1,351 research outputs found

    Laguerre-type derivatives: Dobinski relations and combinatorial identities

    Get PDF
    We consider properties of the operators D(r,M)=a^r(a^\dag a)^M (which we call generalized Laguerre-type derivatives), with r=1,2,..., M=0,1,..., where a and a^\dag are boson annihilation and creation operators respectively, satisfying [a,a^\dag]=1. We obtain explicit formulas for the normally ordered form of arbitrary Taylor-expandable functions of D(r,M) with the help of an operator relation which generalizes the Dobinski formula. Coherent state expectation values of certain operator functions of D(r,M) turn out to be generating functions of combinatorial numbers. In many cases the corresponding combinatorial structures can be explicitly identified.Comment: 14 pages, 1 figur

    Hierarchical Dobinski-type relations via substitution and the moment problem

    Full text link
    We consider the transformation properties of integer sequences arising from the normal ordering of exponentiated boson ([a,a*]=1) monomials of the form exp(x (a*)^r a), r=1,2,..., under the composition of their exponential generating functions (egf). They turn out to be of Sheffer-type. We demonstrate that two key properties of these sequences remain preserved under substitutional composition: (a)the property of being the solution of the Stieltjes moment problem; and (b) the representation of these sequences through infinite series (Dobinski-type relations). We present a number of examples of such composition satisfying properties (a) and (b). We obtain new Dobinski-type formulas and solve the associated moment problem for several hierarchically defined combinatorial families of sequences.Comment: 14 pages, 31 reference

    On sums of powers of zeros of polynomials

    Get PDF
    Due to Girard's (sometimes called Waring's) formula the sum of the r−r-th power of the zeros of every one variable polynomial of degree NN, PN(x)P_{N}(x), can be given explicitly in terms of the coefficients of the monic P~N(x){\tilde P}_{N}(x) polynomial. This formula is closely related to a known \par \noindent N−1N-1 variable generalization of Chebyshev's polynomials of the first kind, Tr(N−1)T_{r}^{(N-1)}. The generating function of these power sums (or moments) is known to involve the logarithmic derivative of the considered polynomial. This entails a simple formula for the Stieltjes transform of the distribution of zeros. Perron-Stieltjes inversion can be used to find this distribution, {\it e.g.} for N→∞N\to \infty.\par Classical orthogonal polynomials are taken as examples. The results for ordinary Chebyshev TN(x)T_{N}(x) and UN(x)U_{N}(x) polynomials are presented in detail. This will correct a statement about power sums of zeros of Chebyshev's T−T-polynomials found in the literature. For the various cases (Jacobi, Laguerre, Hermite) these moment generating functions provide solutions to certain Riccati equations

    Monomiality principle, Sheffer-type polynomials and the normal ordering problem

    Get PDF
    We solve the boson normal ordering problem for (q(a†)a+v(a†))n(q(a^\dag)a+v(a^\dag))^n with arbitrary functions q(x)q(x) and v(x)v(x) and integer nn, where aa and a†a^\dag are boson annihilation and creation operators, satisfying [a,a†]=1[a,a^\dag]=1. This consequently provides the solution for the exponential eλ(q(a†)a+v(a†))e^{\lambda(q(a^\dag)a+v(a^\dag))} generalizing the shift operator. In the course of these considerations we define and explore the monomiality principle and find its representations. We exploit the properties of Sheffer-type polynomials which constitute the inherent structure of this problem. In the end we give some examples illustrating the utility of the method and point out the relation to combinatorial structures.Comment: Presented at the 8'th International School of Theoretical Physics "Symmetry and Structural Properties of Condensed Matter " (SSPCM 2005), Myczkowce, Poland. 13 pages, 31 reference
    • …
    corecore