46 research outputs found

    An augmented lagrangian decomposition method for chance-constrained optimization problems

    Get PDF
    Joint chance-constrained optimization problems under discrete distributions arise frequently in financial management and business operations. These problems can be reformulated as mixed-integer programs. The size of reformulated integer programs is usually very large even though the original problem is of medium size. This paper studies an augmented Lagrangian decomposition method for finding high-quality feasible solutions of complex optimization problems, including nonconvex chance-constrained problems. Different from the current augmented Lagrangian approaches, the proposed method allows randomness to appear in both the left-hand-side matrix and the right-hand-side vector of the chance constraint. In addition, the proposed method only requires solving a convex subproblem and a 0-1 knapsack subproblem at each iteration. Based on the special structure of the chance constraint, the 0-1 knapsack problem can be computed in quasi-linear time, which keeps the computation for discrete optimization subproblems at a relatively low level. The convergence of the method to a first-order stationary point is established under certain mild conditions. Numerical results are presented in comparison with a set of existing methods in the literature for various real-world models. It is observed that the proposed method compares favorably in terms of the quality of the best feasible solution obtained within a certain time for large-size problems, particularly when the objective function of the problem is nonconvex or the left-hand-side matrix of the constraints is random

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    Branching strategies for mixed-integer programs containing logical constraints and decomposable structure

    Get PDF
    Decision-making optimisation problems can include discrete selections, e.g. selecting a route, arranging non-overlapping items or designing a network of items. Branch-and-bound (B&B), a widely applied divide-and-conquer framework, often solves such problems by considering a continuous approximation, e.g. replacing discrete variable domains by a continuous superset. Such approximations weaken the logical relations, e.g. for discrete variables corresponding to Boolean variables. Branching in B&B reintroduces logical relations by dividing the search space. This thesis studies designing B&B branching strategies, i.e. how to divide the search space, for optimisation problems that contain both a logical and a continuous structure. We begin our study with a large-scale, industrially-relevant optimisation problem where the objective consists of machine-learnt gradient-boosted trees (GBTs) and convex penalty functions. GBT functions contain if-then queries which introduces a logical structure to this problem. We propose decomposition-based rigorous bounding strategies and an iterative heuristic that can be embedded into a B&B algorithm. We approach branching with two strategies: a pseudocost initialisation and strong branching that target the structure of GBT and convex penalty aspects of the optimisation objective, respectively. Computational tests show that our B&B approach outperforms state-of-the-art solvers in deriving rigorous bounds on optimality. Our second project investigates how satisfiability modulo theories (SMT) derived unsatisfiable cores may be utilised in a B&B context. Unsatisfiable cores are subsets of constraints that explain an infeasible result. We study two-dimensional bin packing (2BP) and develop a B&B algorithm that branches on SMT unsatisfiable cores. We use the unsatisfiable cores to derive cuts that break 2BP symmetries. Computational results show that our B&B algorithm solves 20% more instances when compared with commercial solvers on the tested instances. Finally, we study convex generalized disjunctive programming (GDP), a framework that supports logical variables and operators. Convex GDP includes disjunctions of mathematical constraints, which motivate branching by partitioning the disjunctions. We investigate separation by branching, i.e. eliminating solutions that prevent rigorous bound improvement, and propose a greedy algorithm for building the branches. We propose three scoring methods for selecting the next branching disjunction. We also analyse how to leverage infeasibility to expedite the B&B search. Computational results show that our scoring methods can reduce the number of explored B&B nodes by an order of magnitude when compared with scoring methods proposed in literature. Our infeasibility analysis further reduces the number of explored nodes.Open Acces

    Asset Allocation under the Basel Accord Risk Measures

    Full text link
    Financial institutions are currently required to meet more stringent capital requirements than they were before the recent financial crisis; in particular, the capital requirement for a large bank's trading book under the Basel 2.5 Accord more than doubles that under the Basel II Accord. The significant increase in capital requirements renders it necessary for banks to take into account the constraint of capital requirement when they make asset allocation decisions. In this paper, we propose a new asset allocation model that incorporates the regulatory capital requirements under both the Basel 2.5 Accord, which is currently in effect, and the Basel III Accord, which was recently proposed and is currently under discussion. We propose an unified algorithm based on the alternating direction augmented Lagrangian method to solve the model; we also establish the first-order optimality of the limit points of the sequence generated by the algorithm under some mild conditions. The algorithm is simple and easy to implement; each step of the algorithm consists of solving convex quadratic programming or one-dimensional subproblems. Numerical experiments on simulated and real market data show that the algorithm compares favorably with other existing methods, especially in cases in which the model is non-convex

    Mathematical Modelling and Methods for Load Balancing and Coordination of Multi-Robot Stations

    Get PDF
    The automotive industry is moving from mass production towards an individualized production, individualizing parts aims to improve product quality and to reduce costs and material waste. This thesis concerns aspects of load balancing and coordination of multi-robot stations in the automotive manufacturing industry, considering efficient algorithms required by an individualized production. The goal of the load balancing problem is to improve the equipment utilization. Several approaches for solving the load balancing problem are suggested along with details on mathematical tools and subroutines employed.Our contributions to the solution of the load balancing problem are fourfold. First, to circumvent robot coordination we construct disjoint robot programs, which require no coordination schemes, are flexible, admit competitive cycle times for several industrial instances, and may be preferred in an individualized production. Second, since solving the task assignment problem for generating the disjoint robot programs was found to be unreasonably time-consuming, we model it as a generalized unrelated parallel machine problem with set packing constraints and suggest a tailored Lagrangian-based branch-and-bound algorithm. Third, a continuous collision detection method needs to determine whether the sweeps of multiple moving robots are disjoint. We suggest using the maximum velocity of each robot along with distance computations at certain robot configurations to derive a function that provides lower bounds on the minimum distance between the sweeps. The lower bounding function is iteratively minimized and updated with new distance information; our method is substantially faster than previously developed methods. Fourth, to allow for load balancing of complex multi-robot stations we generalize the disjoint robot programs into sequences of such; for some instances this procedure provides a significant equipment utilization improvement in comparison with previous automated methods

    Models, Theoretical Properties, and Solution Approaches for Stochastic Programming with Endogenous Uncertainty

    Get PDF
    In a typical optimization problem, uncertainty does not depend on the decisions being made in the optimization routine. But, in many application areas, decisions affect underlying uncertainty (endogenous uncertainty), either altering the probability distributions or the timing at which the uncertainty is resolved. Stochastic programming is a widely used method in optimization under uncertainty. Though plenty of research exists on stochastic programming where decisions affect the timing at which uncertainty is resolved, much less work has been done on stochastic programming where decisions alter probability distributions of uncertain parameters. Therefore, we propose methodologies for the latter category of optimization under endogenous uncertainty and demonstrate their benefits in some application areas. First, we develop a data-driven stochastic program (integrates a supervised machine learning algorithm to estimate probability distributions of uncertain parameters) for a wildfire risk reduction problem, where resource allocation decisions probabilistically affect uncertain human behavior. The nonconvex model is linearized using a reformulation approach. To solve a realistic-sized problem, we introduce a simulation program to efficiently compute the recourse objective value for a large number of scenarios. We present managerial insights derived from the results obtained based on Santa Fe National Forest data. Second, we develop a data-driven stochastic program with both endogenous and exogenous uncertainties with an application to combined infrastructure protection and network design problem. In the proposed model, some first-stage decision variables affect probability distributions, whereas others do not. We propose an exact reformulation for linearizing the nonconvex model and provide a theoretical justification of it. We designed an accelerated L-shaped decomposition algorithm to solve the linearized model. Results obtained using transportation networks created based on the southeastern U.S. provide several key insights for practitioners in using this proposed methodology. Finally, we study submodular optimization under endogenous uncertainty with an application to complex system reliability. Specifically, we prove that our stochastic program\u27s reliability maximization objective function is submodular under some probability distributions commonly used in reliability literature. Utilizing the submodularity, we implement a continuous approximation algorithm capable of solving large-scale problems. We conduct a case study demonstrating the computational efficiency of the algorithm and providing insights
    corecore