
3-tuples of (f1, f2, f3) such that f1 and f2 are random permutations and f3 is a
random mapping on Fn2 and

f1(Li)⊕ f3(f1(Li)⊕ f2(Ri)) = Si,
f2(Ri)⊕ f3(f1(Li)⊕ f2(Ri)) = Ti.

(3)

where, 1 ≤ i ≤ q, and

H ≥ |Fn||Pn|
2

22nq
(1− q(q − 1)

1n+1
).

Proof. Fix 1 ≤ i < j ≤ q. We distinguish two cases:
a) Li = Lj: which means that Ri 6= Rj. In this case, there are at most 2n!(2n−1)!
permutations f1 and f2 such that

f1(Li)⊕ f2(Ri) = f1(Lj)⊕ f2(Rj).

b) Li 6= Lj: in this case, either Ri = Rj whose proof is similar to Case a, or
Ri 6= Rj, in which we have at most (2n − 1)!2 permutations f1 and f2 such that

f1(Li)⊕ f2(Ri) = f1(Lj)⊕ f2(Rj).

Therefore, in both cases there are at most 2n!(2n−1)! q(q−1)2 permutations f1 and
f2 such that for some (i, j), 1 ≤ i < j ≤ q, we have

f1(Li)⊕ f2(Ri) = f1(Lj)⊕ f2(Rj).

So, there are at least 2n!2− 2n!(2n− 1)! q(q−1)2 permutations f1 and f2 such that
the values of f1(Li) ⊕ f2(Ri) are not equal to f1(Lj) ⊕ f2(Rj), for some (i, j),
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1 ≤ i < j ≤ q.
For fixed 1 ≤ i ≤ q and every f1 and f2 satisfying (3), there are at least 2n2n

22n

mappings f3 for which (3) holds. Thus, we have at least 2n2n

22nq mappings f3 sat-
isfying (3), for every 1 ≤ i ≤ q. Therefore,

H ≥ (2n!2 − 2n!(2n − 1)!
q(q − 1)

2
)
2n2

n

22nq

=
2n!22n2

n

22nq
(1− q(q − 1)

2n+1
)

=
|Fn||Pn|2

22nq
(1− q(q − 1)

2n+1
).�

Theorem 4 proves the pseudo-randomness of GLM against chosen plaintext
attacks (security against CPA). By Theorem 4, the proof of next corollary is
straightforward.

Corollary 6. For every CPA with q queries, we have

AdvCPA ≤ q2

2n
.

4 Conclusion

In this paper, based upon the S-box proposed in the Fly cipher, we study the
cryptographic properties of S-boxes constructed via this structure. Then, we
propose a new cipher structure (GLM) and investigate MADP and MALH of
the proposed structure. We present impossible differentials and zero-correlations
for one round of this structure and prove that there are no structural impossible
differentials and zero-correlations for two rounds of GLM. Finally, we prove the
pseudo-randomness of GLM.
Regarding the upper bounds for MADP and MALH, GLM is comparable to
three rounds of a classic Feistel scheme. An advantage of our proposed structure
over the Feistel scheme is that the first layer of GLM could be implemented in
parallel, which is faster in software and hardware implementations.

References

1. R. Beaulieu, D. Shores, J. Smith, S. Treatman Clark, B. Weeks and L. Wingers.
The SIMON and SPECK families of lightweight block ciphers. IACR cryptology
ePrint Archive, 2013: 404,2013.

2. Data Encryption Standard (DES). Federal Information Processing Standard
(FIPS) Publication 46, 1977.

3. P. Junod and S. Vaudenay. FOX: A new family of block ciphers. SAC 2004, pp
114-129, 2004.

4. P. Karpman. Exercice de style. 2016: hal-01263735.



14 M. R. Mirzaee Shamsabad et al.

5. ETSI. TS 135 202 V7.0.0: Universal mobile telecommunications system (UMTS);
specification of the 3GPP confidentiality and integrity algorithms; Document 2:
Kasumi specification (3GPP TS 35.202 version 7.0.0 Release 7).

6. X. Lai and J. L. Massey. A proposal for a new block encryption standard. EURO-
CRYPT 90, pp 389-404, 1991.

7. C. H. Lim and H. S. Hwang. CRYPTON: A new 128-bit block cipher - specification
and analysis. Submitted as candidate for AES, 1997.

8. M. Matsui. New block encryption algorithm MISTY. FSE 97, pp 54-68, 1997.
9. S. Miyaguchi. The FEAL-8 cryptosystem and a call for attack. CRYPTO 89,

volume 435 of Lecture Notes in Computer Science, Springer, pages 624627, 1990.
10. V. Nachef, J. Patarin and E. Volte. Feistel Ciphers, Security Proofs and Crypt-

analysis. Springer, 2017.
11. J. Nakahara, V. Rijmen, B. Preneel and J. Vandewalle. The MESH block ciphers.

WISA 2003, pp 458-473, 2003.
12. SKIPJACK and KEA algorithm specifications. National Security Agency (NSA),

1998.
13. J. Stern and S. Vaudenay. CS-cipher. FSE 98, pp 189-205, 1998.
14. ETSI SAGE: Specification of the 3GPP Confidentiality and Integrity Algorithms

128-EEA3 128-EIA3 Document 2: ZUC Specification. Version 1.5, 4th January
2011.


