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Abstract

In a typical optimization problem, uncertainty does not depend on the decisions being made

in the optimization routine. But, in many application areas, decisions a�ect underlying

uncertainty (endogenous uncertainty), either altering the probability distributions or the

timing at which the uncertainty is resolved. Stochastic programming is a widely used

method in optimization under uncertainty. Though plenty of research exists on stochastic

programming where decisions a�ect the timing at which uncertainty is resolved, much less

work has been done on stochastic programming where decisions alter probability distributions

of uncertain parameters. Therefore, we propose methodologies for the latter category

of optimization under endogenous uncertainty and demonstrate their bene�ts in some

application areas.

First, we develop a data-driven stochastic program (integrates a supervised machine

learning algorithm to estimate probability distributions of uncertain parameters) for a

wild�re risk reduction problem, where resource allocation decisions probabilistically a�ect

uncertain human behavior. The nonconvex model is linearized using a reformulation

approach. To solve a realistic-sized problem, we introduce a simulation program to e�ciently

compute the recourse objective value for a large number of scenarios. We present managerial

insights derived from the results obtained based on Santa Fe National Forest data.

Second, we develop a data-driven stochastic program with both endogenous and

exogenous uncertainties with an application to combined infrastructure protection and

network design problem. In the proposed model, some �rst-stage decision variables a�ect

probability distributions, whereas others do not. We propose an exact reformulation for

linearizing the nonconvex model and provide a theoretical justi�cation of it. We designed

an accelerated L-shaped decomposition algorithm to solve the linearized model. Results

v



obtained using transportation networks created based on the southeastern U.S. provide

several key insights for practitioners in using this proposed methodology.

Finally, we study submodular optimization under endogenous uncertainty with an

application to complex system reliability. Speci�cally, we prove that our stochastic

program's reliability maximization objective function is submodular under some probability

distributions commonly used in reliability literature. Utilizing the submodularity, we

implement a continuous approximation algorithm capable of solving large-scale problems.

We conduct a case study demonstrating the computational e�ciency of the algorithm and

providing insights.
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Chapter 1

Introduction

In real-life decision-making problems, decision-makers often face uncertainty in problem

parameters. In a typical optimization problem under uncertainty, decision makers' decisions

do not a�ect the underlying uncertainty in the stochastic process, such as weather

conditions�rainfall, wind, and solar. However, decisions can in�uence the underlying

uncertainty in some application areas. For instance, consider a decision-maker seeking

to strengthen a transportation network subject to random disruption or interdiction. In

this problem, the post-disruption/interdiction state (survival or failure) of a network

link is uncertain as the decision-maker does not have complete information about the

disruption/interdiction. But, the decision-maker can in�uence this uncertainty by changing

protection resource investment to the network links. A link is more likely to survive if

the decision-maker invests more protection resources to that link. Therefore, investment

decisions alter the survival probability of the links. Thus, in this optimization problem

under uncertainty, decisions that are being made while solving the problem in�uences the

underlying uncertainty in the problem parameters.

Based on the dependence of uncertainty on decisions, Goel and Grossmann [45] classi�es

uncertainty in the two following classes: (1) exogenous�uncertainty does not depend on

the decisions, and (2) endogenous�uncertainty depends on the decisions. Decisions can

either in�uence the probability distributions governing uncertainty or the timing at which

uncertainty is resolved.
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Depending on the e�ect of decisions on uncertainty, Goel and Grossmann [45] classi�es

the endogenous (decision�dependent) uncertainty into two types: (1) Type I�decisions alter

the probability distributions of uncertain parameters, and (2) Type II�decisions a�ect the

timing at which uncertainty is resolved. An example of Type I endogenous uncertainty is

the above-mentioned transportation network strengthening problem under uncertainty in

the links' survivability, where the investment decisions a�ect the survival probabilities of the

links. An example of Type II endogenous uncertainty is a capacity expansion problem of a

process network under uncertainty in productivity (yield) studied in Goel and Grossmann

[46]. In this problem, a decision-maker seeks to install new processing units based on

new technology to expand an existing network. As the new processing units are based

on new technology, their yields are uncertain. The yield uncertainty of a new unit is resolved

only when the decision-maker installs that unit and start production under the operating

environment. Therefore, the decisions can control the timing of when the uncertainty is

resolved. This Type II endogenous uncertainty is also known as exogenous uncertainty

with endogenous observations, as the decisions do not a�ect the realization of uncertain

parameters, instead a�ect the timing of revealing accurate information.

There are di�erent modeling frameworks for problems with endogenous uncertainty

in the literature, such as stochastic programming with decision-dependent uncertainty

[45, 46, 94], robust optimization with decision-dependent uncertainty sets [75, 76], and

distributionally robust optimization with decision-dependent ambiguity sets [86]. Di�erent

modeling frameworks are suitable for di�erent application problems and the decision maker's

preferences. Due to two types of endogenous uncertainties, the stochastic programming

frameworks for decision-dependent uncertainty can be fundamentally classi�ed into two

groups. We refer to the stochastic programming framework with Type I endogenous

uncertainty as stochastic programming with endogenous uncertainty (SPEU), whereas the

stochastic programming framework with Type II endogenous uncertainty as stochastic

programming with endogenous anticipativity (SPEA). The SPEA framework is suitable for

modeling multi-period decision-making problems having decision-dependent uncertainty in

the timing of when the actual value of uncertain parameters is revealed. These problems

are formulated as multi-stage stochastic programs where non-anticipativity constraints

2



depend on the investment decision variables at each period. Among the di�erent modeling

frameworks mentioned-above, only SPEA has a fair amount of studies; other areas have been

gaining attention very recently.

In the SPEU framework, problems can be modeled as two-stage or multi-stage stochastic

programs, depending on the problem's nature. As the decision variables a�ect the probability

distributions in an SPEU framework, it is di�erent from the traditional two-stage stochastic

program with exogenous uncertainty. In a scenario-based two-stage stochastic program,

scenarios represent the realizations of uncertain parameters that follow speci�ed probability

distributions. Therefore, each realized value of an uncertain parameter in a scenario has a

corresponding probability. First-stage decisions are made before realizing the uncertainty,

whereas some recourse decisions are made after the uncertain parameters are realized in each

scenario. In a stochastic program with exogenous uncertainty, scenario probabilities do not

depend on the decision variables. They are �xed values, as the probability of a realized value

of an uncertain parameter is independent of the �rst-stage decision variables.

On the other hand, in an SPEUmodel, the probability of occurring a particular realization

of an uncertain parameter is a function of �rst-stage decision variables, making the scenario

probabilities function of decision variables. For example, in the above-mentioned network

strengthening problem, a link's survival probability is higher if more resource is invested

on that link. If the decision-maker invests more resources on a subset of links, then the

probability of a scenario where those links fail will be small. This dependency of scenario

probabilities on decision variables makes the resulting model nonconvex.

This dissertation focuses on contributing to the SPEU methodology as well as in the

potential application areas. The objectives of this dissertation are to (1) develop new data-

driven SPEU models for problems having endogenous (decision-dependent) uncertainty, (2)

introduce new mathematical reformulations to linearize the resulting nonconvex models, (3)

analyze theoretical properties of the SPEU framework for a particular class of problems that

can be utilized to solve large-scale problems, (4) design/implement both exact decomposition

methods and approximation algorithms, and demonstrate the bene�t of these models and

solution methodologies to di�erent real-life application areas.
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1.1 Motivation

In many application areas, it is bene�cial to model the probability distributions of the

uncertain parameters as a function of the decision variables. For example, consider a

problem of strengthening a set of critical infrastructures subject to random disruption,

where the post-disruption capacity of infrastructures is uncertain. It is more practical to

model the post-disruption capacity as a probabilistic function of the protection resource

investment. Because it is likely that an infrastructure has a larger post-disruption capacity

if more protection resources is invested in that infrastructure. In this case, the probability

distribution of the post-disruption capacity is a function of the investment decisions. The

SPEU framework is suitable for modeling this problem as it captures the natural decision-

dependent probability (uncertainty) structure of the problem and can yield better quality

solutions and more insights into the problem. On the contrary, solving problems with

a natural decision-dependent uncertainty structure using a traditional stochastic program

with exogenous uncertainty could be computationally very di�cult. Because the model

would need a larger number of scenarios than the SPEU framework to capture the decision-

dependent uncertainty property.

Besides critical infrastructure protection, this SPEU framework has other application

areas such as disaster preparedness and mitigation, supply chain risk mitigation, reliability

of complex systems, and power generation expansion planning. But, this modeling framework

has not been utilized in many application areas to date. Moreover, most of the studies on

SPEU approached the problem with approximate and problem-speci�c heuristic methods and

commercial solvers. Therefore, there is a need to advance the SPEU modeling and solution

approaches, particularly by introducing new mathematical formulations, reformulation

techniques, exact and approximate solution approaches utilizing some structural properties

in di�erent applications. Until this need is met, decision-makers in various application areas

cannot obtain good quality solutions and valuable insights into the problems, resulting in

systems that underperform and have excessive cost.
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1.2 Literature Review

This section summarizes the literature related to the SPEU modeling frameworks, solution

approaches, and application areas. A more detailed review of the literature pertaining to

each methodological and application areas of contribution are presented in the corresponding

chapters of this dissertation.

Among the early works on SPEU, Ahmed [4] is the �rst to introduce the notion of

endogenous uncertainty in network design, server selection, and facility location problems.

Later, Held and Woodru� [53] modeled a stochastic network interdiction problem as a multi-

stage SPEU to maximize the probability of interdicting the �ow of information or goods in a

network with uncertain characteristics. The authors proposed a heuristics solution method

to solve the model, demonstrating the e�ectiveness of the algorithm in solving multi-stage

SPEU problems.

Some research studied the natural endogenous uncertainty in infrastructure protection

literature. Peeta et al. [110] modeled a highway network strengthening problem as a two-

stage stochastic program with the �rst-stage investment decisions a�ecting the survival

probabilities of the links after a disaster. The authors used an approximation of the objective

function based on the Taylor series expansion to resolve the non-convexity that arose

because of the decision-dependent probability framework. Because of this approximation, the

proposed approach cannot guarantee optimality, and their approximation does not provide a

performance guarantee. Du and Peeta [34] extended the model of Peeta et al. [110] to allow

for partial investment and solved the model using a heuristic algorithm coupled with a Monte

Carlo simulation. Medal et al. [94] extended the work of Peeta et al. [110] by introducing

a probability-chain reformulation of the nonconvex objective function in their two-stage

stochastic program that allows for the implementation of an exact algorithm, L-shaped

decomposition, in solving the model. The authors also proposed a greedy approximation

algorithm to solve larger problem instances that can provide a worst-case performance

guarantee of 0.63. These studies on infrastructure protection considered the problem where

decision variables only a�ect the probability distributions. But, there are other aspects of

the problem, such as a combined network design and infrastructure protection, where some
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decisions a�ect the probability distributions, whereas others do not. Addressing this aspect

of the problem would result in a new model and require new solution approaches to solve it.

Some studies utilized simulation approaches to solve SPEU problems. Ekin et al. [37]

proposed a simulation-based approach for solving a two-stage SPEU model that recasts

the optimization problem as a simulation problem treating the decision variables as random.

Later, Ekin [36] proposed a two-stage stochastic programming model for production planning

that includes exogenous and endogenous uncertainties. The authors used a simulation-based

optimization method for solving the proposed model.

Recently, few studies proposed some new formulations to the SPEU literature. Hellemo

et al. [55] proposed new two-stage SPEU models where the �rst-stage decisions can change

the initial probability distribution to an entirely di�erent one via a�ne transformation or a

convex combination of the probability distributions. The authors solved their SPEU models

using BARON solver. Krasko and Rebennack [71] proposed a two-stage multi-period SPEU

model for a disaster mitigation problem, which the authors solved using BARON solver.

Zhan et al. [146] presented a new multi-stage stochastic programming model with endogenous

uncertainty for power generation expansion planning, where the probability distributions of

electricity prices depend on the investment decisions. The authors reformulated the nonlinear

multi-stage stochastic program into a mixed-integer linear one using a quasi-exact approach.

Escudero et al. [38] introduced a risk-neutral and a risk-averse three-stage stochastic program

for disaster preparedness and management problem where both exogenous and endogenous

uncertainties exist. The authors proposed a cluster dual descent algorithm to obtain a

feasible solution for the problem.

Most of the studies mentioned earlier used simulation approaches and commercial solvers

to solve their models. But the simulation approaches often fail to provide optimal solution

and commercial solvers may not be available to practitioners. Therefore, there is need

for accelerated decomposition algorithms to solve SPEU problems to optimality. Also, the

bene�t of the SPEU framework has not been studied in other application areas, such as

complex system reliability allocation. Though few studies introduced the SPEU framework

to disaster mitigation, there are other aspects of this area where the SPEU framework can

be bene�cial to the practitioners.

6



Few studies analyzed the theoretical properties�submodularity and convexity/concavity�of

the SPEU framework. Karaesmen and Van Ryzin [65] shows that the expected value function

is submodular and componentwise concave utilizing the semigroup property of the binomial

random variables having the same probability of success. Later, Medal et al. [94] proved

the submodularity of the expected value function for binomial random variables having

di�erent probabilities of success. The authors used this submodularity property to provide

a worst-case performance guarantee of a greedy approximation algorithm in solving large-

sized SPEU problems. But, there are several other probability distributions widely used in

many application areas, such as exponential and Weibull distributions. These distributions

do not possess the particular semigroup property. Submodularity needs to be studied for

these probability distributions to facilitate solving large-scale optimization problems under

endogenous uncertainty in di�erent application areas.

1.3 Contributions

In the current literature, the SPEU framework has not been utilized in many application

areas such as combined network design and facility protection, disaster mitigation, and

reliability allocation of complex systems. Moreover, as mentioned earlier, new reformulation

techniques and decomposition algorithms need to be introduced to solve problems in those

areas. Though some theoretical properties are analyzed for a few probability distributions,

there is still a need to study those properties for other commonly used distributions in many

real-life application areas.

Therefore, to �ll the gaps in the literature, this dissertation makes the following

contributions. Chapter 2 proposes a new data-driven SPEU model to model a risk-based

incentive structure design problem that mitigates the risks of catastrophic natural disasters

(wild�res) [17]. This model integrates a supervised learning algorithm to estimate probability

distributions of the uncertain parameters by analyzing survey data. This model also

incorporates a simulation program to e�ciently compute the recourse problem's objective

value for a very large number of scenarios.
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Chapter 3 presents a new data-driven stochastic optimization model with exogenous and

endogenous uncertainties for a combined network design and facility protection problem

[16]. In this model, some �rst-stage decisions alter the probability distributions of uncertain

parameters, whereas others do not. The developed model integrates several supervised

machine learning algorithms to estimate probability distributions of uncertain parameters.

This work introduces a mathematical reformulation to linearize the non-convex model and

an accelerated decomposition algorithm to solve the model.

The third work of this dissertation (Chapter 4) studies the submodularity of the SPEU

framework with an application to complex systems reliability, where component lifetime

is uncertain and depends on the investment amount. We prove the submodularity of the

SPEU framework's objective function for probability distributions commonly used in complex

system reliability allocation problems. Utilizing the submodularity property, we implement

a continuous approximation algorithm for solving large-scale problems.

Finally, chapter 5 summarizes the conclusions of this dissertation and presents possible

future research directions to extend this research.
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Chapter 2

A Stochastic Programming Model with

Endogenous Uncertainty for

Incentivizing Fuel Reduction Treatment

Under Uncertain Landowner Behavior

This chapter and Appendix A are based on the paper published by Tanveer Hossain Bhuiyan,

Maxwell C. Moseley, Hugh R. Medal, Eghbal Rashidi, and Robert K. Grala:

Bhuiyan, T. H., Moseley, M. C., Medal, H. R., Rashidi, E., and Grala, R.

K. (2019). A stochastic programming model with endogenous uncertainty

for incentivizing fuel reduction treatment under uncertain landowner behavior.

European Journal of Operational Research, 277(2): 699�718.

Authors Medal and Grala posed the research problem. Authors Bhuiyan and Medal

developed the mathematical models and solution approaches. Author Bhuiyan implemented

the models and the solution algorithms. Authors Rashidi and Grala collected the

data. Authors Bhuiyan and Moseley conducted the computational experiments, wrote the

manuscript and created the �gures and tables. Authors Medal, Rashidi and Grala edited

the manuscript. During the three revisions in the peer-review process, author Bhuiyan

9



addressed the reviewers' comments, conducted the computational experiments, and revised

the manuscript. Author Medal reviewed and edited the revised manuscript and the responses

to reviewers' comments.

2.1 Introduction

This chapter presents a new data-driven stochastic programming model with endogenous

uncertainty for a wild�re risk reduction problem. This study addresses the problem

of designing a cost-share program that incentivizes nonindustrial private forest (NIPF)

landowners to implement a fuel reduction treatment on their lands, resulting in a

comprehensive reduction in the damage and severity of wild�res. Speci�cally, the objective

is to develop a decision-making model that land management agencies can use to e�ciently

allocate limited cost-share resources to NIPF landowners to mitigate the potential damage

from future wild�res. This study considers two primary factors in developing these strategic

cost-share assistance levels: 1) the wild�re risk NIPF lands pose to their surrounding

landscape and 2) the cost-share budget restrictions of agencies. The goal of this study is to i)

develop an optimization method that generates strategic �nancial cost-share assistance levels

for agencies to present to NIPF landowners, ii) understand how risk-based allocation reduces

wild�re damage compared to other allocation strategies, and iii) provide experimental results

and managerial insights to help agencies evaluate alternative solutions.

2.1.1 Motivation

Wild�res continue to devastate extensive areas throughout the United States each year,

mostly in the western United States, with annual suppression costs climbing into the

billions of dollars for state and federal agencies [23]. In response to wild�res and other

natural occurrences, some agencies, mostly in the southeastern United States have begun

o�ering cost-share programs in which the agency agrees to cover a portion of the costs

associated with implementing required management practices for a landowner in exchange

for the landowner's involvement in the program. Examples include the Mississippi Forestry

Commission's program designed to enhance forest improvement strategies [100], and the
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United States Forest Service Collaborative Forest Landscape Restoration Program, which

encourages implementation of fuel reduction treatments [137]. Haines et al. [49] reported that

almost 50% of wild�re hazard mitigation programs in the United States involved cost-share

incentives.

The inherent challenge with these cost-share programs, however, is motivating landowners

to participate. In regions with mixed land ownership, such as the southern United States, the

process of implementing and coordinating landscape-level forest fuel reduction treatments

might be challenging due to the diversity of involved stakeholders, their di�erent forest

management objectives, and their di�erent perceptions of wild�re risk prevention costs and

expected wild�re mitigation bene�ts. Thus, we seek to optimize the e�ectiveness of these

programs by developing cost- and resource-e�ective strategies that land managers can adopt

in incentivizing private landowners to implement fuel reduction treatments and thereby

reduce hazardous fuel loads across the landscape.

Fuel reduction treatments help to reduce the severity and risk of wild�res in a large

landscape. Fuels represent live and dead biomass that can burn in wild�re [134]. Typically,

fuels include litter, branches, and shrubs as well as small and large trees that can facilitate

the spread of wild�re both horizontally and vertically [2]. Fuel reduction treatments rely

on the premise that breaking continuity of accumulated fuels by removing unwanted dead

and live vegetation will reduce accumulation of hazardous fuels and thus change wild�re

behavior by reducing its spread and intensity [139]. Fuel reduction methods vary depending

on �re management objectives and public acceptance [59]. However, they commonly include

mechanical vegetation control, chemical vegetation control, and purposeful use of prescribed

�re [134, 2]. In the southern United States, prescribed burning is conducted as a fuel

reduction treatment; however, due to some reasons such as social resistance, prescribed

burning is not conducted in many other states, where mechanical treatments are usually

performed. A strategic placement of fuel reduction treatments can in�uence spread of

wild�re [43], especially in non-severe �re seasons, as well as improve �re suppression e�orts

by providing better access to the main �re, facilitating more e�ective communication within

the �re�ghting crew, and enabling more e�ective suppression of spot �res [101], thereby

limiting associated damages.
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The e�ectiveness of the fuel reduction treatments in mitigating wild�re damages and the

challenges in cost-share programs encourage us to study the problem from the perspective

of the agencies seeking to e�ciently allocate resources among NIPF landowners to mitigate

wild�re risk through fuel reduction treatments. In this research, we aim to use risk to

inform the allocation of these agencies' cost-share resources among NIPF landowners. By

assessing the risk, economic impact, and wild�re susceptibility of land parcels in a landscape,

our optimization model can estimate the e�cacy of di�erent cost-share budget allocations

and determine the most e�ective con�guration that minimizes the wild�re damage to the

landscape. By tailoring resource allocation levels to landowner preferences, agencies can

increase the likelihood that NIPF landowners will participate in the cost-share program to

implement fuel reduction treatments, reduce the damage from wild�re, and optimize the use

of their resources.

2.1.2 Related Literature

Several research teams have applied operations research tools to provide decision-making

support for minimizing damage from wild�res. Minas et al. [98], and Martell [91] provide

a detailed review of the application of operations research techniques to wildland �re

management. Bettinger [14] provides a review of the literature on the use of operations

research tools to develop e�cient forest planning by incorporating the impact of wild�res.

To reduce the severity and damage from wild�res, research studies have proposed

operations research methods for planning fuel reduction treatment activities. Fuel reduction

treatments can reduce the accumulation of �ammable forest fuels and can decrease the

likelihood of wild�re occurrence in a large landscape as well as limit the extent of wild�re

damage. Finney [43] documented that optimal selection of the locations of fuel reduction

treatments can be more e�cient in reducing the �re spread than performing fuel reduction

treatments at random locations. Researchers have introduced various methodologies, tools,

and techniques to develop e�cient fuel reduction treatment plans. Ager et al. [3] employed

a simulation methodology to provide a comparison of di�erent alternative fuel reduction

treatment strategies utilizing the distance to residential structures and stand density to

prioritize fuel reduction treatment areas. They simulated the fuel reduction treatment on a
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wildland-urban interface landscape in Oregon, U.S. Finney [43] proposed a methodology to

determine major paths of �re travel and the fuel reduction treatment patterns to reduce the

spread of �re in a heterogeneous landscape. Higgins et al. [56] modeled a seasonal resource

allocation problem using an integer programming model to develop fuel reduction strategy

in public lands. Rashidi et al. [120] implemented fuel reduction treatment as a mitigation

approach to reduce the impact of worst-case wild�re scenario in a pyro-terror attack.

Thompson and Calkin [136] suggested that optimization approaches are suitable for

evaluating a large number of alternative fuel reduction treatments, whereas simulation

methodologies are suitable for modeling �re behaviors. Therefore, many researchers

have adopted optimization approaches or integrated simulation-optimization approaches to

optimally allocate resources in fuel reduction treatments to reduce the damage from wild�res.

Hof et al. [58] proposed a timing-oriented programming model to perform spatial allocation

of fuel reduction treatments that reduces the speed of a particular �re spread to protect

speci�ed land areas. In an extension of this study Hof and Omi [57] developed another timing-

oriented linear programming model for scheduling fuel management that determines fuel

reduction treatments to mitigate the e�ects of a particular �re with known origin and spread

behavior. Wei et al. [144] proposed a mixed-integer programming model that optimally

allocates fuel reduction treatments across a landscape to break paths of �re probability

accumulation. Minas et al. [97] presented an integer programming model incorporating both

fuel management and suppression preparedness decisions to provide an integrated planning

framework for wild�re damage reduction.

Several sources of uncertainty are associated with fuel treatment management. Decisions

made based on speci�c parameter values may perform poorly under di�erent values.

Therefore, some studies addressed the uncertainty in the underlying parameters of the fuel

reduction treatment problem. Acuna et al. [1] considered uncertainty in wild�re occurrences

and spread in their integrated �re and forest management planning model that provides

scheduling of timber harvests to protect valuable forest from future �res. Minas et al. [99]

presented a mixed-integer programming model that incorporates heterogeneous landscape,

ecological and operational aspects to provide decision support for multi-period scheduling of

fuel reduction treatments. The authors proposed that fuel treatment planning be conducted
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each year using a rolling horizon approach to account for uncertainty in the e�ectiveness

of fuel reduction treatments. In this approach, the landscape status is updated in each

period. Rachmawati et al. [114] extended the work of Minas et al. [99] to account for

multiple vegetation types in determining an optimal schedule and location for fuel reduction

treatments.

Instead of a rolling horizon approach, some studies have applied stochastic programming

approach to deal with parameter uncertainty, where scenarios are constructed to explicitly

represent di�erent values of uncertain parameters and decisions are made considering all

the scenarios simultaneously. While stochastic programming approach provides solutions

that are robust in the presence of uncertainty, constructing the scenarios is a non-trivial

task and solving these problems presents computational challenges. Wei [142] presented a

two-stage model that addresses uncertainty in ignition location and duration of wild�res in

determining the optimal fuel reduction treatment layout in a landscape. Wei and Long [143]

modi�ed Wei [142] model to account for the worst-case wild�re scenario that generates fuel

breaks in high �re hazard fuel patches. Rytwinski and Crowe [122] integrated simulation

with a stochastic optimization framework that addresses the uncertainty in the location of

�re ignition and spread direction. This framework minimizes the risk of �re using fuel-breaks

under limitation on the area to be used for fuel-breaks. The authors used a heuristic approach

to solve their problem, which can only guarantee a near-optimal solution. Konoshima et al.

[70] proposed a stochastic dynamic programming model accounting for uncertainty in �re

ignition locations and weather conditions to determine the optimal spatial patterns of fuel

treatments and timber harvesting on a small stylized landscape. Their work was further

extended by Konoshima et al. [69] where the authors also used a stochastic dynamic approach

to explore insights regarding the decisions of fuel reduction treatment and harvest for di�erent

economic, topological, and weather conditions. Another application of stochastic dynamic

programming is found in Ferreira et al. [40] in developing the optimal scheduling of fuel

reduction treatment and harvesting under the risk of wild�re.
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2.1.3 Contributions

In summary, no research has studied the cost-share resource allocation problem in

implementing fuel reduction treatments on privately owned lands. The existing studies

on fuel reduction management focused mainly on optimizing the spatial patterns of fuel

reduction treatments. The uncertainties addressed in some of those studies include �re

ignition locations, spread direction, weather condition, and e�ectiveness of fuel treatments

undertaken. To the best of our knowledge, no research study has addressed uncertainty in

landowner behavior in modeling a cost-share program for fuel reduction treatments.

The major contribution of this research is that it studies the cost-share budget allocation

problem under uncertainty in landowner behavior, which is a practical and challenging

problem often faced by land managers in implementing fuel reduction treatments on privately

owned lands. While other research has studied fuel reduction treatment optimization from

a spatial point-of-view, our research accounts for the uncertainty in human behavior by

considering uncertainty in the response of private landowners to a cost-share o�er. The

uncertainty is decision�dependent (endogenous) as the landowner's response to a cost-share

o�er depends on the o�er amount. We address the uncertainty in �re ignition locations by

considering random ignition locations in the landscape.

We propose a simulation-optimization integrated approach for optimizing cost-share

resource allocation under uncertainty to reduce the expected damage from wild�res. Our

proposed approach provides the basis for a decision support system for land managers or

government agencies o�ering cost-share assistance to private landowners to encourage them

to implement a fuel reduction treatment through a cost-share program. The stochastic

programming model considers uncertainty in the e�ect of cost-share assistance o�er amount

to the decision of the landowners to accept or reject the cost-share program. In this decision�

dependent uncertainty, the likelihood of a landowner accepting a cost-share o�er increases

as the amount of the cost-share o�er increases.

This research extends the existing wild�re management literature by introducing new

mathematical models that consider reducing the expected damage from a wild�re by

optimally allocating cost-share assistance to private landowners. Speci�cally, in this research
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we have made the following contributions: (1) proposed a risk-based cost-share resource

allocation strategy to e�ciently coordinate implementation of fuel reduction treatments

on private lands that minimizes the overall wild�re damage, (2) developed stochastic

programming models with endogenous uncertainty to optimally allocate cost-share assistance

to private landowners to encourage implementing fuel reduction treatments, (3) introduced

a predictive modeling technique to estimate the likelihood that landowners accept or reject

the cost-share o�er, (4) provided experimental results to demonstrate the e�ects of model

parameters and di�erent cost-share allocation strategies on the optimal solution and runtime,

and the sensitivity of the risk-based model to the number of cost-share allocation levels used

in the model.

2.2 Problem Description

We study a problem from the perspective of an agency seeking to reduce the potential

damage resulting from wild�re by providing monetary incentives to private landowners

to implement fuel reduction treatment on their land through a cost-share program. We

assume that landowners accepting a cost-share o�er implement a fuel reduction treatment

on all of their land parcels. However, this is a simplifying assumption of a more practical

fuel reduction treatment scheme where landowners often implement treatment on a subset

of their land parcels depending on the vegetation types, ages, and wild�re risk posed by

the land parcels. We assume that the rate of �re spread and intensity in a land parcel

subject to fuel reduction treatment is reduced and the reduced intensity �re can be stopped

using available �re suppression resources (see [143] for example). The agency has a limited

budget to provide cost-share assistance to the private landowners. The agency follows a

risk-based budget allocation strategy, where rather than o�ering landowners the same cost-

share amount per acre, the agency chooses the cost-share resource allocation that results

in the maximum risk reduction in the overall landscape of interest. This is in contrast

to a typical cost-share program in which agencies usually o�er equal amount of cost-share

assistance to all landowners (uniform allocation). A variation of this typical strategy is one

in which the agency chooses which landowners to o�er cost-share assistance and then o�ers

16



a predetermined amount to all chosen landowners (hybrid allocation). Our risk-based model

allows us to measure the e�ects of using a risk-based allocation. This research compares

these three strategies to measure their e�ectiveness in reducing wild�re risk.

A key feature of the problem studied in this research is the uncertainty in landowner

behavior with respect to their decision of whether or not to accept a cost-share o�er.

Speci�cally, the agency does not know whether or not a landowner will accept an o�er for

a given amount of cost-share assistance. However, the agency can estimate the probability

that a landowner will accept a given cost-share amount, for example, using historical or

survey data. The objective of the agency is to minimize the expected total area burned due

to wild�re. We refer to the problem as Stochastic Risk-based Allocation Problem for Fuel

Reduction Treatments (SRAPFRT). To study the problem, we consider a landscape divided

into a number of grid cells, each cell owned by a landowner. Each cell has various biophysical

characteristics, and a probability of �re ignition, which, in this study is considered equal for

all cells, because of lack of historical data.

We model the three cost-share budget allocation problems as two-stage stochastic

programs where the �rst-stage consists of the agency allocating its budget among the

landowners. The scenarios represent which landowners accept or reject the cost-share

program.

The second-stage models the spread of wild�re in the landscape and computes the damage

from wild�res in each scenario. We model the spread of �re using a simulation program that

includes the use of FlamMap and the Monte Carlo simulation. The simulation program takes

the physical characteristics of each cell of the landscape, information about the locations

where fuel breaks are implemented, and location of �re ignition and then outputs which cells

are burned as well as the extent of damage. Details of this simulation program are described

in section 2.3.4.

In modeling the spread of wild�re, we have made the following assumptions: (1) locations

of �re ignition points are randomly distributed across the landscape, (2) wild�res can ignite

at multiple locations of the landscape at the same time, and prevail for the same duration

under the same �re weather conditions, (3) the shape of the �re spread is elliptical, and (4)

once the wild�re reaches the center of a cell, the cell is burned.
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2.3 Methods

This section details the methodology for solving the SRAPFRT problem. We formulate the

problem as a stochastic integer nonlinear programming model and implement a reformulation

technique to linearize the original nonlinear model to obtain a mixed-integer linear stochastic

programming model. We also implement a predictive modeling technique to estimate the

probabilities of the landowners' decision states for di�erent cost-share allocation levels

and compute each scenario's second-stage value. To evaluate our methodology on a test

landscape for di�erent number of landowners, we reassign the ownership of land parcels in

the test landscape among the landowners. These methodologies are described in detail in

the following sub-sections.

2.3.1 Mathematical Formulation

We formulate the problem of optimally allocating cost-share assistance to the private

landowners as a stochastic programming model with decision-dependent uncertainty. In

addition to the mathematical formulation of the stochastic risk-based cost-share assistance

allocation problem, we present the mathematical formulation of the uniform and the hybrid

cost-share allocation problems.

Before presenting the mathematical formulations, the necessary sets, parameters, and

variables are listed in Table 2.1.

Risk-based Allocation Model

In this sub-section, we present the two-stage stochastic programming model with decision-

dependent uncertainty for the stochastic risk-based cost-share assistance allocation problem

to minimize the expected area burned. The �rst-stage model decides on the optimal amount

of cost-share assistance to be o�ered to each landowner so that the expected damage will be

minimized. We refer to the �rst-stage model as RA-NLP. The second-stage model computes

the damage due to wild�re in each scenario for a particular accept/reject decision states of

the landowners.
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Table 2.1: Notation.

(a) Sets

Parameters Description

J Set of landowners indexed by j
K Set of cost-share assistance levels indexed by k
L Set of decision states of the landowners
Ω Set of scenarios indexed by ω

(b) Parameters

Parameters Description

ck Amount of cost-share assistance per acre at level k
aj Total area (acre) belonging to landowner j
B Total cost-share budget of the agency
gω The second-stage objective value for scenario ω

(c) Variables

Variables Description

yjk 1 if k level of cost-share assistance is
o�ered to landowner j, 0 otherwise

wωjk The probability-weighted damage in a
scenario

xk 1 if k level (k ≥ 1) of cost-share assistance
is o�ered to the landowners chosen to
o�er cost-share assistance, 0 otherwise
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In our stochastic programming model, the decision of a landowner to accept or reject a

cost-share o�er is uncertain. We construct discrete scenarios to represent the landowners'

random decision states, which are to accept or reject a cost-share o�er. Each scenario

represents a particular combination of the landowners' decision states. The second-stage

objective value is computed for each of these scenarios by simulating the spread of �re in

the landscape, which is discussed in detail in Section 2.3.4.

The decision of a landowner j to accept or reject a cost-share program in a scenario ω

depends probabilistically on the amount of cost-share assistance o�ered to that landowner.

Let's consider the landowners' decision states (accept or reject) denoted by the random vector

d = (dj)j∈J , whose element dj, corresponding to landowner j, depends on the amount of cost-

share assistance o�ered to landowner j. Therefore, the conditional probability function that

landowner j is in decision state dj for a given cost-share assistance amount yj is fj(d
ω
j | yj).

We assume that the landowners decide about the cost-share o�er independently. As possible

combinations of the landowners' decision states are represented by a �nite set of scenarios,

Ω, where ω ∈ Ω de�nes a particular combination of all the landowners' decision states, the

probability of scenario ω can be de�ned as:

Pω(y) =
∏
j∈J

fj(d
ω
j | yj) (2.1)

We can discretize the cost-share assistance amounts into |K| di�erent levels and de�ne

the landowners' decision states as follows:

� K := {0, 1, 2, ..., k} is the set of cost-share assistance levels indexed by k.

� L := {0, 1} is the set of decision states of the landowners indexed by `, where ` = 0

stands for rejecting and ` = 1 stands for accepting a given cost-share o�er.

Using the discretized sets of cost-share assistance levels and landowners' decision states, the

probability of scenario ω can be expressed as follows:

Pω(y) =
∏

j∈J
∑

k∈K Pj`(j,ω)kyjk, where Pj`(j,ω)k is the probability that the landowner's

decision state is ` in scenario ω, given that landowner j is o�ered k level of cost-

share assistance. In this research, we consider a heterogeneous landscape, where the
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lands belonging to di�erent landowners have di�erent topography and fuel conditions

characteristics that cause di�erent wild�re behavior and risk. Based on the impact of land

parcels on wild�re risk, the agency o�ers di�erent amounts of cost-share assistance to the

landowners. In this setting, the decisions of the landowners could be independent of each

other.

The decision-maker can estimate the probability Pj`(j,ω)k that landowner j will accept

the cost-share o�er for k level of cost-share assistance. In this research, we use a predictive

modeling technique to estimate the probabilities of a landowner accepting a cost-share o�er

for a given amount of cost-share assistance. The predictive modeling technique for estimating

probabilities is described in Section 2.3.3.

The �rst-stage of our two-stage risk-based stochastic programming model (2.2) is

presented below (RA-NLP):

min
∑
ω∈Ω

Pω(y) gω (2.2a)

s.t.
∑
j∈J

∑
k∈K

ajckyjk ≤ B (2.2b)∑
k∈K

yjk = 1 ∀j ∈ J (2.2c)

yjk ∈ {0, 1} ∀j ∈ J , k ∈ K (2.2d)

The objective function (2.2a) seeks to minimize the expected damage over all scenarios.

The total cost of allocating di�erent cost-share assistance levels to all the landowners cannot

exceed the agency's cost-share budget (2.2b). Each constraint (2.2c) ensures that only one

level of cost-share assistance can be allocated to each landowner. The binary nature of the

cost-share allocation decision is represented by the constraints (2.2d).

Unlike a traditional stochastic programming model, in our stochastic programming

model with decision-dependent uncertainty, computation of the second-stage value does not

depend on the �rst-stage decision variables. The inputs to our second-stage model are the

�accept/reject� decision states of each landowner, which de�ne the scenarios. Rather than

determining the �accept/reject� decisions, the �rst-stage model decides how much cost-share
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assistance to o�er each landowner. In this way, second-stage is only indirectly tied to the

�rst-stage in that the probability of the �accept/reject� decision state of a landowner depends

on the cost-share amount o�ered to that landowner. As we can compute the spread of wild�re

for a given scenario without knowing the probability of that scenario, we can compute the

second-stage values a priori without solving �rst-stage model and then consider these values

as known model parameters.

We see that the probability of a scenario (Eq.2.1) contains the product of the cost-share

allocation decision variables for the landowners. Therefore, the objective function (2.2a) of

the �rst-stage model (2.2) contains the product of the decision variables, which makes the

model nonlinear and non-convex. As nonlinear and non-convex models cannot be solved

using o�-the-shelf mixed-integer programming solvers such as Gurobi [48], this model is

reformulated as a mixed-integer linear (MILP) programming model using the procedure

described in Section 2.3.2.

Uniform Allocation Model

The risk-based model allocates cost-share assistance based on the impact of land parcels in

the landscape on wild�re hazard. Some parcels are more densely vegetated than others

and therefore more susceptible to a wild�re, or have higher economic value than other

parcels, whether due to standing timber and their proximity to populations or the forest and

agricultural activities occurring there. By emphasizing these di�erences in impact and risk,

the risk-based model can prioritize these parcels over other parcels with less impact on the

landscape, and therefore o�er higher cost-share assistance to the owners of these high-priority

parcels. This allocation strategy could be controversial, however, as in a typical cost-share

program all landowners receive an equal amount of cost-share assistance per unit of enrolled

land area. Therefore, we model the uniform cost-share allocation problem where all the

landowners receive the same level of cost-share assistance to provide a comparison with our

risk-based allocation model in their e�ectiveness to mitigate the wild�re risk. The stochastic

uniform cost-share assistance allocation model (2.3) is presented below (UA-NLP):
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min
∑
ω∈Ω

Pω(y) gω (2.3a)

s.t.
∑
j∈J

∑
k∈K

ajckyk ≤ B (2.3b)∑
k∈K

yk = 1 (2.3c)

yk ∈ {0, 1} ∀k ∈ K (2.3d)

The objective function (2.3a) minimizes the expected wild�re damage over all scenarios

by providing the same level of cost-share assistance to the landowners. Constraint (2.3b)

ensures that the total cost of allocating k level of cost-share assistance to all the landowners

does not exceed the agency's budget. Constraint (2.3c) ensures that only one level of cost-

share assistance is o�ered to all landowners. Constraint (2.3d) represents the binary nature

of the cost-share allocation decision variables.

Hybrid Allocation Model

In a variation of the typical cost-share allocation strategy, a subset of landowners are chosen

to be o�ered a predetermined level of cost-share assistance while remaining landowners

are not o�ered any cost-share assistance. This hybrid (semi-uniform) cost-share allocation

strategy is more pragmatic than the uniform allocation. Because, rather than just providing

assistance to all landowners, it might be more practical for the agencies to select some

potential landowners to o�er assistance and thereby more e�ciently use their resources to

mitigate wild�re risk. Therefore, we model this hybrid allocation problem to provide a

comparison with our risk-based allocation model. The stochastic hybrid cost-share assistance

allocation model (2.4) is presented below (HA-NLP):
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min
∑
ω∈Ω

Pω(y) gω (2.4a)

s.t. yjk ≤ xk ∀k ∈ K \ {0} (2.4b)∑
k∈K\{0}

xk ≤ 1 (2.4c)

xk ∈ {0, 1} ∀k ∈ K \ {0} (2.4d)

(2.2b)− (2.2d)

The objective function (2.4a) seeks to minimize the expected damage over all scenarios

by optimally allocating the cost-share assistance to the landowners. Constraints (2.4b) and

(2.4c) together ensure that all landowners in the subset of landowners chosen to o�er cost-

share assistance are o�ered the same k level of cost-share assistance.

2.3.2 Reformulation

The �rst-stage objective function of our risk-based stochastic programming model (2.2) can

be written as:

min
∑
ω∈Ω

gω

(∏
j∈J

∑
k∈K

Pj`(j,ω)kyjk

)
(2.5)

Equation (2.5) minimizes the total probability-weighted wild�re damage over all scenar-

ios. To linearize the nonlinear objective function, we adopt a probability-chain reformulation

technique proposed in Medal et al. [94]. In this reformulation technique, the probability-

weighted damage is quanti�ed for each scenario using a set of recursive equations. These

recursive equations replace the requirement of the product term over the landowners to

compute the probability of a scenario.

As we assume that the probabilities of the decision states of the landowners are

independent, we can substitute the product term
∏

j∈J
∑

k∈K Pj`(j,ω)yjk with a recursive

expression using bookkeeping variables to store the product of the probabilities and the
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second-stage value. Assume that wωrk is a variable that stores the product of the second-

stage value for scenario ω and the probabilities that the landowners 1, 2, ..., r are in their

corresponding decision states in scenario ω. The following recursive equations are used to

compute the value of wωrk for each scenario ω.

wω1k = gωP1,`(r,ω),ky1k ∀ω ∈ Ω, k ∈ K (2.6)∑
k∈K

wωr−1,k =
∑
k∈K

1

max
{
Pr,`(r,ω),k, ε

}wωrk ∀r = 2, . . . , |J |;ω ∈ Ω (2.7)

wωrk ≤ gωyrk ∀r ∈ J , k ∈ K, ω ∈ Ω (2.8)

Equation (2.6) computes the value of the wωrk variable for the �rst landowner in scenario

ω. The variable wω1k holds the product of the second-stage value for scenario ω and the

probability that the �rst landowner is in their corresponding decision state in scenario ω.

The value of wωrk for each subsequent landowner is computed by equations (2.7). For the

second landowner in scenario ω, the wω2k variable holds the product of the value of the w
ω
1k

variable corresponding to the �rst landowner and the probability that the second landowner

is in their corresponding decision state. In this way, the value of wωrk is computed recursively

for each landowner until the last landowner. When this process reaches the last landowner,

the variable wωrk becomes equal to gω
(∏

j∈J
∑

k∈K Pj`(j,ω)kyjk

)
. In the denominator of the

fraction on the right side of equation (2.7), we take the maximum between the probability

Pr,`(r,ω),k and a very small positive number ε, to avoid division by zero, as in some instances

the probability for a landowner to be in a decision state might be zero.

Equation (2.8) ensures that the value of wωrk depends on the allocation decision variables

yjk. The value of w
ω
rk for landowner j for a given allocation level k can be positive only when

cost-share assistance level k is o�ered to landowner j.

The following numerical example demonstrates the computation of the probability-

weighted damage in a scenario ω using the recursive equations (2.6)-(2.8). Consider a

rasterized landscape with two landowners. The decision state of each landowner is either

to accept or reject a given cost-share assistance o�er. For simplicity, we consider only two
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possible cost-share allocation levels, 0 and 1, with 0 meaning no cost-share assistance and 1

unit of cost-share assistance, respectively. Table 2.2 demonstrates the estimated probabilities

that a landowner accepts or rejects a given cost-share assistance o�er.

We assume that 1 unit of cost-share assistance is o�ered to the �rst landowner and no

cost-share assistance is o�ered to the second, i.e., y11 = 1, y20 = 1. Also, in a given scenario

ω, we assume that the area burned from wild�re is 500 acres when both landowners reject

the cost-share o�er. Now, according to equation (2.8), we have:

�rst landowner :

wω11 ≤ 500y11

second landowner :

wω20 ≤ 500y20

From the recursive equation (2.6), the probability-weighted damage corresponding to the

�rst landowner in scenario ω is computed as follows:

wω11 = Pω1,`(1,ω),1y11 × 500 = 0.15× 500 = 75

Using the value of wω11 in the recursive equation (2.7), the probability-weighted damage

corresponding to the second landowner in scenario ω is computed as follows:

wω11 = 1
Pω
2,`(2,ω),0

wω20 ⇒ wω20 = 0.90× 75 = 67.5

Therefore, the probability-weighted wild�re damage in scenario ω is 67.5. This recursive

process computes the probability-weighted wild�re damage for each landowner starting with
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Table 2.2: Estimated probability for a given allocation level

Allocation Level Decision State Estimated Probability

0 Rejects 0.90
0 Accepts 0.10
1 Rejects 0.15
1 Accepts 0.85
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the �rst landowner and continues until it reaches the last landowner, where we obtain the

total probability-weighted wild�re damage for that scenario.

The reformulated risk-based mixed-integer stochastic programming model (2.9) is stated

as follows (RA-MIP):

min
∑
ω∈Ω

∑
k∈K

wω|J |k (2.9a)

s.t. wω1k = gωP1,`(r,ω),ky1k ∀ω ∈ Ω, k ∈ K (2.9b)∑
k∈K

wωr−1,k =
∑
k∈K

1

max
{
Pr,`(r,ω),k, ε

}wωrk
∀r = 2, . . . , |J |;ω ∈ Ω (2.9c)

wωrk ≤ gωyrk ∀r ∈ J , k ∈ K, ω ∈ Ω (2.9d)

wωrk ≥ 0 ∀ω ∈ Ω, r ∈ J , k ∈ K (2.9e)

(2.2b)− (2.2d)

Similarly, we reformulate the uniform and hybrid cost-share allocation models into mixed-

integer stochastic uniform (UA-MIP) (2.10) and hybrid (HA-MIP) (2.11) allocation models,

respectively, which are presented below:

min
∑
ω∈Ω

∑
k∈K

wω|J |k (2.10a)

s.t. wω1k = gωP1,`(r,ω),kyk ∀ω ∈ Ω, k ∈ K (2.10b)∑
k∈K

wωr−1,k =
∑
k∈K

1

max
{
Pr,`(r,ω),k, ε

}wωrk
∀r = 2, . . . , |J |;ω ∈ Ω (2.10c)

wωjk ≤ gωyk ∀j ∈ J , k ∈ K, ω ∈ Ω (2.10d)

wωrk ≥ 0 ∀ω ∈ Ω, r ∈ J , k ∈ K (2.10e)

(2.3b)− (2.3d)
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min
∑
ω∈Ω

∑
k∈K

wω|J |k (2.11a)

s.t. (2.9b)− (2.9e)

(2.2b)− (2.2d)

(2.4b)− (2.4d)

After this linearization procedure, these mixed-integer stochastic programming models

can be solved using o�-the-shelf integer programming solvers such as the Gurobi optimizer

[48].

2.3.3 Estimating the Probability of Decision States

We need to estimate the probability Pj`(j,ω)k of landowner j to be in decision state ` in

scenario ω for a given cost-share assistance level k. Each landowner's decision states are

either to accept or reject the cost-share assistance o�ered by the agency. Therefore, we

can use a binary logistic regression model to estimate the probability Pj`(j,ω)k for a given

level of assistance. In the logistic regression model, the response variable is the landowner's

decision of either accepting (` =1) or rejecting (` = 0) the cost-share o�er, for a given

predictor variable (yj), which is the amount (U.S. dollars) of cost-share assistance o�ered to

landowner j. The estimated probability that a landowner j accepts (` = 1) the cost-share

o�er for a given cost-share assistance level k or given cost-share assistance amount yj can be

computed from the following equation:

Pk = 1
1+exp[−(β0+β1yj)]

(2.12)
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where Pk is the probability of accepting the cost-share o�er for k cost-share assistance level

or yj dollar amounts, and β0 and β1 are the parameter estimates of the logistic regression

model.

We generate synthetic data based on the prescribed burning (fuel reduction treatment

method in the southern United States) cost estimates obtained from a mail survey sent to

2000 randomly selected NIPF landowners. The survey was implemented by making four mail

contacts [33]. Using the estimates of the prescribed burning costs per acre, we select a range

of cost-share assistance amounts per acre based on which we generate the synthetic data.

We build the logistic regression model and train it using the synthetic data that contain

landowners' corresponding decision states (accept/reject) for di�erent amounts (U.S. dollar)

of cost-share assistance o�ered per acre (yj). Thus, the prediction model builds a relationship

between the dollar amounts o�ered per acre and the decision of a landowner. We discretize

the entire range of the dollar amounts per acre o�ered by the agency to the landowners into

| K | di�erent levels and obtain the amounts ck of cost-share assistance corresponding to the

discrete cost-share assistance levels k.

We use our �tted logistic regression model to predict the probabilities of the decision

states for given ck values. The sample results of the logistic regression model showing the

estimated probabilities corresponding to the cost-share assistance levels and dollar amounts

are presented in Appendix A.5.

These probabilities Pk are used as Pj`(j,ω)k in the stochastic programming model. That is,

for the stochastic programming model, additional subscripts are needed for P. Speci�cally,

Pj0(j,ω)k is the probability that landowner j rejects the cost-share o�er in scenario ω given

that ck amount (U.S. dollars) or k level of cost-share assistance is o�ered to landowner j and

Pj1(j,ω)k is the probability that landowner j accepts the o�er.

2.3.4 Computation of Second-Stage Values

We compute the wild�re damage for each scenario representing the decision states of the

landowners of our stochastic programming model. To compute the damage, we simulate the

spread of wild�re in a landscape that is divided into raster cells. The wild�re simulation

procedure of this research is similar to the one used in Rashidi [117] and Rashidi et al. [119].
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The center of each cell is considered as a node, and each node is connected to its neighboring

nodes through directed arcs, which together model the landscape as a directed network. For

details of the rasterized landscape and the corresponding directed network representation,

see Rashidi et al. [118]. We consider multiple random nodes in the landscape where �re can

ignite simultaneously. Based on the random choice of the ignition point location, numerous

wild�re scenarios can occur, which are referred to as sub-scenarios in this research. Thus,

in each scenario of our stochastic programming model, multiple wild�re sub-scenarios exist,

and the average damage of these sub-scenarios is the damage, or second-stage value for that

scenario.

We generate the wild�re sub-scenarios by randomly selecting the ignition points among

the cells of the landscape. We see that the computation of average damage of all the

sub-scenarios with three or more ignition points becomes computationally challenging. For

example, with three random ignition points in the Santa Fe National Forest data, we have

C625
3 , or more than 40 million wild�re sub-scenarios. Computation of damage for this large

number of sub-scenarios in each scenario ω is computationally very expensive. Moreover,

we have 210 = 1024 scenarios in our stochastic programming model for 10 landowners in

the Santa Fe data. Therefore, the whole problem becomes computationally di�cult if

we consider all possible wild�res sub-scenarios. Therefore, we implement a Monte Carlo

simulation (MCS) to generate and evaluate a random sample of 5,000 possible wild�re sub-

scenarios with 5 ignition points, each with equal probability in each scenario ω and compute

the average damage.

In this research, we use FlamMap [42] to compute the rate of �re spread (ROS) and the

major �re spread direction (direction of �re with fastest speed) in each cell of the landscape.

FlamMap takes di�erent landscape characteristics such as elevation, slope, wind speed, wind

direction, and moisture content as inputs and computes the rate of �re spread and the major

�re direction. Besides the major �re spread direction, �re also spreads in other directions

at lower speeds. We use formulas (2.13) and (2.14) to calculate the rate of �re spread along

other minor directions.
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ROS =
α2 − β2

α− βcos(φ)
0 ≤ φ ≤ π

2
(2.13)

ROS =
α2 − β2

α + βcos(π − φ)

π

2
≤ φ ≤ π (2.14)

Here, φ is the angle between the major �re spread direction in a cell and the �re spread

direction from this cell to the center of the adjacent cells. α and β are the parameters, called

foci, describing the ellipse of the �re spread and are computed by FlamMap. For details, see

Rashidi et al. [118] and Green et al. [47].

In each scenario ω, we run FlamMap before simulating the �re spread in the landscape

with the random ignition points to compute the major �re spread direction and the α and β

parameters. We compute the rate of �re speed rmn from cell m to one of its adjacent cells n

using formulas (2.13) and (2.14). If we denote the distance between the two cells as dmn, the

time for the �re to spread from m to n is Tmn = dmn

rmn
. We assume that if a landowner accepts

a cost-share o�er, the cells belonging to that landowner are subjected to fuel reduction

treatment. We also assume earlier that after implementation of a fuel reduction treatment

in a cell, the reduced intensity �re can be stopped using available �re suppression resources.

Therefore, if cell m belongs to a landowner j who accepts the cost-share o�er in a scenario ω

of our stochastic programming model, the time Tmn for the �re to spread from cell m to n is

modi�ed to have a value of M , larger than the �re duration time D, so that the �re cannot

reach from m to n. This way the treated cells prevent �re from spreading into the landscape

and thus reduce the damage from wild�re. However, by manipulating the value of M , we

can modify the e�ect of fuel reduction treatment on the rate of �re spread in our �re spread

modeling. For example, the �re travel time or the value of M after implementation of a fuel

reduction treatment can be made to be equal to the double of the �re travel time without

fuel reduction treatment. This way our model can represent a more realistic fuel treatment

e�ect.

We use the minimum travel time algorithm (MTT) proposed by Finney [41] to compute

the minimum travel time path from each possible ignition point (cell) m to another cell q,

and denote this minimum travel time as Fmq. If this minimum travel time Fmq is smaller
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than the �re duration time D, we consider that the �re ignited at cell m can reach cell q and

burn it.

Let Xmq = 1 if �re from cell m reaches cell q, and 0 otherwise. Therefore, if Fmq ≤ D,

Xmq = 1. Now, if we denote Qq as the value of cell q that is lost when cell q is burned, then

the total value lost in a wild�re sub-scenario can be computed as:

∑
m∈S′n

∑
q∈S QqXmq

where S and S
′
n denote the set of all cells in the landscape and the set of ignition points

in the wild�re sub-scenario n, respectively. If we denote the total number of sub-scenarios

as N , then the second-stage objective value (the total value lost due to wild�re) in each

scenario ω of our stochastic programming model is computed as:

1
N

(∑N
n=1

∑
m∈S′n

∑
q∈S QqXmq

)

2.3.5 Test Landscape

To evaluate the proposed model and solution approach, we ran numerical experiments using

a test landscape based on the Santa Fe National Forest in New Mexico, in which there

are 625 land parcels distributed among |J | landowners. Each land parcel has biophysical

characteristics such as elevation, slope, and moisture content that are used to model the

spread of �re through the landscape. For the purposes of these experiments, we reassigned

the ownership of the 625 parcels among four, six, eight, and ten landowners, as shown in

Figure 2.1. As a result, the number of acres owned by each landowner varies according to

the number of landowners present in the landscape. Table A.1 in Appendix A.1 lists the

acreages for each landowner in each version of the modi�ed Santa Fe landscape.
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(a) Landscape with |J | = 4
landowners

(b) Landscape with |J | = 6
landowners

(c) Landscape with |J | = 8
landowners

(d) Landscape with |J | = 10
landowners

Figure 2.1: Land parcel ownership reassigned according to the number of landowners, |J |,
present in the landscape.
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2.4 Computational Results and Discussion

In this section, we use our optimization models to provide insight into several questions.

1. How does the size of the agency's cost-share budget a�ect the expected damage of a

wild�re?

2. How does the number of cost-share allocation levels o�ered by an agency impact the

expected damage?

3. How sensitive is the mixed-integer stochastic risk-based allocation model to changes in

the number of allocation levels modeled?

4. How does the risk-based cost-share assistance allocation strategy perform compared to

the uniform and hybrid cost-share assistance allocation strategies?

2.4.1 Experimental Setup

We implemented the RA-MIP, UA-MIP, and HA-MIP models in Python 2.7 with Gurobi

solver [48]. We also implemented the simulation program in Python 2.7 to model the spread

of wild�re and compute the damage in each scenario. The logistic regression model estimating

the probabilities of landowners' decision states is implemented using the scikit-learn package

in Python 2.7.

We conducted numerical experiments for the Santa Fe landscape using the ownership

scenarios as shown in Figure 2.1, for every combination of the parameter values in Table

2.3 to observe the e�ects of each parameter on the expected wild�re damage and runtime.

Trials were run �ve times each and then averaged to account for sampling noise associated

with computing the second-stage objective value. The results of all experiments are detailed

in the following sub-sections.

The estimates that we obtain from the NIPF landowner survey for the minimum,

maximum, and mean costs of prescribed burning per acre are $1, $35, and $17.5, respectively.

Based on these cost estimates, we select the range of per acre cost-share assistance amounts

from $0 to $40 to generate our synthetic dataset. In our dataset, the minimum and maximum
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Table 2.3: Parameters and their values used in the experiments

Parameter Values Used

Number of landowners, |J | 4, 6, 8, 10
Number of allocation levels, |K| 2, 4, 6, 8

Budget, B $20,000, $40,000, $60,000, $80,000, $100,000
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cost-share assistance o�ered to a landowner are $0 and $39.83 per acre, respectively. We

discretize the continuous o�er amounts into a number of discretized levels by dividing the

range from $0 to $39.83 per acre by the number of cost-share allocation levels speci�ed by

the agency and then use the upper bounds of the resulting ranges as the amount (U.S.

dollars) of cost-share assistance corresponding to the allocation levels. The cost-share

assistance amounts associated with each level of cost-share allocation are shown in Table

A.2 in Appendix A.1.

2.4.2 Runtime of the Solution Approach

To observe the solution runtime, we ran experiments on a computer running MacOS with

Intel Core i9 @ 2.9 GHz with 16 GB of installed RAM. The runtimes of the risk-based

allocation experiments are shown in Table A.3 in Appendix A.2 and are visualized in Figure

2.2, while Tables A.4 and A.5 in Appendix A.2 show the runtimes of the uniform and hybrid

allocation experiments, respectively.

Based on the experimental runtimes in Figure 2.2 and Table A.3 in Appendix A.2, we see

that the the size of the agency's cost-share budget has no clear correlation with the model

runtime for four and six landowners. However, there are some spikes in the runtimes for

certain budget levels for eight and 10 landowners. For instance, with eight landowners and

six allocation levels, the runtime is higher at budget levels of $40,000 and $60,000, and with

10 landowners and four allocation levels, the runtime is substantially higher at budget levels

of $40,000 and $60,000. These runtime spikes are likely due exploring an increased number

of possible solutions necessitated by those particular parameter combinations. Similar to

the e�ect of cost-share budget size, the number of allocation levels does not have a clear

impact on the runtime for four and six landowners. However, model runtime increases for

eight landowners as the number of allocation levels increases beyond |K| = 4. Moreover, the

e�ect of increasing number of allocation levels on runtime is more evident for 10 landowners;

the runtime increases substantially as the number of allocation levels increases from |K| = 2.

Our solution methodology cannot solve the risk-based allocation problems for 10 landowners

and six allocation levels within 6 hours, thereby yielding sub-optimal cost-share allocation
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Figure 2.2: Impact of number of landowners on runtime using risk-based cost-share
allocation.
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decisions at the time of termination. We mark the timed-out parameter combinations with

an asterisk (*) in Table A.3.

The number of landowners has a noticeable e�ect on the runtime of the model. As

illustrated in Table A.3 and Figure 2.2, the model's runtime increases exponentially as

the number of landowners increases. While increasing the cost-share budget might impact

the allocation con�guration and increasing the number of allocation levels adds additional

variables to the model, increasing number of landowners adds both a complete set of new

variables and scenarios to the model. Thus, the number of landowners has a far more

considerable in�uence on the model's complexity and therefore runtime.

Figure 2.3 also indicates this trend for uniform and hybrid allocation strategies. However,

both models' runtimes for each number of landowners are consistent across budgets and

number of allocation levels, perhaps a result of the decreased complexity of those models

compared to the risk-based model.

2.4.3 E�ect of Budget on Expected Damage

Our expectation was that as the amount of cost-share assistance o�ered to NIPF landowners

increases, the expected damage to the landscape will decrease, as the increased budget

will allow the agency to o�er higher amounts to each landowner, which will increase their

probability of acceptance and thus incentivize more NIPF landowners to participate in the

cost-share program.

After running these risk-based allocation experiments �ve times each and calculating the

average results for each experiment, we plot the expected damage by a wild�re against the

budget, in increments of $20,000 from $20,000 to $100,000. Figure 2.4 demonstrates the

average expected damage at each budget amount across all allocation levels for each number

of landowners.

From Figure 2.4 we can conclude that the model performs as expected, and that the

expected damage decreases as the budget increases. Based on the convergence of all lines
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Figure 2.3: Impact of number of landowners on runtime using hybrid and uniform cost-
share allocation strategies.

Figure 2.4: Impact of cost-share budget on expected damage using risk-based cost-share
allocation.
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once the budget reaches $100,000, Figure 2.4 also shows that the expected damage decreases

as budget increases until the point at which the budget is large enough that all landowners

receive the highest per-acre allocation level. For this Santa Fe landscape, the landowners own

a total of around 2,161 acres. Using the model's maximum o�er amount of $39.83 per acre,

the budget necessary to o�er all landowners the maximum per-acre o�er amount is $86,120.

Therefore, we can conclude that a budget that can a�ord the maximum per-acre o�er amount

for all acres in the landscape, such as $100,000, will produce the best solution. Furthermore,

Table A.6 in Appendix A.3 shows that increasing the budget in increments of $20,000 from

$20,000 to $100,000 provides, on average, a 33.18% improvement in the expected wild�re

damage reduction to the landscape when using risk-based cost-share assistance allocation.

Figure A.1 and Tables A.7 and A.8 in Appendix A.3 show the e�ect of budget on expected

damage when using uniform and hybrid allocation strategies.

2.4.4 E�ect of the Number of Allocation Levels on Expected

Damage

Using our model, an agency can increase the number of allocation levels used by the model to

explore the e�ect of increased model �delity on the solution. To illustrate this capability, we

analyze the sensitivity of our stochastic risk-based allocation model to changes in the number

of cost-share allocation levels used. To measure how sensitive our model is to di�erent values

of the number of allocation levels |K|, we consider a reference number of allocation levels,

|K∗|. We introduce a metric called relative change to measure the percent amount by which

the expected damage changes if we use a di�erent number of allocation levels |K| than the

reference number of allocation levels |K∗|. The relative change can be expressed as:

RC = Q(|K∗|)−Q(|K|)
Q(|K∗|) × 100% (2.15)

Here, Q(|K∗|) and Q(|K|) are the expected damages corresponding to using |K∗| and

|K| number of cost-share allocation levels in the model. A positive value of the metric,

relative change (RC) represents the percentage reduction in the expected damage due to
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changing the number of allocation levels used in the model from |K∗| to |K|. Tables 2.4a and

2.4b demonstrate the relative change in expected damage for di�erent budget levels due to

changing the number of allocation levels from |K∗| = 2 and |K|∗ = 3, respectively for eight

landowners.

Our expectation was that as the number of allocation levels increases, the o�er amounts

become more re�ned, leading to cost-share assistance o�ers that are more tailored to each

NIPF landowner. As a result, we anticipate that the expected damage will decrease as the

number of allocation levels increases. We see that for di�erent budget levels, the expected

damage decreases as the number of allocation levels increases from |K∗| = 2 (Table 2.4a)

and |K∗| = 3 (Table 2.4b). This con�rms our expectation that more number of allocation

levels would allow the model to o�er more accurate levels of cost-share assistance that would

increase the probability of the landowners accepting the cost-share o�er. However, the rate

of improvement in the percent reduction of expected damage diminishes as the number

of allocation levels increases. Table 2.4a reveals that the rate of improvement diminishes

considerably after |K| = 4 levels and falls below 1% (16.74-16.11) between |K| = 6 and

|K| = 8 levels. While increasing the number of allocation levels allows the model to o�er a

more re�ned solution, beyond a certain point the number of allocation levels has a relatively

small impact on the objective value, but may increase the model complexity and runtime

substantively. Therefore, the decision-maker can consider a trade-o� between model runtime

and solution quality.

Figure 2.5 demonstrates the relative improvement in expected wild�re damage reduction

against the relative increment in runtime as the number of allocation levels increases from

|K∗| = 2 for di�erent budget levels. We see from Figure 2.5 that the runtime increases

substantially beyond |K| = 6 with a very small improvement in solution quality in all budget

levels; especially the relative increment in runtime is very high at $40,000 and $60,000 budget

levels (Figures 2.5b and 2.5c). Therefore, agencies can use a moderately large number of

allocation levels, such as |K| = 6, and the model will still be able to generate a su�ciently

accurate risk-based allocation strategy that can e�ectively mitigate the impact of a wild�re

on a landscape.

42



Table 2.4: Relative change for di�erent number of allocation levels and budget.

(a) Relative change from number of allocation levels modeled |K∗| = 2.

|K| Budget
Average

$20,000 $40,000 $60,000 $80,000 $100,000

2 0% 0% 0% 0% 0% 0%
3 10.28% 14.35% 18.35% 16.52% 0% 11.90%
4 11.30% 17.62% 21.12% 20.96% 0% 14.20%
5 11.41% 18.37% 24.68% 21.31% 0% 15.15%
6 12.01% 18.93% 25.59% 24.03% 0% 16.11%
8 12.62% 19.32% 26.58% 25.19% 0% 16.74%

(b) Relative change from number of allocation levels modeled |K∗| = 3.

|K| Budget
Average

$20,000 $40,000 $60,000 $80,000 $100,000

2 -9.32% -12.55% -15.50% -14.18% 0% -10.31%
3 0% 0% 0% 0% 0% 0%
4 1.05% 2.68% 2.34% 3.81% 0% 1.98%
5 1.03% 3.53% 5.36% 4.11% 0% 2.81%
6 1.19% 4.08% 6.12% 6.44% 0% 3.57%
8 1.20% 4.35% 6.96% 7.45% 0% 3.99%
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(a) Trade-o� for $20,000 budget (b) Trade-o� for $40,000 budget

(c) Trade-o� for $60,000 budget (d) Trade-o� for $80,000 budget

Figure 2.5: Trade-o� between relative reduction in expected damage and relative increment
in runtime.
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We also see from Tables 2.4a and 2.4b that the e�ect of increasing the number of allocation

levels on expected damage varies as the budget changes. We see from Table 2.4a that the

percentage reduction in the expected damage increases as the budget increases from $20,000

to $80,000. As the budget increases, higher levels of cost-share assistance are o�ered to

the landowners that increase the probability of the landowners accepting the cost-share

program and eventually reduce the expected damage. However, at a lower budget such as

$20,000, the model using |K| = 2 may not be able to allocate any cost-share assistance to

the landowners and thus incur a larger expected damage, whereas with the same budget, a

model with a larger number of allocation levels can provide relatively higher levels of cost-

share assistance to the landowners, eventually resulting in a reduced expected damage. On

the other hand, as the budget increases to a su�ciently large amount so that it is possible

to allocate the maximum cost-share assistance to all landowners even with |K| = 2, there

is no improvement in damage reduction using larger numbers of allocation levels. That is

why the percent improvement at the highest budget level, $100,000, is consistently 0% as

the number of allocation levels increases from |K| = 2.

2.4.5 Cost of Uniformity

We conducted experiments with the uniform allocation model described in Section 2.3.1 to

compare its performance with the risk-based allocation strategy for the same parameters

values�budget size, number of allocation levels, and number of landowners. Table 2.5

shows the expected damage for each parameter combination in each allocation strategy as

well as the percent improvement in wild�re damage reduction from risk-based allocation

over uniform allocation strategy. Cells marked with asterisk (*) represent the combinations

that cannot reach optimality within 6 hours for which we take the best sub-optimal solution

and the corresponding upper bound as expected damage found at termination. The cost-

share assistance levels allocated to each landowner for each parameter combination in each

allocation strategy are presented in Table A.9 in Appendix A.4.

Table 2.5 shows that the risk-based allocation strategy provides up to 37.3% improvement

in damage reduction over the uniform allocation strategy for budgets from $20,000 to $80,000.

The improved �exibility of risk-based allocation enables an agency to use its budget more
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Table 2.5: Comparison of expected damages from uniform, hybrid, and risk-based allocation
strategies, where B is cost-share budget, |K| is the number of allocation levels, and |J | is
the number of landowners.

B |K| |J | Expected Damage Improvement in Damage Reduction
Uniform Hybrid Risk-

based
Risk-
based
over
Uni-
form

Risk-
based
over

Hybrid

Hybrid
over
Uni-
form

$20,000 6

4 142.6 131.8 131.2 8.7% 0.4% 8.2%
6 140.4 125.2 124.2 13.1% 0.9% 12.1%
8 138.4 121.4 119.5 15.8% 1.6% 14.0%
10 136.3 120.0 117.9* 15.6% 1.8% 13.6%

$40,000 6

4 103.1 88.4 86.5 19.1% 2.1% 16.6%
6 100.8 90.7 84.4 19.4% 7.4% 11.1%
8 98.7 83.3 81.0 21.8% 2.8% 18.5%
10 96.5 80.7 78.7* 22.6% 2.5% 19.6%

$60,000 6

4 68.4 67.0 55.1 24.1% 21.5% 2.1%
6 66.3 56.2 53.6 23.7% 4.9% 17.9%
8 64.6 54.6 50.2 28.6% 8.8% 18.3%
10 62.7 54.6 49.2* 27.5% 10.9% 14.8%

$80,000 6

4 42.8 42.8 32.5 31.7% 31.9% 0%
6 41.3 41.3 30.8 34.1% 33.8% 0%
8 40.1 36.4 29.2 37.3% 24.7% 10.2%
10 38.8 32.0 28.4* 36.7% 12.7% 21.3%
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e�ciently by allocating higher level of cost-share assistance to the owners of high priority

land parcels (e.g. hazardous land parcels, land parcels with high economic value) while

allocating lower level of cost-share assistance to the owners of low priority land parcels. This

in turn increases the high priority land parcels owner's probability of accepting the cost-share

o�er leading to a larger reduction in the overall wild�re damage. On the other hand, the

rigidity of uniform allocation limits the agency's ability to e�ciently allocate its cost-share

budget. Therefore, while the risk-based allocation strategy might spur controversy among

the targeted landowners, the risk-based allocation strategy allows the agency to develop

more customized and tailored solutions for the given landscape and landowners, which could

help the agency better accomplish its wild�re mitigation objectives.

While the uniform allocation strategy sacri�ces solution quality, it does outperform the

risk-based allocation in terms of runtime, especially for larger number of landowners as seen

in Figure 2.6, and Tables A.3, and A.4 in Appendix A.2. Decision-makers can consider this

trade-o� between model runtime and solution quality when selecting their allocation strategy.

However, since the cost-share budget most likely would be allocated before a wild�re season,

runtimes are not critically important. Therefore, the longer runtimes (additional 1-2 hours)

of the risk-based allocation strategy are negligible compared to the improvement in wild�re

damage reduction.

2.4.6 Cost of Semi-Uniformity

We performed computational experiments for the hybrid allocation strategy described in

Section 2.3.1 using the same parameter combinations as the risk-based and uniform allocation

experiments and compared with the results from the risk-based and uniform allocation

experiments in Table 2.5. We see from Table 2.5 that the risk-based allocation strategy

provides up to 33.8% improvement in damage reduction over the hybrid allocation strategy,

and hybrid allocation strategy provides up to 21.3% improvement in damage reduction over

the uniform allocation strategy for budgets ranging from $20,000 to $80,000.

Though the hybrid allocation strategy might mitigate some of the potential controversy

of the risk-based allocation, the requirement to o�er equal levels of cost-share assistance

to all selected landowners limits the agency's ability to e�ciently allocate its cost-share
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Figure 2.6: Impact of cost-share allocation strategy on runtime.
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budget. This lack of versatility limits both the hybrid and uniform allocation strategies

and hence the risk-based allocation strategy provides better solutions. That being said, the

runtimes of hybrid allocation are consistently lower than those of risk-based allocation for

larger number of landowners, as demonstrated in Figure 2.6 and further in Tables A.3 and

A.5 in Appendix A.2. However, as noted earlier runtimes are not critically important for this

cost-share allocation problem, hence the improvement in wild�re damage reduction provided

by the risk-based allocation strategy is bene�cial for the land managers, despite the longer

(additional 1-2 hours) runtime.

The additional �exibility in the hybrid allocation strategy provides better quality

solutions than uniform allocation with runtimes that are only few minutes longer than the

uniform allocation runtimes, especially for |J | = 8, and |J | = 10, as seen from Figure 2.6,

and Tables A.4, and A.5 in Appendix A.2.

2.5 Conclusions

We studied the problem of reducing the damage from wild�re by o�ering cost-share assistance

to NIPF landowners through a cost-share program to encourage them to implement

treatments reducing the accumulation of hazardous fuels on their lands. The decision-

maker o�ers their limited cost-share budget without knowing whether the landowners will

accept or reject their individual o�ers. We developed a stochastic simulation-optimization

approach with decision-dependent uncertainty to model this problem. Our model prescribes

the optimal allocation of cost-share assistance to the landowners to minimize the expected

damage from wild�re. Our stochastic programming framework provides the cost-share

allocation decision and is informed by a simulation approach that models wild�re spread

through the landscape and computes associated damage. We also incorporated a predictive

modeling technique that uses landowner data to estimate the probability that a landowner

will accept a given cost-share assistance o�er.

Computational experiments demonstrate the performance of our methodology. We see

that the runtime increases exponentially as the number of landowners in the problem

increases, because the increment in the number of landowners increases the number of integer
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variables and constraints as well as scenarios in the stochastic mixed-integer programming

model. We see that the runtime increases with the cost-share budget levels and number of

allocation levels for larger number of landowners, |J | = 8 and |J | = 10. The runtime suggests

that our stochastic risk-based cost-share assistance allocation model can be used to solve

real-life problems over large landscapes in a reasonable amount of time. For instance, the

computational experiments demonstrate that the average runtime of the stochastic risk-based

allocation model with 10 landowners and four cost-share allocation levels is approximately 4

hours, and the average runtime with eight landowners and six cost-share allocation levels is

less than 1 hour. Therefore, our model can be used as the basis for a decision-making tool

for allocating and coordinating fuel reduction treatments over large landscapes.

We see that the runtime varies with di�erent cost-share allocation strategies. In the

uniform and hybrid cost-share allocation models, the runtimes remain more consistent across

di�erent cost-share budgets and allocation levels for a given number of landowners than the

runtimes of the risk-based allocation model. This is because the computational complexity

of the risk-based model is higher than the uniform and hybrid models. The decision-making

in risk-based allocation requires the exploration of more possible combinations of cost-share

allocation than the uniform and hybrid models, as those models are more rigid in making

allocation decisions. Intuitively, the numerical results also show that the expected damage

decreases as the budget increases.

An important �nding from our experimental results is that the expected damage varies

as we move from risk-based cost-share resource allocation to uniform and hybrid cost-share

allocation strategies. We see that the expected damage is lower in the risk-based resource

allocation than the expected damage resulting from uniform and hybrid allocation with

the same cost-share budget size and the same number of cost-share allocation levels. The

risk-based cost-share allocation strategy provides up to 37.3% and 33.8% more reduction

in damage than the uniform allocation and hybrid allocation strategies, respectively. This

is because, unlike the uniform and hybrid allocation strategies, in risk-based allocation the

decision-maker takes into account �re hazard level and economic value associated with each

property parcel in the landscape and allocates cost-share resources to minimize the overall

risk of wild�re damage. In contrast, the uniform cost-share allocation does not ensure that
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assistance will be allocated to most hazardous land parcels nor that owners of these parcels

will be willing to implement fuel reduction treatments at o�ered assistance levels. However,

risk-based allocation allows for customizing monetary o�er levels based on wild�re risk,

o�ering higher assistance to the owners of more hazardous or higher economic value land

parcels, and thus increasing the probability that owners of these parcels will accept the

cost-share o�er and implement fuel reduction treatments.

A practical implication of the risk-based allocation strategy is that land managers can

identify areas that pose greatest wild�re hazard and those are most crucial in terms of

wild�re spread, and allocate cost-share assistance accordingly. Land managers can thus

utilize available cost-share dollars more e�ciently to coordinate implementation of fuel

reduction treatments by incentivizing their placement in strategic locations in the landscape

that minimizes the overall wild�re damage.

Results demonstrate that the stochastic risk-based resource allocation model is sensitive

to the number of cost-share resource allocation levels used in the model. A measure of the

relative change demonstrates that the expected damage decreases as the number of allocation

levels used in the model increases. With more cost-share allocation levels, the cost-share o�er

amounts become more re�ned, allowing for a more e�cient use of resources, resulting in a

decrease in the expected damage.

Increasing the number of allocation levels increases the solution quality but can also

increase the runtime. Moreover, the rate of damage reduction diminishes as the number of

allocation levels becomes increasingly large. Thus, a moderately large number of allocation

levels (i.e., |K| = 6 for the test landscapes in this study) can provide su�ciently high solution

quality and a reasonable runtime.

2.5.1 Future Work

In this study, we modeled the spread of wild�re considering random points of origin for the

wild�re in the landscape. However, if we want to prescribe a cost-share budget allocation

decision to minimize damage against the worst-case wild�re scenario, a more conservative

approach might be to select the �re ignition points that maximize the wild�re damage (e.g.,

[118]). In this regard, we can formulate the problem as a bi-level min-max model where
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the inner problem is the damage maximization problem by optimally selecting the ignition

points. The outer level minimizes the expected maximum damage by optimally o�ering

cost-share assistance to the landowners.

Considering the economies of scale inherent in fuel reduction treatment might also

be bene�cial. For example, if we can incentivize the implementation of fuel reduction

treatment on adjacent cells, this may lead to cost savings from allowing landowners to use the

same equipment, crews etc. This aspect is important because many small landowners face

di�culties with implementing prescribed �re on their land due to costs, lack of equipment,

and need to hire quali�ed labor. Pooling resources together might not only help landowners

to overcome these challenges but also increase wild�re mitigation bene�ts.

Another possible extension of this research could be modeling the cost-share program

for fuel reduction treatments from the game-theoretic perspective to address the strategic

interactions between private landowners and government agencies (e.g., [25]).

In this research, we assume that �re travel time is increased in land parcels subject to

fuel reduction treatment and that this can prevent �re from spreading to adjacent parcels.

However, in practice, �re propagation will not be deterministic as it will depend on both

the fuel complex and uncertain �re weather conditions (i.e., temperature, humidity, wind).

Accordingly, a relaxation to the assumption of deterministic �re spread can be made by

considering a probability of �re spread through land parcels, where the probability will be

smaller for treated cells.

Another limiting assumption of this research is that we model the fuel reduction treatment

as a single period problem. But, in reality, fuel can accumulate in the treated cells

over time, diminishing the e�ectiveness of fuel treatments. This requires to account the

fuel accumulation over time to reduce damage from wild�res over a planning horizon.

The multi-period setting of our problem can be modeled as a multi-stage stochastic

programming/stochastic dynamic programming with endogenous uncertainty framework.

This multi-stage model would keep track of the fuel re-growth in the landscape and

allows modi�cation of the cost-share allocation decisions at each investment period (e.g.,

a year) over the planning horizon. This way the multi-stage stochastic programming model

provides decision support to e�ciently allocate limited cost-share resources in incentivizing
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fuel reduction treatments over a planning horizon and maintain a �re-resistant landscape.

However, solution of this type of multi-stage model would warrant the development of

a new solution technique as this model has not been solved in the existing literature to

date. Unlike the existing multi-stage stochastic programming with endogenous uncertainty

(e.g., [45]) where decisions uncover more accurate information to resolve uncertainty, in our

multi-stage endogenous uncertainty framework, the cost-share allocation decisions a�ect the

probability distributions governing uncertainty and thus alter the probability of the scenario

tree. Additionally, computational challenge would be posed because of the existence of large

number of binary decision variables for each node of the decision tree in each period.

We assume that landowners accepting a cost-share o�er implement a fuel reduction

treatment on all of their land parcels. However, landowners can own heterogeneous land

parcels with di�erent vegetation types. An extension to the existing model can be made by

assuming that the agencies consider a number of clusters of land parcels in the landscape

delineated based on the vegetation types, ages etc., where each landowner can own multiple

clusters. In this setting, in addition to deciding which landowners to o�er cost-share

assistance to, the agency must also specify which land clusters the assistance applies to.

This requires the introduction of a new set of decision variables for incorporating clusters

into the existing stochastic programming model. In addition to the landowners' accept/reject

decisions, the scenarios represent the combination of which clusters are treated or not. In this

framework, both the cost-share allocation and cluster selection decisions a�ect the scenario

probabilities. For example, if a cluster is treated in a scenario but not chosen by the agency

to o�er cost-share assistance, the probability of that scenario becomes zero, meaning that

scenario does not exist. This framework is able to represent a more practical fuel treatment

scheme. However, this relaxed model will pose additional computational challenges due to

the increased number of binary decision variables as well as scenarios representing which

clusters are treated or not. Therefore, implementation of a sample average approximation

technique would provide computational bene�t. We can also solve the model using stochastic

optimization algorithms, such as L-shaped decomposition to make the solution procedure

computationally faster.
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An additional possible extension of this research is to relax the assumption that landown-

ers decide independently about the cost-share o�er. Incorporating possible correlation among

the landowners' decisions in the modeling framework will provide decision support for a

more general fuel reduction treatment incentivizing problem. However, this will result

in a non-convex mixed-integer nonlinear stochastic programming (MINLP) model that is

computationally very challenging. One way of solving the non-convex stochastic MINLP

is to develop an approximate mixed-integer linear programming model by factorizing the

original model. For further details of the possible solution methods, we refer readers to

Burer and Letchford [24].
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Chapter 3

A Stochastic Programming Model with

Endogenous and Exogenous Uncertainty

for Reliable Network Design Under

Random Disruption

This chapter and Appendices B, C, D, and E are based on the paper published by Tanveer

Hossain Bhuiyan, Hugh R. Medal, and Sarah Harun:

Bhuiyan, T. H., Medal, H. R., and Harun, S. (2020). A stochastic programming

model with endogenous and exogenous uncertainty for reliable network design

under random disruption. European Journal of Operational Research, 285(2):

670�694.

Authors Bhuiyan and Medal posed the research problem. Author Bhuiyan developed the

mathematical models and the algorithmic framework. Authors Bhuiyan and Medal developed

the reformulation and the proof of Proposition 1. Authors Bhuiyan and Harun implemented

the algorithms and conducted the computational experiments. Author Bhuiyan wrote the

manuscript and created the �gures and tables. Authors Medal edited the manuscript. During

the three revisions in the peer-review process, author Bhuiyan addressed the reviewers'
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comments, conducted the computational experiments, and revised the manuscript. Author

Medal reviewed and edited the revised manuscript and the responses to reviewers' comments.

3.1 Introduction

This chapter studies an integrated network design and infrastructure protection (NDIP)

problem where the facilities are exposed to random disruptions. The goal is to optimally

allocate protection resources among the facilities and build links in a network that minimize

the expected post-disruption transportation cost in satisfying the demands of customer

locations. This is the �rst study to model a NDIP problem under the following assumptions:

(1) protection is imperfect, meaning that despite allocating protection resources, a facility's

capacity can degrade when exposed to disruption; (2) the protection is multi-level in the

sense that a facility is more forti�ed as more protection resources are allocated to it; (3)

a facility has multiple post-disruption capacity states (PDCSs), which are probabilistic

function of the protection investment amount and the random disruption exposure level.

To incorporate these assumptions, we model the NDIP problem as a stochastic program

with both endogenous and exogenous uncertainty. The uncertainty that is a�ected by the

decision maker's decision is known as endogenous (decision-dependent) uncertainty, whereas

the exogenous uncertainty is not in�uenced by the decisions. The main goal of this research is

to explore the bene�ts of incorporating the imperfect, multi-level protection and multi-state

capacity of the facilities in a combined NDIP problem. Also, our interest is to develop solution

methodology and gain insights in solving an optimization problem with both exogenous and

endogenous uncertainty.

3.1.1 Motivation

In a supply chain or distribution network, facilities contribute to its smooth operation by

producing the required amount of commodities to satisfy customer demands. An e�cient

distribution network transports the commodities to customer locations at a minimum

transportation cost. With limited resources, decision-makers always seek to design a

transportation network that maximizes e�ciency. However, smooth operation of the network
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is often disrupted when facilities are exposed to unavoidable disruptions, such as natural

disasters, or equipment failures. These disruptions can cause ine�cient operation or even

unexpected shutdowns of the system and can eventually lead to signi�cant �nancial loss.

Examples of devastating disruptions include the supply chain disruption of Ford F-150 trucks

[61], Hurricane Harvey in August 2017 in the U.S. [113], Hurricane Katrina in August 2005

in the U.S. [12], and the T	ohoku tsunami in March 2011 in Japan [30].

Therefore, company decision-makers seek to �nd the best allocation of their limited

protection resources to the infrastructures to minimize the post-disruption transportation

cost (PDTC) as well as provide maximum post-disruption utility to the customers. Decision-

makers can identify the critical infrastructures and implement measures such as structural

retro�cation, improved monitoring systems, and �re prevention systems to fortify facilities.

Although the existing research studies inform decision-makers regarding e�cient NDIP, most

of the studies provide solutions based on assumptions that fail to address real-life problems.

Such assumptions include (1) a facility is either completely protected if forti�ed (perfect

protection) or left completely unprotected and fails completely once exposed to a disruption

(perfect disruption), (2) after a disruption, facilities can be either operable with their full

capacity or non-operable with zero post-disruption capacity (binary-state capacity). But,

in reality, protection does not provide perfect defense against disruptions, and the facilities

can be partially operable after disruptions depending on the amount of protection and the

intensity of the disruptions. Thus, existing models based on these assumptions are likely

to provide inferior protection investment decisions. In fact, Medal et al. [94] demonstrated

that assuming perfect and binary protection yields solutions that provide much lower utility

to the customers compared to the solutions that accounts for imperfect and multi-level

protection. However, it is unclear whether this �nding holds for a model that includes both

NDIP decisions. Therefore, there is a need to relax these assumptions in a combined NDIP

problem to provide robust solutions for real-life problems.
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3.1.2 Related Literature

We provide a review of the literature related to our study from the perspective of

infrastructure (facility) protection, combined NDIP, and stochastic programming with

endogenous uncertainty in the following sub-sections.

Facility Protection Models

In the facility protection literature, researchers have studied the problem of fortifying a set of

facilities by allocating protection resources or building backup facilities. Snyder et al. [133]

presented a wide range of models for facility location-protection subject to disruptions, either

caused by a natural disaster or intentional attacks (interdiction). Church and Scaparra [29]

studied a facility forti�cation problem, known as the r−interdiction median problem with

forti�cation (RIMF), that seeks to optimally allocate limited protection resources to a subset

of critical facilities to minimize the post-interdiction demand-weighted distance. Later, other

studies extended the RIMF literature in di�erent directions such as minimizing worst-case

losses [127, 128], using a budget constraint on the protection resources and possible capacity

expansion of the facilities [7], developing a tri-level model with capacitated facilities [126, 81],

and addressing uncertainty in the number of disrupted facilities [80, 79].

Some research has studied the problem of locating and protecting facilities simultaneously.

O'Hanley et al. [104, 105] studied the problem of locating and protecting nature reserves

against random and intentional disruptions caused by human intrusions or natural disasters.

Lim et al. [82] modeled a problem of locating forti�ed backup facilities to improve the

reliability of a facility network. This work was extended by Li et al. [78] where a subset of

selected facilities are retro�tted within a limited budget that makes the facilities perfectly

reliable. Aksen et al. [6] modeled a facility location-forti�cation problem as a bi-level

integer programming model where the facilities are exposed to interdiction. Medal et al.

[93] extended the work of Aksen et al. [6] by introducing a tri-level formulation of the

location-forti�cation problem. Qin et al. [112] proposed a two-stage stochastic programming

model to minimize the cost of fortifying an existing network of capacitated facilities subject
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to disruptions and the cost of post-disruption emergency reassignment of the customers to

the facilities.

Besides the generic facility protection models, some researchers have studied the problem

of fortifying facilities in speci�c network applications, including fortifying hub facilities in

a hub network against natural disruptions [11] as well as interdictions [44, 116], protecting

terminals in a rail intermodal terminal network [125].

The above mentioned studies assumed perfect impact of protection and perfect impact

of a disruption on a facility. However, some studies have relaxed the assumption of perfect

protection and perfect disruptions. Losada et al. [84] extended Church and Scaparra [29]

and the RIMF literature by incorporating the imperfect e�ect of disruption, where the

e�ect of disruption on a facility depends on disruption intensity. In another study, Losada

et al. [85] modeled a RIMF problem with recovery time incorporating imperfect protection,

where protection reduces the recovery time required to restore a facility to its operational

status. However, the authors assumed that a disruption always makes a facility completely

inoperable. Eiselt and Marianov [35] studied a cell phone tower forti�cation problem

against natural disaster with an assumption that a forti�ed facility may fail with a given

probability. Zhu et al. [147] incorporated imperfect protection of the critical facilities against

multiple interdictors. Aksen et al. [5] modeled imperfect interdiction assuming that facilities

remain partially operable after interdiction depending on the intensity of the interdiction.

Jabbarzadeh et al. [62] proposed a hybrid robust-stochastic programming facility forti�cation

model against natural disruptions considering a reliable and an unreliable set of facilities,

where the reliable facilities never fail but the unreliable facilities can fail either completely or

partially depending on the forti�cation level. The authors modeled the disruption intensity

to an unreliable facility as a function of protection resources. In their model, the authors

considered �xed post-disruption capacities corresponding to each forti�cation levels. Unlike

Jabbarzadeh et al. [62], Medal et al. [94] proposed a facility forti�cation model against

natural disruptions, where no facility is perfectly reliable and the post-disruption capacity

of a facility is a function of the protection resources allocated and the disruption intensity.
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Integrated Network Design and Facility Protection Models

The facility protection problem is often modeled as a problem separate from the network

design problem. But it is more cost e�cient to model facility forti�cation problem

simultaneously with network design, as the combined model could be able to make better

solutions by utilizing the limited budget. Some research studies combined facility protection

with network design and thus provided a complete decision support model to the system

managers in making their transportation network both reliable and e�cient when subject

to disruptions. We classify the literature to be in the class of integrated network design

and facility protection that simultaneously considers the decisions of facility protection and

physical network design by constructing links, or distribution centers, or transshipment

nodes. Snyder et al. [133] introduced the notion of reliable network design along with

facility location and protection against disruptions by opening transshipment nodes through

which the products are shipped from the facilities to the customer locations. Peng et al.

[111] proposed a robust optimization approach with stochastic p− robustness criteria to

design a reliable logistic network, where backup transshipment facilities are opened to supply

customer locations when the corresponding primary facility fails under disruption. Another

robust optimization model with p−robustness criteria for forward-reverse logistic network

design problem was developed by Hate� and Jolai [52] accounting for demand uncertainty

and facility disruptions. Shishebori et al. [132] formulated a mixed-integer programming

model for a reliable facility location and network design problem that seeks to minimize

the cost of reassignments of demands to backup facilities when primary facility fails under

disruption. However, this reassignments requires more link construction and increases the

transportation cost. Later, a robust optimization model was presented by Shishebori and

Babadi [130] that seeks to optimally design capacitated medical services network along with

opening capacitated medical service centers subject to disruptions. The authors constructed

scenarios to represent disruptions with a probability, where each scenario involves the set

of unavailable facilities and links. Shishebori et al. [131] presented a two-stage stochastic

programming model for a logistics network design problem with capacitated facilities and

links subject to disruptions. Fang and Zio [39] proposed a robust optimization framework for
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increasing the resiliency of a power transmission network against natural hazards by opening

backup generation unit on a transmission node and allocating protection resources to the

transmission lines.

All of the above-mentioned models assumed perfect impact of protection and disruption

to the facilities or the network links, which is not always possible in reality. Mohammadi

et al. [102] studied a hub location network design problem considering partial disruption of

the hubs and links, where the demands are re-allocated to surviving hubs after disruption.

Azad et al. [10] relaxed the assumption of perfect protection for unreliable facilities to some

extent in a supply chain network design problem. The authors assumed the following : (1)

two types of facilities exist, reliable and unreliable, where the unreliable facilities are only

subject to disruptions; (2) the lost capacity of an unreliable facility due to a disruption

depends on the amount of initial investment to that facility; (3) the lost capacity of an

unreliable facility is supplied from a reliable facility. Despite assuming multiple levels of

protection to the unreliable facilities, the authors modeled perfect protection for the reliable

facilities. Also, this research �xed the amount of capacity lost for a given initial investment

which cannot be known a priori in real-life. Later, Azad et al. [9] relaxed the assumption

of a �xed amount of capacity loss for an investment level by taking the capacity loss from a

normal distribution with a known mean and variance. The authors used a conditional-value-

at-risk (CVaR) measure to formulate the amount of capacity loss of the disrupted unreliable

facilities. However, similar to Azad et al. [10], Azad et al. [9] also assumed that the reliable

facilities cannot be disrupted when exposed to a disruption. Also, they did not consider the

e�ect of disruption intensity on the post-disruption capacity of the unreliable facilities. With

these restricted assumptions, these models may not provide robust solutions to the realistic

NDIP problems and thus are likely to incur a substantial amount of �nancial penalty.

Stochastic Programming with Endogenous Uncertainty

In the stochastic programming literature, decisions made by the decision-makers typically

do not in�uence the underlying uncertainty in the stochastic process. However, in some

application areas, decisions can a�ect the uncertainty in the stochastic process. Goel

and Grossmann [45] classi�ed the latter uncertainty as endogenous, whereas the former
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as exogenous. Goel and Grossmann [45] further classi�ed the stochastic programming with

endogenous uncertainty into Type I or Type II, depending on the e�ect of decisions on

uncertainty. In Type I endogenous uncertainty, decisions alter the probability distributions

of the uncertain parameters. For example, the survival probability of a component increases

as the decision-maker invests more protection resources on that. In Type II endogenous

uncertainty (a.k.a., exogenous uncertainty with endogenous observations), decisions a�ect

the information that the decision-maker has about the uncertainty (e.g., the timing of when

the uncertainty is resolved). For example, the time when the decision-maker observes the true

production rate of an oil �eld depends on when the investment is made to begin production.

In this research, we study the endogenous uncertainty of Type I with exogenous

uncertainty. While there exist a good number of research studies on Type II endogenous

uncertainty [8, 88], only a few studies modeled stochastic programming with Type I

uncertainty in the application areas including infrastructure protection [110, 34, 94], natural

gas infrastructure [54], disaster preparedness [38], wild�re hazard mitigation [71, 17],

maintenance and production planning [36], and network design, server selection, and

facility location [4]. To the best of our knowledge, Peeta et al. [110] is the �rst study

to introduce the endogenous uncertainty in infrastructure protection, where the �rst-stage

investment decisions reduce the likelihood of link failure in a highway network due to

disruption. Du and Peeta [34] further extended Peeta et al. [110] to allow for partial

investment. Medal et al. [94] modeled a facility forti�cation problem as a two-stage stochastic

programming with endogenous uncertainty and solved the model using an exact algorithm.

However, these studies on infrastructure protection modeled their problem using endogenous

uncertainty only, thus, the �rst-stage decisions directly a�ecting the recourse decisions are

absent. However, from the view of stochastic programming literature, a problem with both

endogenous and exogenous uncertainty is an open research problem, where the introduction

of exogenous uncertainty would pose additional challenges as well as provide insights to the

decision-makers.
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3.1.3 Contributions

In summary of the existing literature, no research has modeled an integrated NDIP problem

under random disruptions with imperfect e�ect of protection and disruption, multiple levels

of protection and multiple post-disruption capacity of the facilities. To �ll the gap in

the literature, we studied an integrated NDIP problem by relaxing the assumptions of

perfect protection and disruption, and binary state capacity of the facilities when subject

to random disruptions. We modeled the problem as a two-stage stochastic program, where

both exogenous and endogenous uncertainty coexist to analyze whether previous �ndings of

facility forti�cation models with only endogenous uncertainty (e.g., [94]) hold true.

Though we model the imperfect protection in a similar way to Medal et al. [94], our

research makes signi�cant contribution to the literature compared to Medal et al. [94] from

several key aspects as follows: (1) we study a new problem that seeks to decide how much

protection to invest to the facilities in conjunction with building links in a transportation

network; (2) due to the presence of network design decision in our problem, it is di�cult to

take advantage of the special structure as in Medal et al. [94] (in which the second-stage cost

in each scenario can be computed a priori), which requires a di�erent modeling approach

for our integrated NDIP problem; (3) despite a similar approach, L-shaped decomposition

algorithm, the di�erent problem structure necessitates modi�cation of the algorithm; (4)

we implement a data-driven approach for estimating the e�ect of protection resources

and disruption intensities to the facilities; (5) we present new insights into the e�ects of

imperfect, multi-level protection, and multiple post-disruption capacities in an integrated

NDIP problem.

Our research extends the literature on network design and facility location-protection

under random disruptions by introducing a new model that presents new insights addressing

real-life issues. Speci�cally, in this research we have made the following contributions:

(1) developed a new stochastic programming model with both endogenous and exogenous

uncertainty that seeks to minimize a network's expected PDTC by optimally constructing

network links and allocating protection resources to facilities subject to random disruptions,

(2) implemented an accelerated L-shaped decomposition algorithm to solve the model, (3)
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introduced predictive modeling techniques to estimate the likelihood of a facility's PDCS for

a given protection investment and a disruption intensity level the facility is exposed to, (4)

provided experimental results to demonstrate the e�ects of model parameters on the runtime

of the solution methodology and on expected cost, the signi�cance of modeling uncertainty

in the PDCSs of the facilities, the sensitivity of the model to changes in the number of

protection investment levels and post-disruption capacity levels used in the model, and the

sensitivity of the stochastic programming model to the estimation error in the likelihood of

a facility's PDCS from di�erent prediction models.

3.2 Problem Description

In our problem, a decision-maker seeks to optimally build links in a network of spatially

located facilities and demand locations and allocate protection resources to the facilities

within a limited budget to minimize the PDTC. We assume that no links exist a priori

among the facilities and demand locations in the network, where the decision-maker has to

open links incurring a cost to transport commodities from one location to another. Real-

life applications of this type of network includes oil/gas transportation from the oil �eld

to di�erent cities through a pipeline network and power transmission networks where the

transmission lines are built to transfer the electrical energy from power plants to substations.

In these applications, and as assumed in this research, the facilities can be placed only in

particular geographic locations.

We also assume that both the facilities and the network links have a limited capacity. This

assumption complies with the real-life examples mentioned earlier, where there is a maximum

limit on the cubic-feet per hour of oil/gas that can be transported through a pipeline.

The facility capacity is degraded through exposure to disruptions such as natural disasters.

We assume that the links are completely reliable and are una�ected by disruptions. The

decision-maker can allocate limited protection resources such as robust building materials,

�re sensors, and pollution control systems to the facilities to protect against disruptions. The

decision-maker has a limited budget that can be spent on link construction and protection

investment. In this research, we assume imperfect and multi-level protection. The e�ect
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of disruption on a facility is imperfect, and the post-disruption capacity decreases as the

severity of the disruption increases. The post-disruption capacity of a facility is uncertain

and depends probabilistically on the protection amount invested to that facility and the

disruption intensity level the facility is exposed to. The probability that a facility has a

speci�c post-disruption capacity for a given protection and a disruption intensity level is

unknown to the decision-maker, but the decision-maker can estimate the probability from

historical data as well as the probability of disruptions that could occur at a geographic

location.

We assume multiple post-disruption capacities of the facilities where the probability

that a facility has a higher post-disruption capacity increases as the protection investment

increases and disruption intensity decreases. To represent uncertainty in the post-disruption

capacity, we construct scenarios where each scenario contains a disruption event and a

particular realization of the post-disruption capacities of the facilities. The total number

of scenarios is equal to the product of the number of disruption events and the number of

possible combinations of the facilities' post-disruption capacities. A scenario-based stochastic

programming approach is suitable to model the failure of capacitated elements (Medal et al.

94, Peng et al. 111). After a disruption is realized, the facilities supply the demand locations

with their available post-disruption capacities. We assume a penalty cost for each unit of

unmet demand of the customer locations. We refer to this problem as probabilistic network

design and infrastructure protection problem (PNDIPP).

As the post-disruption capacities of the facilities are a probabilistic function of the pro-

tection decisions, those decisions a�ect the probability of scenarios, making the uncertainty

decision-dependent or endogenous. For example, if the protection to a facility is high, then

the scenarios with lower post-disruption capacity of that facility will have small probability

with a reduced contribution to the overall objective value. On the other hand, the link

opening decisions directly a�ect the decisions of the amount of �ow through the links in

each scenario, which introduces the exogenous uncertainty to the problem. We present a

numerical example to demonstrate how the facility protection decisions a�ect the scenario

probabilities.
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Consider a small network with two facilities having two possible post-disruption

capacities. For simplicity, we consider only one disruption event and both facilities are

exposed to zero disruption intensity level. With two possible post-disruption capacities of

each facility, this example problem has four possible combinations of the facilities' post-

disruption capacities, resulting in four scenarios. We assume that the decision-maker can

make two possible protection investments: no protection (0 unit), and 1 unit of protection.

Table 3.1 shows the estimated probabilities of a facility's post-disruption capacities for given

investments and disruption intensity level.

We assume that 1 unit of protection is invested to facility 1 and no protection is invested

to facility 2. The probabilities of the four scenarios based on this investment decision are

presented in Table 3.2. We see from Table 3.2 that in scenario 1 both facilities have zero

(0) post-disruption capacity. From Table 3.1, the probabilities that a facility has zero (0)

capacity for given 1 unit of protection and no protection are 0.15 and 0.90, respectively.

Therefore, the probability of scenario 1 is 0.135 (= 0.15× 0.90), as shown in Table 3.2 along

with the other scenario probabilities.

3.3 Mathematical Formulation

We formulate the PNDIPP as a two-stage stochastic programming model with both

endogenous and exogenous uncertainty. Tables 3.3, 3.4, and 3.5 list the necessary sets,

parameters, and variables, respectively, that support the mathematical formulations.

The �rst-stage model provides the optimal link opening decisions in the network and the

decisions regarding the optimal amount of protection to be allocated to the facilities. Given

the protection and link construction decisions from the �rst-stage, the second-stage model

seeks to minimize the PDTC in each scenario by optimally sending �ow through the network.

In our stochastic programming model, the post-disruption capacity of a facility is uncertain

and depends on the �rst-stage protection investment decision and the intensity level of the

random disruption to which the facility is exposed. We consider a �nite set of scenarios Ω,

where each scenario ω ∈ Ω represents a disruption event and a particular combination of the

post-disruption capacities of the facilities. The random disruption events are represented by
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Table 3.1: Estimated probability for a given protection investment level

Protection
Level

Disruption
Intensity
Level

Capacity Estimated
Probability

0 0 0 0.90
0 0 1 0.10
1 0 0 0.15
1 0 1 0.85

Table 3.2: Probability of the scenarios

Scenarios
Capacity

Probability
Facility 1 Facility 2

1 0 0 0.15× 0.90 = 0.135
2 0 1 0.15× 0.10 = 0.015
3 1 0 0.85× 0.90 = 0.765
4 1 1 0.85× 0.10 = 0.085

Table 3.3: Sets

Sets Description

ND Set of demand points n
NF Set of facilities z
N Set of all nodes in the network, ND ∪NF
Ω Set of scenarios indexed by ω
L Set of links `
A Set of arcs (i, j)
Ap1 Set of arcs (i, j) whose head j ∈ NF and tail i ∈ ND
Ap2 Set of arcs (i, j) whose head j ∈ ND and tail i ∈ NF
Ap3 Set of arcs (i, j) whose head j ∈ ND and tail i ∈ ND
Ap4 Set of arcs (i, j) whose head j ∈ NF and tail i ∈ NF
RS(n) Set of arcs (i, j) incoming to node n
FS(n) Set of arcs (i, j) outgoing from node n
K Set of protection levels indexed by k
S Set of capacity states indexed by s
M Set of disruption intensity levels indexed by m
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Table 3.4: Parameters

Parameters Description

dn Demand of demand point n ∈ ND
aωzs Post-disruption capacity of facility z corresponding to state s in scenario ω
C` Cost of opening link ` ∈ L
Ck Cost of allocating k level of protection resource to a facility
Uij Maximum amount of �ow through arc (i, j) ∈ A
tij Transportation cost of per unit of �ow through arc (i, j) ∈ A
B Total budget of the decision-maker
CD Capacity of the dummy facility D

Table 3.5: Variables

Variables Description

x` 1 if link ` is opened, 0 otherwise
yzk 1 if k level of protection resources are allocated to facility z, 0 otherwise
fωij Amount of �ow through arc (i, j) in scenario ω
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a set, H, where h ∈ H denotes a particular disruption event. Depending on the distance of

a facility from the center of a disruption, each facility is exposed to a disruption intensity

level. M := {0, 1, . . .M} is the set of disruption intensity levels indexed by m, where

m(z, ω) represents that facility z is exposed to disruption intensity level m in scenario ω for

disruption event h. The conditional probability function that a facilityz has a post-disruption

capacity aωz when exposed to disruption intensity level m in scenario ω for a given protection

amount yz is fz(a
ω
z | yz,m(z, ω)).

We assume that one facility's post-disruption capacity is independent of another facility.

De�ning the probability of occurrence of a disruption event in a scenario ω ∈ Ω as Pωh , the

probability of that scenario can be expressed as:

Pω(y) = Pωh
(∏

z∈NF fz(a
ω
z | yz,m(z, ω))

)
(3.1)

We can discretize the entire protection amounts into |K| di�erent levels and the post-

disruption capacity into |S| di�erent states as follows:

� K := {0, 1, 2, . . . , K} is the set of protection investment levels indexed by k.

� S := {0, 1, 2, . . . , S} is the set of PDCSs of the facilities indexed by s.

Using these sets of discrete protection levels and capacity states, the conditional probability

function that a facility's PDCS is s when exposed to disruption intensity level of m

in scenario ω, given k level of protection allocated to that facility can be expressed as∑
k∈K Pωzs(z,ω)m(z,ω)kyzk. Here Pωzs(z,ω)m(z,ω)k denotes the probability that facility z is in

capacity state s when exposed to disruption intensity level m in scenario ω and k level

of protection is invested to that facility. s(z, ω) denotes that the PDCS of facility z is s in

scenario ω where the available post-disruption capacity of that facility is aωzs. Therefore, the

probability of scenario ω can be expressed as follows:

Pω(y) = Pωh
(∏

z∈NF

∑
k∈K Pωzs(z,ω)m(z,ω)kyzk

)
. Decision-makers can estimate these

probabilities Pzs(z,ω)m(z,ω)k from historical data using predictive modeling techniques (see

Section 3.4.3). The number of scenarios in our stochastic programming model can be
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computed as: |Ω| = |H| × |S||NF |. The �rst-stage of our two-stage stochastic programming

model (3.2) is presented below (MinExpCost):

min
∑
ω∈Ω

Pω(y)

 ∑
(i,j)∈A

tijf
ω
ij

 (3.2a)

s.t.
∑
k∈K

yzk = 1 ∀z ∈ NF (3.2b)∑
`∈L

C`x` +
∑
z∈NF

∑
k∈K

Ckyzk ≤ B (3.2c)

yzk ∈ {0, 1} ∀z ∈ NF , k ∈ K (3.2d)

x` ∈ {0, 1} ∀` ∈ L (3.2e)

The objective function (3.2a) seeks to minimize the expected PDTC over all the scenarios.

Each constraint (3.2b) ensures that only one level of protection can be allocated to each

facility. The total cost of link construction and protection investment to the facilities cannot

exceed the decision maker's budget (3.2c). Constraints (3.2d) and (3.2e) represent the binary

nature of the protection and link construction decisions, respectively.

We solve the second-stage model for each scenario ω using the link construction decisions

obtained from the �rst-stage model. In our PNDIPP, the links are undirected. To model

the direction of the �ow of commodities, we consider two oppositely directed arcs (i, j) and

(j, i) for each link `. This ensures that the �ow is possible in either direction between two

nodes. Both arcs (i, j) and (j, i) have the same per unit transportation cost and capacity

as the original link `. We use the notation `(i, j) to de�ne that the arc (i, j) corresponds to

link `.

After realizing a disruption event in a scenario, the available post-disruption capacities

of the facilities are used to satisfy the demand of the customer locations. We assume a

dummy facility having very high capacity to satisfy any unmet demand with a very high

transportation cost. The second-stage model corresponding to scenario ω is presented as

follows (MinCost):
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min
∑

(i,j)∈A

tijf
ω
ij (3.3a)

s.t. fωij ≤ Uijx̂`(i,j) ∀(i, j) ∈ A (3.3b)∑
(i,j)∈RS(n)

fωji −
∑

(i,j)∈FS(n)

fωij = dn ∀n ∈ ND (3.3c)

∑
(i,j)∈FS(z)

fωij −
∑

(i,j)∈RS(z)

fωji ≤ aωzs ∀z ∈ NF (3.3d)

∑
(i,j)∈FS(D)

fωij ≤ CD (3.3e)

fωij ≥ 0 ∀(i, j) ∈ A (3.3f)

The objective function (3.3a) minimizes the total PDTC in scenario ω. Each of the

constraints (3.3b) ensures that no �ow of commodity is possible through arc (i, j) if the

corresponding link ` is not opened. Here, x̂`(i,j) is a parameter of the second-stage model

(3.3) that represents the value of the link construction decision variable x` computed by the

�rst-stage model (3.2). Constraints (3.3c) and (3.3d) are the �ow conservation constraints

for the demand locations and the facilities, respectively. Constraint (3.3e) ensures that the

amount of �ow out of the dummy facility cannot exceed the capacity of that facility.

3.4 Solution Approach

This section details the solution methodology for solving our stochastic programming model.

In this section, we introduce a reformulation technique that linearizes the nonlinear and non-

convex stochastic programming model into a mixed-integer linear stochastic program. We

implement an accelerated L-shaped decomposition algorithm to solve the resulting mixed-

integer two-stage stochastic programming model. We also implement predictive modeling

techniques to estimate the probabilities of the facilities' PDCSs for di�erent protection and

disruption intensity levels. These methodologies are described in the following sub-sections.

71



3.4.1 Reformulation

We can write the �rst-stage objective function of our nonlinear stochastic programming

model (3.2) as:

∑
ω∈Ω

Pωh
( ∏
z∈NF

∑
k∈K

Pωzs(z,ω)m(z,ω)kyzk

) ∑
(i,j)∈A

tijf
ω
ij

 (3.4)

Equation (3.4) computes the expected PDTC over all scenarios. We see that Eq. (3.4)

contains the product of the variables yzk over all the facilities and also the product of the

variables yzk and fωij . This makes the model nonlinear and non-convex. To implement

the existing decomposition algorithms to solve this stochastic programming model, we need

to linearize this nonlinear model. Therefore, we introduce a reformulation technique to

linearize this nonlinear objective function. This reformulation technique is similar to the

one proposed in previous work [94, 106] and is known as a probability-chain reformulation.

This reformulation technique computes the probability-weighted PDTC for each scenario ω

using a set of recursive equations and avoids the requirement of the product term over the

facilities in computing the probability of a scenario.

Assuming that the facilities fail independently from each other, we can substitute

the product term
∏

z∈NF

∑
k∈K Pωzs(z,ω)m(z,ω)kyzk

(∑
(i,j)∈A tijf

ω
ij

)
with recursive expressions

that use bookkeeping variables to store the partial probability-weighted post-disruption

transportation cost (PPWPDTC) in scenario ω. Assume qωrk is a variable that stores the

PPWPDTC upto facility r, i.e.,
∑

k∈K q
ω
rk =

∏r
z=1

∑
k∈K Pωzs(z,ω)m(z,ω)kyzk

(∑
(i,j)∈A tijf

ω
ij

)
.

The PPWPDTC is the product of the PDTC for scenario ω and the probabilities that the

facilities 1, 2, ..., r are in their corresponding PDCSs in scenario ω. We introduce the following

recursive equations to compute the value of qωrk for each scenario ω.
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qω1k = Pω1s(1,ω)m(1,ω)ky1k

 ∑
(i,j)∈A

tijf
ω
ij

 ∀k ∈ K, ω ∈ Ω (3.5)

∑
k∈K

qω(r−1)k =
∑
k∈K

1

max
{
Pωrs(r,ω)m(r,ω)k, ε

}qωrk ∀r = 2, . . . , |NF |, ω ∈ Ω (3.6)

qωrk ≤

 ∑
(i,j)∈A

tijf
ω
ij

 yrk ∀r ∈ NF , k ∈ K, ω ∈ Ω (3.7)

qωrk ≥ 0 ∀r ∈ NF , k ∈ K, ω ∈ Ω (3.8)

In each scenario, the Eq. (3.5) computes the value of the qωrk variable for the �rst facility.

The variable qω1k holds the product of the PDTC for scenario ω and the probability that

the �rst facility is in its corresponding PDCS in scenario ω. The value of qωrk variables

for the facilities ranging from the second to the last facility are computed by the Eqs.

(3.6). For the second facility in scenario ω, the variable qω2k holds the product of the

value of qω1k variable for the �rst facility computed in Eq. (3.5) and the probability that

the second facility in its corresponding PDCS. In this way, the value of qωrk variable is

computed recursively for each facility until it reaches the last facility where
∑

k∈K q
ω
|NF |k =∏

z∈NF

∑
k∈K Pωzs(z,ω)m(z,ω)kyzk

(∑
(i,j)∈A tijf

ω
ij

)
. In some instances the probability of a

facility's PDCS might be very close to zero or even zero. To avoid division by zero, we

take the maximum value between the probability Pωzs(z,ω)m(z,ω)k and a very small positive

number ε in the denominator on the right side of Eq. (3.6). Equation (3.7) ensures that the

value of qωrk for a facility z for a given protection level k can be positive only if k level of

protection is allocated to facility z.

The Proposition 1 provides justi�cation that for a given protection decision ŷ, the

probability-chain reformulation (3.5)�(3.8) computes the probability-weighted PDTC for

each scenario ω.

Proposition 1. Assume all the probabilities Pωzs(z,ω)m(z,ω)k are greater than ε, a small

positive number. If the facilities fail independently of each other, then for a given solution

ŷ,
∑

k∈K q
ω
|NF |k =

∏
z∈NF

∑
k∈K Pωzs(z,ω)m(z,ω)kŷzk

(∑
(i,j)∈A tijf

ω
ij

)
in scenario ω.
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Proof. For a given solution ŷ, let the mapping k(z|ŷ) for a given facility z be the value of k

such that ŷzk = 1. For notational simplicity, we omit the ŷ notation and use k̂(z).

Note that ∀r ∈ NF , we have, ŷrk = 0,∀k ∈ K \ k̂(r). Therefore, according to Eqs. (3.7),

we have

qωrk = 0∀r ∈ NF , k ∈ K \ k̂(r), (3.9)

qω
rk̂(r)
≥ 0 ∀r ∈ NF , k̂(r) ∈ K (3.10)

By assumption, the post-disruption capacity states of the facilities are independent. Using

Eqs. (3.9)�(3.10), Eq. (3.5) becomes:

qω
1k̂(1)

= Pω1s(1,ω)m(1,ω)k̂(1)

(∑
(i,j)∈A tijf

ω
ij

)
(3.11)

Given that Pωzs(z,ω)m(z,ω)k > ε, Eqs. (3.6) have the following form,

qω(r−1)1 + · · ·+ qω(r−1)|K| =
1

Pω
rs(r,ω)m(r,ω)1

qωr1 + · · ·+ 1
Pω

rs(r,ω)m(r,ω)|K|
qωr|K| ∀r = 2, ..., |NF |(3.12)

Applying Eqs. (3.9)�(3.10), we have

qω
rk̂(r)

= Pω
rs(r,ω)m(r,ω)k̂(r)

qω
(r−1)k̂(r−1)

∀r = 2, . . . , |NF | (3.13)

For any r ≥ 2, Eqs. (3.13) results in the following expression:
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qω
rk̂(r)

=
(
Pω
rs(r,ω)m(r,ω)k̂(r)

)(
Pω

(r−1)s(r−1,ω)m(r−1,ω)k̂(r−1)

)
. . .

. . .
(
Pω

2s(2,ω)m(2,ω)k̂(2)
qω

1k̂(1)

)
=
(
Pω
rs(r,ω)m(r,ω)k̂(r)

)(
Pω

(r−1)s(r−1,ω)m(r−1,ω)k̂(r−1)

)
. . .

. . .Pω1s(1,ω)m(1,ω)k̂(1)

(∑
(i,j)∈A tijf

ω
ij

)

Thus, for r = |NF |, we have,

qω|NF |k̂(|NF |)
=

|NF |∏
z=1

Pωzs(z,ω)m(z,ω)k̂(z)

 ∑
(i,j)∈A

tijf
ω
ij



Therefore, considering all possible k in set K, we get,∑
k∈K q

ω
|NF |k =

∏
z∈NF

∑
k∈K Pωzs(z,ω)m(z,ω)kŷzk

(∑
(i,j)∈A tijf

ω
ij

)
.

We present a numerical example in Appendix C to demonstrate the computation of the

probability-weighted PDTC in a scenario ω using the recursive Eqs. (3.5)�(3.8).

Linearized Formulation

We see that the recursive Eqs. (3.5) and (3.7) contain the product of the binary

protection decision variables yzk and the continuous �ow variables fωij . Therefore, even

after implementing the probability-chain reformulation, there is non-linearity in the model.

However, this non-linearity can be linearized using McCormick linearization [92], where

an additional continuous variable vω(i,j)rk is introduced to replace the product of the

variables yzk and fωij . After implementing the probability-chain reformulation and the

McCormick linearization, the original nonlinear two-stage stochastic programming model
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(3.2) reduces to the reformulated mixed-integer linear stochastic programming model as

follows (MinExpCost-R):

min
∑
ω∈Ω

Pωh

(∑
k∈K

qω|NF |k

)
(3.14a)

s.t. qω1k = Pω1s(1,ω)m(1,ω)k

 ∑
(i,j)∈A

tijv
ω
(ij)1k

 ∀k ∈ K, ω ∈ Ω (3.14b)

∑
k∈K

qω(r−1)k =
∑
k∈K

1

max
{
Pωrs(r,ω)m(r,ω)k, ε

}qωrk ∀r = 2, .., | NF |, ω ∈ Ω (3.14c)

qωrk ≤
∑

(i,j)∈A

tijv
ω
(ij)rk ∀r ∈ NF , k ∈ K, ω ∈ Ω (3.14d)

vω(ij)rk ≤ fωij ∀r ∈ NF , k ∈ K, (i, j) ∈ A, ω ∈ Ω (3.14e)

vω(ij)rk ≤ Uijyrk ∀r ∈ NF , k ∈ K, (i, j) ∈ A, ω ∈ Ω (3.14f)

vω(ij)rk ≥ fωij − (1− yrk)Uij ∀r ∈ NF , k ∈ K, (i, j) ∈ A, ω ∈ Ω (3.14g)

vω(ij)rk ≥ 0 ∀r ∈ NF , k ∈ K, (i, j) ∈ A, ω ∈ Ω (3.14h)

(3.2b)− (3.2e)

(3.3b)− (3.3f)

The objective function (3.14a) seeks to minimize the expected PDTC over all scenarios.

Constraints (3.14b)�(3.14d) are linearized version of the recursive equations (3.5)�(3.7)

obtained by implementing the McCormick linearization to compute the PPWPDTC for

each scenario ω. Constraints (3.14e)�(3.14g) are introduced to implement the McCormick

linearization that linearizes the product of the variables yzk and f
ω
ij .

3.4.2 Accelerated L-shaped Decomposition Algorithm

Our two-stage stochastic programming model has integer decision variables�link construc-

tion decisions and protection investment decisions�in the �rst-stage model, and continuous

decision variables�the amount of �ow through the links�in the second-stage model for each

scenario. This structure of the problem is suitable for the implementation of a well known
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decomposition algorithm, L-shaped decomposition algorithm, where the original problem is

decomposed into a master problem with the complicating integer �rst-stage variables, and

scenario sub-problems with the continuous second-stage decision variables. This structural

advantage motivates us to implement a L-shaped decomposition algorithm to solve the model.

L-shaped decomposition algorithm is also applied to solve two-stage stochastic programming

model in a wide range of application areas including but not limited to supply chain network

design [124, 66], cyber security [18], and inventory control [123].

Classical L-Shaped Decomposition

L-shaped decomposition is Benders decomposition [13] applied to the special structure

of a stochastic program. In Benders decomposition, a mixed-integer linear program is

decomposed into a master problem (MP) with complicating integer variables and a linear

sub-problem with continuous variables. Using duality of the linear sub-problem and the

associated extreme rays and points, feasibility and optimality cuts are generated for the

master problem. Due to the di�culty in enumerating all the cuts, Benders [13] proposed

a relaxation strategy that adds the cuts iteratively after solving the master problem and

sub-problem in each iteration.

Van Slyke and Wets [140] �rst introduced the L-shaped method by using Benders

decomposition to solve a two-stage stochastic program. A general two-stage stochastic

program with �rst-stage binary variable (x) and second-stage continuous variables (y) is

as follows:

min cTx+ E[Q(x, ω)] (3.15a)

s.t. Ax ≤ B (3.15b)

Tx+W ωyω ≤ hω ∀ω ∈ Ω (3.15c)

x ∈ {0, 1} (3.15d)

yω ≥ 0 ∀ω ∈ Ω (3.15e)
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where Q(x, ω) = min (aω)Tyω is the second-stage objective value for scenario ω. Denoting

pω be the probability of scenario ω, we have E[Q(x, ω)] =
∑

ω∈Ω p
ωQ(x, ω). L-shaped

decomposition algorithm computes an approximation of (3.15). The original two-stage

stochastic program (3.15) is decomposed into a master problem with the �rst-stage variables

and sub-problems for each scenario with the second-stage variables. The �rst-stage variables

(x) connect the master problem with the scenario sub-problems. The primal sub-problem

for each scenario ω consists of the objective function min (aω)Tyω and constraints (3.15c)

and (3.15e) for scenario ω. The dual of the primal sub-problem (DSP) for scenario ω and

the master problem (MP) are presented as follows:

[DSP] max (uω)T (hω − T x̂) (3.16a)

s.t. (W ω)Tuω ≤ aω (3.16b)

uω ≤ 0 (3.16c)

where (uω)T are the dual variables in scenario ω and x̂ is the value of the �rst-stage

variable computed in the master problem. Using this dual sub-problem for each scenario,

the optimality and feasibility cuts are constructed for the master problem.

[MP] min cTx+ θ (3.17a)

s.t. Ax ≤ B (3.17b)

θ ≥
∑
ω

pω
[(

(uω)T
)i

(hω − Tx)
]

∀i ∈ E (3.17c)

θ ≥
∑
ω

pω
[(

(uω)T
)r

(hω − Tx)
]

∀r ∈ R (3.17d)

x ∈ {0, 1}, θ ∈ R (3.17e)

where E and R are the sets of extreme points and rays, respectively, of the polyhedron

de�ned by (3.16b)�(3.16c) of all the scenarios. The objective value of this master problem

provides a valid lower bound to the optimal objective value of the original problem (3.15)
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at each iteration. The feasibility cut (3.17d) is added to the master problem if the DSP is

unbounded for a given master problem solution [123]. The optimality cuts (3.17c) are linear

approximations of E[Q(x, ω)] and are added iteratively to the master problem.

L-shaped Decomposition for the Proposed Model

In this sub-section, we describe the implementation of the L-shaped decomposition algorithm

for our two-stage stochastic programming model.

Lower Bound Calculation

To obtain a lower bound for the optimal objective value of our PNDIPP, we solve the

master problem presented as follows (PNDIPP-MP):

lbe = min θ (3.18a)

s.t.

θ ≥
∑
z∈NF

∑
k∈K

∑
(i,j)∈A

bezk(ij)Uijyzk +
∑

(i,j)∈A

deijUijx`(i,j) + ge, e = 1, 2....(3.18b)

(3.2b)− (3.2e)

Here, θ represents the expected PDTC upto iteration e. bezk(i,j), d
e
i,j, and ge are the

coe�cients of the optimality cut (3.18b) at iteration e. Computation of these cut coe�cients

are described in detail later in this Section. The objective function (3.18a) and the constraint

(3.18b) together ensure that the objective of the master problem is to minimize the maximum

of all the expected PDTC upto iteration e. As our scenario sub-problems are feasible for any

master problem solution, we add only the optimality cuts (3.18b) to the master problem.

Upper Bound Calculation

At each iteration of the algorithm, we solve the sub-problem (MinCost-R) (3.19) for

each scenario ω using the optimal link opening decisions, x̂e, and protection decisions, ŷe

obtained from the master problem solution.
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Q(x̂e, ŷe, ω) = min
∑
k∈K

qω|NF |k (3.19a)

s.t. qω1k = Pω1s(1,ω)m(1,ω)k

 ∑
(i,j)∈A

tijv
ω
(ij)1k

 ∀k ∈ K (ρ) (3.19b)

∑
k∈K

qω(r−1)k =
∑
k∈K

1

max
{
Pωrs(r,ω)m(r,ω)k, ε

}qωrk ∀r = 2, .. | NF | (ν)(3.19c)

qωrk ≤
∑

(i,j)∈A

tijv
ω
(ij)rk ∀r ∈ NF , k ∈ K (φ) (3.19d)

vω(ij)rk ≤ fωij ∀r ∈ NF , k ∈ K, (i, j) ∈ A (δ) (3.19e)

vω(ij)rk ≤ Uij ŷ
e
rk ∀r ∈ NF , k ∈ K, (i, j) ∈ A (π) (3.19f)

vω(ij)rk ≥ fωij − (1− ŷerk)Uij ∀r ∈ NF , k ∈ K, (i, j) ∈ A (µ)(3.19g)

fωij ≤ Uijx̂
e
`(i,j) ∀(i, j) ∈ A (γ) (3.19h)∑

(i,j)∈RS(n)

fωji −
∑

(i,j)∈FS(n)

fωij = dn ∀n ∈ ND (α) (3.19i)

∑
(i,j)∈FS(z)

fωij −
∑

(i,j)∈RS(z)

fωji ≤ aωzs ∀z ∈ NF (β) (3.19j)

∑
(i,j)∈FS(D)

fωij ≤ CD (ψ) (3.19k)

fωij ≥ 0 ∀(i, j) ∈ A (3.19l)

vω(ij)rk ≥ 0 ∀r ∈ NF , k ∈ K, (i, j) ∈ A (3.19m)

The objective function (3.19a) seeks to minimize the probability-weighted post-disruption

transportation cost (PWPDTC) in scenario ω. Constraints (3.19b)�(3.19g) are the same as

constraints (3.14b)�(3.14g) for a particular scenario ω. Constraints (3.19h)�(3.19k) are the

same as (3.3b)�(3.3e).

We use the sub-problem objective values from all the scenarios to compute the expected

PDTC. The Greek letters in the parentheses on the right side of the constraints in the

sub-problem are the corresponding dual variables. We use the optimal value of these dual

variables to compute the coe�cients of the optimality cut (3.18b) at iteration e+1 as follows:
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be+1
zk(i,j) =

∑
ω∈Ω Pωh π̂ωrk(i,j) +

∑
ω∈Ω Pωh µ̂ωrk(i,j)

de+1
ij =

∑
ω∈Ω Pωh γ̂ωi,j

ge+1 = −
∑

r∈NF

∑
k∈K

∑
(i,j)∈A

(∑
ω∈Ω Pωh µ̂ωrk(i,j)

)
U` +

∑
n∈ND

(∑
ω∈Ω Pωh α̂ωn

)
dn

+
∑

z∈NF

(∑
ω∈Ω Pωh β̂ωz aωzs

)
+ CD

(∑
ω∈Ω Pωh ψ̂ω

)
The complete L-shaped decomposition algorithm is presented in Algorithm 1.

Acceleration Techniques

Based on the preliminary experiments, we observed that the basic L-shaped decomposition

algorithm requires a large number of iterations to converge. Moreover, as we add optimality

cut to the master problem at each iteration of the algorithm, the size of the master problem

increases over the iterations. This increases the computation time of the master problem

over the iterations and eventually increases the total runtime of the algorithm. Therefore,

to improve the computational e�ciency of the algorithm and thus speed up the convergence,

we implement the following enhancements to the algorithm.

Multiple Optimality Cuts

In the L-shaped decomposition algorithm, we add one optimality cut at each iteration

to the master problem (3.18) by aggregating the cut coe�cients from all the scenarios.

According to Birge and Louveaux [21], in another variant of the L-shaped algorithm, known

as multi-cut L-shaped decomposition algorithm, |Ω| cuts are added to the master problem at

each iteration, where each cut is derived from each scenario sub-problem. The rationale of

disaggregating the cuts is that using the approximations of all the sub-problems individually

provides more information to the master problem than a single aggregated cut and thereby

reduce the number of iterations to converge [22].
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Algorithm

Algorithm 1 L-shaped Decomposition Algorithm
1: function L-ShapedDecomposition

2: initialize. Set ub←∞, lb← 0, e← 1, δ ← 0.01, x∗ ← 0, y∗ ← 0

3: while ub−lb
ub

> δ do

4: Solve master problem (3.18), returning lbe, x̂e and ŷe

5: if lbe > lb then lb← lbe, x∗ ← x̂e and y∗ ← ŷe

6: end if

7: Solve subproblem MinCost-R(x̂e,ŷe) ∀ω ∈ Ω, returning optimal �ow decisions

f̂ω and Q(x̂e, ŷe, ω)

8: Compute f(x̂e, ŷe) :=
∑

ω∈Ω PωhQ(x̂e, ŷe, ω)

9: if f(x̂e, ŷe) < ub then ub← f(x̂e, ŷe), x∗ ← x̂e and y∗ ← ŷe

10: end if

11: if ub−lb
ub
≤ δ then break. Otherwise, go to next step.

12: end if

13: Add the optimality cut (3.18b) to the master problem (3.18) using the optimal

dual multipliers of the sub-problems

14: e← e+ 1.

15: end while

16: return Optimal link opening decisions, x∗ and protection investment decisions, y∗

17: end function

In this multi-cut version, the master problem (3.18) is formulated as follows:
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lbe = min
∑
ω∈Ω

Pωhθω

s.t.

θω ≥
∑
z∈NF

∑
k∈K

∑
(i,j)∈A

bωezk(ij)Uijyzk +
∑

(i,j)∈A

dωeij Uijx`(i,j)

+gωe, e = 1, 2, . . . ;ω = 1, 2, . . . , |Ω| (3.20a)

(3.2b)− (3.2e)

The cut coe�cients for iteration e+ 1 are as follows:

bω,e+1 = π̂ωrk(ij) + µ̂ωrk(ij)

dω,e+1 = γ̂ωij

gω,e+1 = −
∑

r∈NF

∑
k∈K

∑
(i,j)∈A µ̂

ω
rk(ij)Uij +

∑
n∈ND α̂

ω
ndn

+
∑

z∈NF β̂
ω
z a

ω
zs + CDψ̂

ω

This multi-cut version reduces the total number of iterations for the algorithm to converge

while increasing the computation time of each iteration due to the larger size of the master

problem.

Trust Region Cuts (TR)

At the initial iterations of the L-shaped decomposition algorithm, the master problem

solutions are very divergent resulting in a slower convergence. To mitigate this drawback,

Linderoth and Wright [83] proposed to add constraints to limit the distance between the

master problem solutions of two consecutive iterations within a trust region. In this research,

we add a trust region cut to the master problem to stabilize the master problem solutions in

the initial iterations. Our trust region cut bounds the Hamming distance [50], the number

of bits changed in the solution, between the master problem solutions of two consecutive

iterations. Denoting x̂e and ŷe be the master problem solutions obtained at iteration e, and

83



Ŷ1
e

:= {(z, k) : yzk = 1}, and X̂e
1 := {` : x` = 1}. We add the following trust region cut at

iteration e+ 1:

∑
(z,k)/∈Ŷe

1
yzk +

∑
(z,k)∈Ŷe

1
(1− yzk) ≤ ∆× |ŷ| (3.21)∑

`/∈X̂e
1
x` +

∑
`∈X̂e

1
(1− x`) ≤ ∆× |x̂| (3.22)

where ŷ and x̂ are the protection and link construction decision vectors. Constraints

(3.21) and (3.22) force that the maximum change in the decisions from iteration e to e+ 1 is

∆%. The left hand side of the constraint (3.21) computes the Hamming distance between the

decisions of iteration e and iteration e+1. Master problem with this trust region cut does not

provide a valid lower bound; keeping this trust region cut throughout the algorithm does not

guarantee convergence [124]. Therefore, we add this cut at the few initial iterations of the

algorithm and then remove it when the iterates become stable. Computational experiments

demonstrate that applying this cut at the 10 initial iterations of the multi-cut L-shaped

algorithm to limit the maximum change in master problem solutions to 40% improves the

algorithm runtime.

Knapsack Inequality (KI)

According to Santoso et al. [124], if we have a good upper bound in L-shaped

decomposition algorithm, adding a knapsack inequality along with the optimality cut

has a signi�cant e�ect in producing a quality solution. We add the optimality cut:

θ ≥
∑

z∈NF

∑
k∈K

∑
(i,j)∈A b

e
zk(ij) Uijyzk +

∑
(i,j)∈A d

e
ijUijx`(i,j) + ge to the master problem at

each iteration. As for minimization problem, the L-shaped decomposition algorithm ensures

that ub ≥ θ, we add the following valid inequality to the master problem at iteration e+ 1 :

ube − ge ≥
∑

z∈NF

∑
k∈K

∑
(i,j)∈A b

e
zk(ij)Uijyzk +

∑
(i,j)∈A d

e
ijUijx`(i,j) (3.23)
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Here, ube is the best upper bound available at the end of iteration e. Santoso et al. [124]

also mentioned that state-of-the-art solvers can derive various valid inequalities from the

knapsack inequality (Eq. 3.23) and thereby speed up the convergence.

Pareto-Optimality Cuts

Sub-problems having network sub-structure usually have multiple dual optimal solutions,

which makes it possible to obtain alternatives for the optimality cuts [124]. According

to Magnanti and Wong [87], adding cuts that are not dominated by other optimality

cuts could improve the convergence of the L-shaped decomposition algorithm. Assuming

(b1, d1, g1) and (b2, d2, g2) are the alternative optimality cut coe�cients corresponding to two

alternative optimal dual solutions, a cut generated from coe�cients (b1, d1, g1) dominates

the cut generated from coe�cients (b2, d2, g2) if

∑
z∈NF

∑
k∈K

∑
(i,j)∈A b

1
zk(ij)Uijy

∗
zk +

∑
(i,j)∈A d

1
ijUijx

∗
`(i,j) + g1 >∑

z∈NF

∑
k∈K

∑
(i,j)∈A b

2
zk(ij)Uijy

∗
zk +

∑
(i,j)∈A d

2
ijUijx

∗
`(i,j) + g2

where y∗zk and x∗` are the optimal solutions. As it is not possible to know the optimal

solution a priori, Magnanti and Wong [87] introduced a core point�a point in the relative

interior of the convex hull of the feasible region to use as a proxy for the optimal solution.

However, as there are challenges in �nding a core point at each iteration of the algorithm

[96, 108], Papadakos [109] showed that an approximate core point� a convex combination

of the core point in the previous iteration and the current master problem solution�can be

used to generate Pareto-optimal cuts. The master problem solution of the �rst iteration is

taken as the initial core point.

Furthermore, Papadakos [109] proposed a modi�ed Magnanti-Wong (MMW) problem

to avoid the computational complexities associated with solving the subproblem-dependent

Magnanti-Wong problem in generating the Pareto-optimal cuts. In this research, we solve

the MMW problem that does not depend on the solutions of the scenario sub-problems. We

solve the MMW problem (3.24) for each scenario ω at each iteration of our algorithm using

the approximate core points to generate Pareto-optimal cuts. This formulation is the dual
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of the primal scenario sub-problem (3.19), with the di�erence that the objective function is

evaluated at the core point (x0,y0). A new core point at each iteration e is computed as

follows:

y0e
zk ← λye−1

zk + (1− λ)ŷezk

x0e
` ← λxe−1

` + (1− λ)x̂e`

where 0 < λ < 1. (y0e
zk, x

0e
` ) represent the core point at iteration e, and x̂

e
` and ŷ

e
zk are the

master problem solutions at iteration e. Computational results demonstrate that the value

of λ = 0.15 provides the best performance of the Pareto-optimal cuts.

We solve the sub-problem-independent Magnanti-Wong problem (3.24) for each scenario

ω at each iteration of the L-shaped algorithm to construct the Pareto-optimality cuts. This

formulation is the dual of the primal scenario sub-problem (3.19) with the di�erence that

the objective function is evaluated at the core point (x0,y0). In this formulation, constraints

(3.24a)�(3.24j) force the dual feasible region of the sub-problem corresponding to scenario

ω.

Valid Inequality

We observed that at the initial iterations of our L-shaped algorithm, the rate of

improvement of the lower bound is vey low. Because, at the beginning, with very few cuts,

the master problem constructs a very small number of links and invests protection to few

or no facilities. This eventually results in a small lower bound. With very few links opened

and protection investment, demands in the scenario sub-problems are mostly satis�ed by

the dummy facility with a high transportation cost, resulting in a very large upper bound.

Therefore, to improve the master problem solution (lower bound) at the initial iterations,

we add a valid inequality to force the master problem to open more links and invest in more

facility protection.
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max
∑
r∈NF

∑
k∈K

∑
(i,j)∈A

πrk(i,j)Uijy
0
rk +

∑
r∈NF

∑
k∈K

∑
(i,j)∈A

µrk(i,j)

[
−Uij(1− y0

rk)
]

+
∑

(i,j)∈Ap

γijUijx
0
`(i,j)

+
∑
n∈ND

αndn +
∑
z∈NF

βza
ω
zs + ψCD

s.t. ρk + φ1k + ν2 ≤ 0 ∀k ∈ K (3.24a)

− 1

max{Pωrs(r,ω)m(r,ω)k, ε}
νr + νr+1 + φrk ≤ 0 ∀r = 2, .., | NF | −1, k ∈ K (3.24b)

− 1

max{Pω|NF |s(|NF |,ω)m(|NF |,ω)k, ε}
ν|NF | + φ|NF |k ≤ 1 ∀k ∈ K (3.24c)

−Pω1s(1,ω)m(1,ω)ktijρk − tijφ1k + δ1k(i,j) + π1k(i,j)

+µ1k(i,j) ≤ 0 ∀k ∈ K, (i, j) ∈ A (3.24d)

−tijφrk + δrk(i,j) + πrk(i,j) + µrk(i,j) ≤ 0 ∀r = 2, ..., | NF |, k ∈ K, (i, j) ∈ A (3.24e)

−
∑
r∈NF

∑
k∈K

δrk(i,j) −
∑
r∈NF

∑
k∈K

µrk(i,j) + γij − αi − βj ≤ 0 ∀(i, j) ∈ Ap1 (3.24f)

−
∑
r∈NF

∑
k∈K

δrk(i,j) −
∑
r∈NF

∑
k∈K

µrk(i,j) + γij + αj + βi ≤ 0 ∀(i, j) ∈ Ap2 (3.24g)

−
∑
r∈NF

∑
k∈K

δrk(i,j) −
∑
r∈NF

∑
k∈K

µrk(i,j) + γij + αj − αi ≤ 0 ∀(i, j) ∈ Ap3 (3.24h)

−
∑
r∈NF

∑
k∈K

δrk(i,j) −
∑
r∈NF

∑
k∈K

µrk(i,j) + γij + βi − βj ≤ 0 ∀(i, j) ∈ Ap4 (3.24i)

−
∑
r∈NF

∑
k∈K

δrk(i,j) −
∑
r∈NF

∑
k∈K

µrk(i,j) + αj + ψ ≤ 0 ∀(i, j) ∈ A \ Ap (3.24j)

ρ, ν, α ∈ R; φ, δ, π, γ, β, ψ ∈ R−,µ ∈ R+ (3.24k)

According to Birge and Louveaux [21], the following basic inequalities are valid in a

stochastic program:

WS ≤ RP

EV ≤ WS

Therefore, EV ≤ RP . Here WS,RP, and EV denote optimal objective values of the

wait-and-see, stochastic program, and mean value problem, respectively. The mean value
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problem is the deterministic model that considers the expected value of the random variables.

We use this valid inequality (EV ≤ RP ) to force the master problem to generate a solution

that results in a larger objective value than the objective value of the mean value problem

(1) in Appendix B. This ensures that more number of links are opened and protections are

allocated to the facilities, resulting in a larger lower bound at the initial iterations of the

L-shaped algorithm.

We add the following constraints to the master problem in the single-cut L-shaped

algorithm:

θ ≥
∑

(i,j)∈A tijf
′
ij (3.25)

f ′ij ≤ U`x`(i,j) ∀(i, j) ∈ A (3.26)∑
(i,j)∈RS(n) f

′
ji −

∑
(i,j)∈FS(n) f

′
ij = dn ∀n ∈ ND (3.27)∑

(i,j)∈FS(z) f
′
ij −

∑
(i,j)∈RS(z) f

′
ji ≤

∑
k∈K (E [azs|yzk = 1] yzk) ∀z ∈ NF (3.28)∑

(i,j)∈FS(D) f
′
ij ≤ CD (3.29)

f ′ij ≥ 0 ∀(i, j) ∈ A (3.30)

The constraint (3.25) ensures that the master problem objective value is at least as large

as the objective value of the mean value problem. The variable f ′ij is an auxiliary variable

representing the �ow through an arc (i, j). Constraints (3.26) force that no �ow is possible

through an arc (i, j) if the corresponding link ` is not opened. Constraints (3.27)�(3.28) are

the �ow balance constraints of the demand points and the facilities, respectively. Constraint

(3.29) is the dummy facility's capacity constraint.

In the multi-cut version of the L-shaped algorithm, we add the following constraints to

the master problem:

∑
ω∈Ω Pωhθω ≥

∑
(i,j)∈A tijf

′
ij

(3.26)− (3.30)
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3.4.3 Estimating the Probability of Capacity States

In this research, we implement several predictive modeling techniques that can analyze

historical data to estimate the probabilities Pωzs(z,ω)m(z,ω)k for a given protection level k and

disruption intensity level m. The predictive modeling techniques are described as follows:

Multinomial Logistic Regression

In this research, each facility can be in one of the possible capacity states de�ned by the

set S. As multiple capacity states are possible for each facility, the prediction of capacity

states can be considered as a multi-class classi�cation problem. Therefore, we can use a

multinomial logistic regression (MLR) model to predict the probability Pωzs(z,ω)m(z,ω)k of a

facility to arrive in capacity state s (class s) for a given protection and disruption intensity

levels. In MLR model, the response variable is the capacity states (s = 0, 1, 2, . . . , |S|) of

the facilities whereas the predictor variables are the protection amount (in U.S. dollars) (yz)

allocated to facility z and the disruption intensity level m. The estimated probability that

a facility z is in capacity state s for a given protection level k or given protection yz and the

disruption intensity level m can be computed from the following equations:

Pmk(s) = exp(β0s+β1syz+β2sm)

1+
∑|S|−1

l exp(β0l+β1lyz+β2lm)
∀s = 1, 2, ..., |S| − 1 (3.31)

Pmk(|S|) = 1

1+
∑|S|−1

l exp(β0l+β1lyz+β2lm)
(3.32)

where β0s, β1s, and β2s are the parameter estimates of the logistic regression model corre-

sponding to class s or capacity state s. Equation (3.31) computes the probability Pmk(s)

that a facility has post-disruption capacity state s (∀s = 1, 2, ..., |S|− 1) for given protection

level k and disruption intensity level m. The probability that a facility arrives in capacity

state |S| (the last class) is computed from Eq. (3.32).

We �t a MLR model on the synthetic data that contain the protection amounts,

disruption intensity levels, and the corresponding capacity states of the facilities. The MLR

model builds a relationship between the protection amounts, disruption intensity levels, and

capacity states of the facilities. We discretize the entire range of the protection amounts into
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a number of discrete protection levels by dividing the range by the number of protection

levels (| K |) speci�ed by the decision-maker and then take the upper bounds of the resulting

ranges as the cost (Ck) of protection resources corresponding to the discrete protection levels.

We use the �tted MLR model to predict the probabilities, Pmk(s), corresponding to

the capacity states for given protection (Ck) and disruption intensity levels (m). These

probabilities Pmk(s) are used as Pωzs(z,ω)m(z,ω)k in the stochastic programming model, where

Pωz0(z,ω)1(z,ω)k is the probability that facility z is in capacity state 0 in scenario ω given that

Ck amount (U.S. dollar) or k level of protection is invested to facility z and the facility is

exposed to disruption intensity level 1.

Discriminant Analysis

Discriminant analysis is a popular method for multi-class classi�cation. In discriminant

analysis, the distribution of the predictors are modeled separately for each of the response

classes and Bayes' theorem is used to sort the observations into di�erent classes [63]. Two

popular discriminant analysis methods are linear discriminant analysis (LDA) and quadratic

discriminant analysis (QDA). Both LDA and QDA assume that the predictor variables

(X )�protection investments, and disruption intensity levels�in each class are drawn from

a multivariate Gaussian distribution.

Linear Discriminant Analysis (LDA)

It is assumed in LDA that each class has a mean vector (µs) and a common covariance

matrix (Σ) for all the |S| classes. The prior probability that a randomly selected observation

is from class s is denoted by πs. The multivariate Gaussian density function for an observation

(xobs) that comes from class s is de�ned as follows:

fs
(
X = xobs

)
= 1

(2π)pr/2|Σ|1/2 exp
(
−1

2

(
xobs − µs

)T
Σ−1

(
xobs − µs

))
(3.33)

The probability that an observation is in class s, given the predictor X, or equivalently,

a facility is in capacity state s for given protection and disruption intensity levels can be

obtained from the following formula:
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P(capacity state = s|X = xobs) = πsfs(xobs)∑|S|
s=1 πsfs(xobs)

(3.34)

Using the estimates of prior probabilities, mean vectors, covariance matrix, and density

function, we can compute the probabilities of the capacity states from LDA (Eq. 3.34) that

are used in the mathematical model.

Quadratic Discriminant Analysis (QDA)

Unlike LDA, in QDA each class has its own covariance matrix Σs, which leads to quadratic

decision boundaries [63]. The multivariate Gaussian density function for an observation (xobs)

that comes from class s is de�ned as follows:

fs
(
X = xobs

)
= 1

(2π)pr/2|Σs|1/2
exp

(
−1

2

(
xobs − µs

)T
Σ−1
s

(
xobs − µs

))
(3.35)

Using the estimates of prior probabilities, mean vectors, covariance matrix for each class,

and density function, we can compute the probabilities from QDA using Eq. (3.34).

3.5 Computational Results and Managerial Insights

In this section, we evaluate the performance of the stochastic programming model in

minimizing the expected PDTC by optimally investing the limited protection resources

among the facilities and constructing links in the network. Our main focus is to present

the numerical results that provide insights into modeling imperfect, multi-level protection

and disruption, as well as multiple capacity states of the facilities in a combined network

design and facility protection problem. Also, we conduct numerical experiments to explore

the �ndings from our stochastic programming problem with both exogenous and endogenous

uncertainty. The numerical results provide insights into the following research questions: (1)

how does the decision maker's budget a�ect the expected PDTC, (2) how does the number

of protection levels and the number of capacity states of the facilities used in the model a�ect

the expected PDTC, (3) how sensitive is the stochastic programming model to changes in
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the number of protection levels and the number of capacity states of the facilities used in

the model, (4) how robust is the stochastic programming solution compared to the solution

from the deterministic model, and (5) how sensitive is the stochastic programming model to

the estimation error in the probabilities resulting from using di�erent predictive models?

3.5.1 Experimental Setup

We implemented the basic and the accelerated L-shaped decomposition algorithms in Python

2.7 with Gurobi solver [48], using Gurobi to solve the mixed-integer master problem and the

linear sub-problems. The prediction models estimating the probabilities, Pzs(z,ω)m(z,ω)k, were

implemented using Python's Scikit-learn package. We conducted numerical experiments

on networks that were generated based on the southeastern United States (according to

American Association of Geographers), following the similar procedure as Daskin [32]. We

consider cities in the southeastern United States as nodes in the networks. Based on a

threshold population, we generate di�erent-sized networks. For example, considering cities

with at least 185,000 population results in a 32-node network. Demand of each node is set to

the population of the corresponding city divided by 104. In adding links between nodes, we

consider 5 neighbors of each node that are within 250 miles, and the links do not intersect

each other. Transportation cost of per unit �ow is taken as the length of each link. Link

construction cost C` is proportional to the length (L`) of each link, C` = uL`.

As we assume that the facilities are already located in the network, we solve the

capacitated facility location and network design model of Melkote and Daskin [95] for the

generated networks to �nd the optimal location of the facilities. In solving the Melkote and

Daskin [95] model, we use the following parameters: median home value (obtained from

Zillow.com, 2019) in each city as the possible facility setup cost at each node and a certain

percentage of the total demand as the possible capacity of the facilities. The networks with

the existing facilities are used in the computational experiments of this research. The 16-

node, 25-node, and 32-node networks used in this research are demonstrated in Appendices

D.1, D.2, and D.3, respectively. Figures D.2, D.3, and D.4 in Appendix D.1 show the changes

in the optimal solution as the decision maker's budget changes for a 16-node network. In

the numerical experiments, we used the parameter values as shown in Table 3.6.
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Table 3.6: Parameters and their values used in the computational experiments.

Parameter Values Used

Network size (Number of nodes,|N |) 16, 25, 32
Number of facilities, |NF | 4, 5, 6

Number of protection levels, |K| 2, 3, 4, 5
Number of capacity states, |S| 2, 3, 4

Number of disruption intensity levels 3
Link construction cost per unit length, u $10

Penalty of unmet demand 10
Budget, B(low, high) ($20,000, $120,000)
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In this research, we generate synthetic datasets of the capacity states used for the

prediction models. We randomly generate the protection investment amounts within a

range from a uniform distribution, U($0, $15000). Also, we randomly generate the disruption

intensity levels in each observation of the dataset for a given number of disruption intensity

levels. For each observation in the synthetic data, we use the binomial distribution,

binom(|S|, pmk) to compute the capacity state for a given protection and disruption intensity

level. Here, pmk =
(

allocation amount
max. allocation amount

) m
|M|−1 is the probability that a binomial trial is a

success. The capacity amounts of the facilities corresponding to the discrete capacity states

are computed using the formula, azs = s
|S|−1

az.

Modeling Disruption Events

We model the random disruptions using the disruption events as shown in Table 3.7

which also includes a �No disruption� event with a probability of 0.75. We consider actual

geographic locations of the disruption events in the southeastern United States de�ned by

latitude and longitude. In each scenario of our stochastic programming model, one of the

disruption events is realized. Depending on the distance of a facility from the geographic

center of a disruption, the facility is exposed to one of the three levels: low, high, and no

intensity. All facilities within the radius 1 of a disruption are exposed to high intensity or

level 2 intensity. The facilities outside radius 1 but within radius 2 are in low intensity or

level 1 intensity. All other facilities outside radius 2 are exposed to level 0 intensity and are

not a�ected by the given disruption.

3.5.2 Runtime of Algorithms

Though the primary goal of this chapter is to provide insights to the problem, we also evaluate

the performance of the accelerated L-shaped decomposition algorithm. This section presents

the runtime of the accelerated L-shaped decomposition algorithm and a comparison of the

runtime of the basic L-shaped algorithm and the acceleration techniques. To compute the

runtime of the algorithms, we ran experiments on a personal computer running MacOS with

Intel Core i9 @2.9 GHz with 16GB of installed RAM.
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Table 3.7: Disruption events.

Index Type Center Lat Lon Radius1
(miles)

Radius2
(miles)

Prob.

0 No disruption - - - - - 0.75
1 Hurricane Tampa, FL 27.95 -82.46 150 500 0.10
2 Snow storm Raleigh, NC 35.78 -78.64 100 500 0.05
3 Tornado Huntsville, AL 34.73 -86.59 50 250 0.10
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We observed from the computational experiments that the basic L-shaped algorithm is

slow in convergence. To enhance the computational e�ciency of the basic (Single-Cut) L-

shaped decomposition algorithm, we implemented several acceleration techniques described

in Section 3.4.2. We conducted experiments to assess the e�ects of the acceleration techniques

in speeding up the basic algorithm. The runtime of the basic algorithm and di�erent

combinations of the acceleration techniques for two di�erent networks are presented in

Table 3.8. The acceleration techniques are denoted as follows: KI - knapsack inequality,

nLimit- node limit in the master problem solver, TR- trust region, MCut- multi-cut L-

shaped decomposition algorithm, PCut- Pareto-optimality cut, VI - valid inequality. In the

runtime experiments, we allowed the algorithms to run for 2 hours. The �Time�, �Gap�, and

�Iteration� columns represent the runtime of the algorithms, optimality gap, and number of

iterations at termination, respectively.

We see from Table 3.8 that the Single-Cut algorithm cannot solve both of the network

instances to optimality within 2 hours. When applied to the single-cut algorithm individually,

the acceleration techniques, KI, and TR do not enhance the algorithm's speed; VI and

nLimit methods speed up the algorithm. Especially, the VI signi�cantly speeds up

the algorithm. The MCut L-shaped algorithm substantially outperforms the Single-Cut

algorithm in runtime. Though the MCut algorithm cannot solve both the network instances

within 2 hours, the optimality gap of MCut at termination is much smaller than the

optimality gap of the single-cut algorithm. Unlike Single-Cut, in MCut, we add an

optimality cut for each scenario to the master problem that results in adding a set of |Ω|

cuts at each iteration. In ourMCut L-shaped algorithm, we observed that the cut coe�cients

are di�erent in di�erent scenarios, resulting the right hand sides of the cuts (3.20a) to be

di�erent. This forces the lower bound of the optimal objective value to increase in a faster rate

than the Single-Cut version, eventually faster the convergence. When TR is applied with the

MCut, it slightly improves the computational e�ciency of the algorithm. The VI and nLimit

methods in conjunction with the MCut demonstrate much better performance in speed up

compared to using these methods with Single-Cut. The PCut method in conjunction with

the MCut provides small improvements in algorithm runtime. From Table 3.8, we see that

the combination ofMCut, TR, nLimit, VI, and PCut methods provide the best enhancement

96



Table 3.8: Comparison of acceleration techniques. Other parameters: B = $60, 000, |S| =
3, |K| = 3.

Acceleration
Technique

|N | = 25, |NF | = 4 |N | = 25, |NF | = 5

Time Gap(%) Iteration Time Gap(%) Iteration

Single-Cut >7200 100 171 >7200 100 69
Single-Cut + KI >7200 100 183 >7200 100 63
Single-Cut + nLimit >7200 15.55 119 >7200 100 67
Single-Cut + TR >7200 100 247 >7200 100 64
Single-Cut + VI 6225.45 0 200 >7200 43.97 69
Single-Cut + TR +
KI + nLimit + VI

1368.09 0 45 6826.57 0 64

MCut >7200 24.59 109 >7200 98.02 47
MCut + KI >7200 33.23 112 >7200 99.03 43
MCut + nLimit 2948.97 0 65 >7200 38.84 49
MCut + TR >7200 19.90 111 >7200 97.49 52
MCut + VI 3124.89 0 49 >7200 33.49 42
MCut + PCut >7200 22.94 107 >7200 97.74 46
MCut + TR + KI +
nLimit + VI + PCut

495.57 0 14 2875.62 0 20

MCut + TR +
nLimit + VI+ PCut

421.71 0 14 1882.78 0 14
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in algorithm runtime. Therefore, we used this combination in all of the experiments unless

otherwise speci�ed.

We conducted computational experiments with the three di�erent network sizes�16,

25, and 32-node networks�where the number of facilities ranges from 4 to 6. In the

experiments, we vary the decision maker's budget, number of protection levels, and number

of capacity states of facilities into four, four, and three levels, respectively. The runtimes of

the accelerated L-shaped decomposition algorithm (MCut + TR + nLimit + VI + PCut)

are demonstrated in Figures 3.1, and 3.2 and Table E.12 (Appendix E).

Figure 3.1 demonstrates the e�ect of the number of facilities and the decision maker's

budget on algorithm runtime for the three di�erent network sizes. We see that the runtime

increases with the network size. Algorithm runtime increases as the decision maker's budget

increases from $30,000 to $70,000 and then decreases at $90,000 for all the networks.

With more budget, the decision-maker can allocate higher level of protection resources

and construct more links in the transportation network. This requires the decision-maker

to explore more combinations of protection levels and facilities as well as more candidate

links which eventually results in an increased runtime. However, with a su�ciently large

budget, decision making is relatively easy. Because, at that point, the decision-maker can

just allocate the highest level of protection and construct most of the links in the network

that reduces the necessity of exploring a large number of candidate solutions. We see that at

each budget level, runtime increases exponentially as the number of facility in the networks

increases. Increasing the number of facilities in the transportation network increases the

binary variables and the number of scenarios in the stochastic programming model that

leads to a substantially higher runtime.

We see from Figure 3.2a that the algorithm runtime increases as the number of protection

levels used in the model increases. Increasing the number of protection levels adds more

binary variables and constraints in the stochastic mixed-integer programming model that

has an exponential runtime. Therefore, runtime increases as the number of protection levels

modeled increases for all three network sizes.

Figure 3.2b demonstrates that the algorithm runtime increases substantially as the

number of possible PDCSs of each facility increases. Increasing the number of possible
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Figure 3.1: Impact of decision maker's budget and number of facility on runtime. Other
parameters: |S| = 3, |K| = 3.
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(a) Runtime Vs |K|. |NF | = 5, |S| = 3. (b) Runtime Vs |S|. |NF | = 5, |K| = 3

Figure 3.2: Impact of number of protection levels and capacity states on runtime.
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PDCSs of each facility signi�cantly increases the number of scenarios of the stochastic

programming model. This increased number of scenarios in the stochastic programming

model contribute to increase the algorithm runtime. We see from Figure 3.2b and Table

E.12 (Appendix E) that in 25- and 32-node networks, as the number of scenarios becomes

large (≥ 3000), the L-shaped algorithm cannot solve the problem instances within 2 hours.

3.5.3 E�ect of Budget on Post-disruption Transportation Cost

We conducted experiments to assess the e�ect of the decision maker's budget on the expected

PDTC in a network. Figure 3.3 demonstrates the variation of the expected PDTC with the

decision maker's budget for three di�erent networks, each with 25- nodes as well as the

average expected PDTC of the three networks.

We see that the expected PDTC decreases as the decision maker's budget increases,

which is very intuitive. With increased budget, the decision maker can open more links in

the network and allocate more protection resources to the facilities, increasing the likelihood

of higher PDCS of the facilities. With higher post-disruption capacity of the facilities, the

decision-maker can better satisfy the demands of the customer locations and thereby avoid

the high penalty cost of unmet demand, which eventually reduces the transportation cost.

However, the expected PDTC does not decrease uniformly as the budget increases.

Initially there is no existing link in the network, and no protection resource is allocated

to the facilities. At this point, with an additional budget increment, the link construction

and protection investment can yield a substantially higher rate of reduction in the expected

PDTC. However, at a certain point in the budget, the rate of decrease in the expected

PDTC diminishes. At this point, the network has some opened links, and the facilities are

protected to some extent. Therefore, with a small budget increment, opening a few more

links or allocating some protection resources cannot reduce the expected PDTC at a higher

rate.

Transportation network managers can use our model along with their own datasets to

produce a �gure like Figure 3.3 to decide on the amount to invest in network construction

and facility protection. For example, for network 1, a manager would be well-advised to
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Figure 3.3: Variation of expected post-disruption transportation cost with decision maker's
budget for three 25-node networks.
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choose to invest $80,000, as the expected PDTC variation curve of this network levels o�

after this point.

3.5.4 Signi�cance of Modeling Multiple Protection Investment

Levels

Our stochastic programming model allows network owners to change the number of

protection investment levels, |K|, to exploit the model �delity on the solution. To

demonstrate the e�ects of changing the number of protection levels, we introduce a metric

called relative di�erence. The relative di�erence for protection levels measures the percentage

by which the expected PDTC changes due to using a di�erent number of protection levels

|K| rather than a reference number of protection levels |K∗|. The relative di�erence can be

expressed as:

RDk = Q(|K∗|)−Q(|K|)
Q(|K∗|) × 100% (3.36)

Here, Q(|K∗|) and Q(|K|) represent the expected PDTC corresponding to using |K∗|

and |K| number of protection levels in the model. A positive value of RDk demonstrates

the percentage reduction of the expected PDTC due to changing the number of protection

levels from |K∗| to |K| . Therefore, a positive value of RDk is a measure of improvement

in the decision due to increasing the number of protection levels from |K∗| to |K|. Table

3.9 shows the relative di�erence in the expected PDTC due to increasing the number of

protection levels from the reference number |K∗| at di�erent decision maker's budgets. The

experiments in this and the following sub-sections were carried out with 16-node networks

having 4 facilities and M-Cut L-shaped algorithm with TR cuts, Pareto-optimality cuts, and

valid inequality.

We see from Table 3.9 that RDk increases and thus the expected PDTC decreases at

di�erent budget levels as the number of protection levels increases from |K∗| to |K| . With

a larger number of protection levels, the costs of protection resources corresponding to the

discrete protection levels are more re�ned. This enables the model to allocate more accurate
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Table 3.9: Relative di�erence for changing the number of protection levels from |K∗| = 2.

|K| Budget
Average

$40,000 $60,000 $80,000 $100,000

2 0% 0% 0% 0% 0%
3 16.10% 21.21% 8.71% 0.56% 11.65%
4 21.59% 26.75% 14.51% 5.05% 16.98%
5 22.31% 27.69% 16.88% 7.95% 18.71%
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levels of protection resources to the facilities. As a result, with the same amount of budget, a

more re�ned and accurate protection allocation can be chosen, reducing the expected PDTC.

However, we see that the rate of percentage reduction of the expected PDTC diminishes as

the number of protection levels |K| increases. Table 3.9 shows that the percentage reduction

in the expected PDTC diminishes considerably after the number of protection levels, |K| = 4

and becomes only 1.73% (= 18.71− 16.98) between |K| = 4 and |K| = 5. As increasing the

number of protection levels beyond a su�ciently large value provides very small improvement

in reducing the expected PDTC while increasing the computational complexity and runtime

substantially (Figure 3.2a), it is worth considering a trade-o� between the improvement in

solution and runtime. A su�ciently large value of |K|, for instance |K| = 4 provides su�cient

improvement in cost reduction while resulting in a reasonable runtime.

Furthermore, we observe that the e�ect of changing the number of protection levels on

expected PDTC changes as the decision maker's budget changes. Table 3.9 reveals that

the percentage reduction in the expected PDTC due to changing |K| increases as budget

increases from $40,000 to $60,000, and then decreases until $100,000 where the percentage

reduction is the lowest. This low percentage reduction is because with large budgets, it is

possible for some facilities to receive the maximum protection amount, making the number

of protection levels insigni�cant.

3.5.5 Signi�cance of Modeling Multiple Capacity States

In our stochastic programming model, the network owners can change the number of PDCSs,

|S|, of the facilities. To investigate the sensitivity of the model to changes in |S|, we compute

the relative di�erence for the number of PDCSs (RDs). The metric RDs is expressed as:

RDs = Qs∗ (y(|S|))−Qs∗ (y(|S∗|))
Qs∗ (y(|S∗|)) (3.37)

Here, y(|S|) and y(|S∗|) are the optimal solutions obtained from using |S| and |S∗|

number of PDCSs, respectively. Qs∗(y(|S|)) is the objective value that we get by evaluating

the solution y(|S|) using |S∗| PDCSs. The metric RDs represents the percentage change
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in the expected PDTC due to using a di�erent number of PDCSs than |S∗|. A positive

value of RDs provides a measure of the cost of using a smaller number of PDCSs |S| from

|S∗|. Table 3.10 shows that the RDs increases as the number of PDCSs decreases from |S∗|,

meaning that using a smaller number of PDCSs leads to a decision that results a higher

expected PDTC. As the number of PDCSs increases, the capacity amounts corresponding

to the discrete capacity states become more re�ned. Therefore, the greater the number of

PDCSs, the more re�ned is the model and produces better quality solutions.

However, unlike the e�ect of the number of protection levels, we see that the model

is not substantially sensitive to changes in the number of PDCSs. The e�ects of multiple

PDCSs in this combined NDIP problem are consistent with the �ndings of Medal et al. [94]

who modeled the infrastructure protection with endogenous uncertainty only. We see from

Table 3.10 that the percentage increase in the expected PDTC due to using |S| = 3 rather

than |S∗| = 4 is very small. Decreasing the number of PDCSs from |S∗| = 4 to |S| = 2

demonstrates some noticeable increment in RDs.

However, increasing the number of PDCSs in the stochastic programming model increases

the algorithm complexity and runtime substantially (Figure 3.2b). Therefore, the decision

maker can consider a trade-o� between model accuracy and runtime and can choose a value of

|S| that provides su�ciently high accuracy and reasonable runtime. Based on the numerical

results, using |S| = 3 provides satisfactory model accuracy and a reasonable runtime.

3.5.6 Signi�cance of Using a Stochastic Model

We analyze the bene�t of modeling uncertainty in the PDCSs of the facilities. To accomplish

this �nding, we formulate a mean value problem (MVP) and compare the performance

of the solutions obtained from the MVP with the solutions obtained from our stochastic

programming model. The formulation of the MVP of our PNDIPP is presented in Appendix

B. This model uses the expected capacity amount of each facility over all the scenarios of

the stochastic network design and facility protection problem.

A metric called value of stochastic solution (VSS) [21] measures the cost of ignoring

uncertainty in the PDCSs of the facilities when generating link construction and protection

decision. The VSS can be expressed as follows:
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Table 3.10: Relative di�erence for changing the number of capacity levels from |S∗| = 4.

|S| Budget
Average

$40,000 $60,000 $80,000 $100,000

4 0% 0% 0% 0% 0%
3 0.28% 0.43% 0% 0.07% 0.20%
2 2.05% 0.46% 3.72% 18.55% 6.19%
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V SS = Q(yMV P )−Q(ySP )
Q(ySP )

× 100% (3.38)

Here, Q(yMV P ) and Q(ySP ) are the expected PDTCs resulting from using the optimal

solutions obtained from MVP and stochastic programming model, respectively. Tables 3.11

and 3.12 demonstrate the variation of VSS as the number of protection levels and PDCSs in

the model changes for di�erent budget levels. We see that VSS increases substantially as the

decision maker's budget increases within the same level of |K| and |S|. With more budget,

the decision-maker can construct more links and allocate higher level of protection resources

to the facilities. However, this can lead to more erroneous decisions of link construction

and protection investment by the MVP. Therefore, while the stochastic programming model

can generate better solutions with the additional budget, the MVP model generates poorer

quality solutions, which eventually results in a larger VSS. In contrast, with a su�ciently

small budget (e.g., $20,000), the VSS is consistently zero over di�erent levels of |K| and

|S|. Because, with a very small budget, the decision-maker can only construct few links

and make small investment in facility protection. This restricts the scope of the stochastic

programming model to generate a better solution than the MVP. Table 3.11 reveals that at

higher budget levels, the VSS increases as number of protection levels increases within the

same budget level.

Table 3.12 demonstrates that the VSS increases as the number of PDCSs of the facilities

increases within the same budget level; at the higher budget levels, the VSS increases

substantially. Increasing the number of possible PDCSs means increasing the range of

uncertainty. As the stochastic programming model accounts for the uncertainty in the PDCS,

the solution obtained from stochastic programming model is robust against uncertainty. On

the other hand, the MVP considers only the expected value of the post-disruption capacity of

each facility. Therefore, as the uncertainty in post-disruption capacity increases, the solution

of the MVP becomes more erroneous, leading to a very large VSS.

In our combined NDIP problem with both exogenous and endogenous uncertainty, the

VSS is substantially di�erent from the results of Medal et al. [94], who modeled a facility
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Table 3.11: Variation of VSS with number of protection levels.

|K| Budget
Average

$20,000 $40,000 $60,000 $80,000

2 0% 116.51% 263.25% 720.66% 275.10%
3 0% 160.81% 361.03% 754.58% 319.11%
4 0% 179.09% 395.36% 829.87% 351.08%
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Table 3.12: Variation of VSS with number of capacity states

|S| Budget
Average

$20,000 $40,000 $60,000 $80,000

2 0% 116.51% 263.25% 720.66% 275.10%
3 0% 174.22% 414.29% 1326.19% 478.68%
4 0% 215.61% 430.84% 1901.79% 637.06%
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forti�cation problem with endogenous uncertainty only. In Medal et al. [94], the mean value

model performs very well compared to the stochastic programming model, which leads to a

very small VSS value.

3.5.7 Estimation Error of Predictive Modeling Techniques

We stated earlier that we computed the capacity states of the facilities using a binomial

distribution when generating the synthetic input dataset. We �tted the predictive modeling

techniques using the synthetic dataset to estimate the probabilities of PDCSs of the

facilities for given protection amounts and disruption intensity levels. In the computational

experiments, we used the multinomial logistic regression (MLR) to estimate the probabilities

of PDCSs. We compare the e�ects of the estimation error in the probabilities on the optimal

objective value resulting from MLR with other classi�cation techniques�LDA and QDA.

Another research question we want to explore: how much is the e�ect of the estimation error

on the optimal solution and optimal objective value due to using the predictive modeling

techniques compared to using the original binomial distribution? To answer this question, we

conducted numerical experiments to measure the percentage change in the expected PDTC

due to using the predictive modeling techniques versus the true binomial distribution. We

ran the experiments for di�erent levels of defender's budget, number of protection levels,

and number of PDCSs.

Table 3.13 demonstrates the percentage change in the expected PDTC due to the

estimation error from MLR, LDA, and QDA. To avoid the e�ect of randomness of the

synthetic data generation, we conducted the experiments with three di�erent replications

of the synthetic dataset and took their average. We see from Table 3.13 that the e�ect of

estimation error on the objective value is smallest in QDA; the average%Higher over di�erent

budget, protection, and capacity levels from MLR, LDA, and QDA are 6.34, 6.38, and 3.12,

respectively. However, in few instances, the objective value obtained from using QDA is

higher than the objective value obtained from using MLR and LDA. In MLR and LDA, the

decision boundaries are linear, whereas QDA can construct quadratic decision boundaries.

Therefore, in the classi�cation problems where the actual class boundaries are non-linear,

QDA outperforms the MLR and LDA. Decision-makers need to be careful in selecting a
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Table 3.13: E�ect of estimation error on the optimal objective value. �% Higher� represents
the percentage by which the objective value is higher due to using the predictive modeling
techniques rather than using the ground-truth binomial probabilities.

B |S| |K| % Higher
MLR LDA QDA

40000

2
2 1.53 0 0
3 9.42 10.06 2.58
4 3.42 3.42 6.17

3
2 0.25 0.25 0
3 16.34 16.59 2.62
4 3.63 3.72 3.53

4
2 0.22 2.58 0
3 15.10 15.63 0.02
4 0 2.42 0.64

60000

2
2 6.13 9.89 7.68
3 11.73 15.19 0
4 11.32 13.77 4.79

3
2 12.01 14.72 14.72
3 4.92 4.92 11.48
4 12.24 13.99 12.27

4
2 0 2.51 0.28
3 0 0 0
4 0 0 0

80000

2
2 1.40 1.70 0
3 13.74 1.90 3.02
4 14.49 15.44 8.48

3
2 1.19 1.96 1.16
3 8.71 8.72 4.38
4 3.93 0 0

4
2 0 2.41 0
3 9.50 8.81 0.43
4 9.99 1.56 0

Average 6.34 6.38 3.12
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predictive modeling technique to estimate the parameters of a stochastic programming model

with both endogenous and exogenous uncertainty, and QDA appears to be a good choice.

3.6 Conclusions

We studied an integrated network design and infrastructure protection (NDIP) problem

where the e�ect of protection on facilities subject to random disruptions are uncertain,

imperfect, and multi-level. In this problem, the decision-maker, with a limited budget, seeks

to optimally construct links in a network of facilities and demand locations and allocate

protection resources to the facilities before the disruptions are realized so that customer

demands are satis�ed with minimal expected PDTC after disruption. We assume that the

post-disruption capacity state (PDCS) of a facility is unknown to the decision-maker for a

given protection. However, the PDCS of a facility depends probabilistically on the protection

and the disruption intensity level. We implemented multiple predictive modeling techniques

that can analyze historical data to estimate the probability of a facility's PDCS for given

protection and disruption intensity level.

We formulated the problem as a two-stage stochastic programming model with both

exogenous and endogenous uncertainty. The protection decision a�ects the scenario

probabilities, making the uncertainty endogenous to the model, whereas the link construction

decision directly a�ects the recourse decision as in exogenous uncertainty. We implemented

an L-shaped decomposition algorithm with multiple acceleration techniques to solve the

model. Computational experiments show that the multi-cut L-shaped decomposition

algorithm with trust region cut, Pareto-optimality cut, master problem node limit, and

a valid inequality provides the best runtime. The algorithm runtime increases as the number

of facilities, number of protection levels, number of capacity states, and the decision maker's

budget increases. The larger the budget of the decision-maker, the smaller is the expected

PDTC.

The numerical results demonstrate that the stochastic NDIP model is sensitive to

the number of protection levels used in the model. We see that the expected PDTC

decreases as the number of protection levels used in the model increases, while increasing the
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computational complexity and algorithm runtime substantially as the number of protection

levels becomes su�ciently large. Therefore, practitioners should use a moderately large

number of protection levels such as |K| = 4 that provides su�ciently high model accuracy

and a reasonable runtime. Also, as the decision maker's budget becomes su�ciently large, the

e�ect of increasing |K| becomes small. Unlike the e�ect of |K|, the model is not substantially

sensitive to changes in the number of PDCSs of the facilities. The expected PDTC increases

by a small amount as the number of PDCSs used in the model decreases from a reference

number of PDCSs. However, increasing the number of PDCSs substantially increases the

algorithm runtime. Therefore, we recommend that transportation network managers use

about |S| = 3 capacity levels, depending on the application.

The value of stochastic solution (VSS) metric reveals that the mean value model performs

very poorly compared to the stochastic programming model. The VSS increases as the

number of protection levels, PDCSs, and the decision maker's budget increases. Numerical

results demonstrate that the estimation error of the probabilities of PDCSs from using the

predictive modeling techniques a�ects the optimal solution and the optimal objective value

of the stochastic programming model. We see that the average e�ect of estimation error

on the expected PDTC is lowest for quadratic discriminant analysis. Therefore, network

managers need to be careful in using prediction models to estimate the probabilities. A

prediction model capable of providing better estimation when the dataset have complex

class boundaries may be a good choice.

3.6.1 Future Work

In this study, we see that the runtime of the accelerated L-shaped decomposition is high

when there are a very large number of scenarios. Thus, a future extension of this research

is to implement a sample average approximation algorithm to solve the problem with large

number of scenarios.

We assume that the PDCSs of a facility are independent of another facility. However,

failure of facilities can be interdependent, especially in power systems, where failure of a

substation or a transmission line can cause the failure of another. A possible future extension

of our model could be relaxing this assumption to incorporate the interdependence among
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the facilities in the network. Similarly, the disruption events in a small geographic location

can be related to each other. Another possible extension of this research would be to account

for this possible correlation among the disruption events.

A limiting assumption of this research is that the links are reliable when subject to

disruptions. However, link capacities are often degraded under major disruptions. This

research can be further extended to incorporate the possibility of link failures.
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Chapter 4

Submodular Optimization Under

Endogenous Uncertainty: An

Application to Complex System

Reliability

4.1 Introduction

This chapter studies continuous submodular optimization under endogenous uncertainty

with an application to complex system reliability allocation. Speci�cally, we study the

submodularity of the SPEU framework's objective function for some probability distributions

that have not been explored in the SPEU literature to date. We study a special case of a

complex system reliability allocation problem, where the system is submodular. A system is

submodular if that demonstrates the diminishing return property. A submodular system's

performance improves more for an additional component's availability (survivability) if a

fewer number of components are available so far than if larger number of components

are already available [72]. Therefore, as the more number of components survive for a

speci�ed duration, the less improvement in performance can be obtained from an additional

component's availability. In this problem, a decision-maker seeks to optimally invest
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resources among the system's components to maximize the probability that the system

maintains a speci�ed performance for a time horizon. We assume that the decision-maker

does not know whether a component of the system survives for the speci�ed time horizon or

not. However, to be realistic, we assume that the likelihood of a component's survival

increases as the decision-maker invests more resources on that component, making the

component's lifetime a probabilistic function of the investment decisions. We model the

complex system reliability allocation problem as a stochastic program with endogenous

uncertainty to incorporate these assumptions. This research is the �rst to study the reliability

allocation of a complex submodular system and model it using the SPEU framework, where

the uncertainty in a component lifetime is endogenous to the model.

Our goals in this research are to (1) analyze the submodularity of the SPEU framework's

objective function for some probability distributions that have not been explored in the SPEU

literature to date, (2) analyze the bene�t of submodularity in solving large-scale complex

system reliability allocation problem.

4.1.1 Motivation

Many real-life infrastructure systems such as water supply, oil/gas transportation, telecom-

munications, and power transmission networks are complex systems [68]. Complex systems

refer to those networks where the components cannot be connected in a series-parallel way

[77]. These networks need to design/protect to ensure that they can maintain a speci�ed

level of performance. The reliability allocation of complex systems has been studied much

less than series-parallel systems, especially with uncertainty in component survivability.

As modeling and solving the reliability allocation problems for complex systems using the

exact mathematical optimization approach is computationally challenging, particularly for

large-sized networks, studies often use heuristics and meta-heuristics algorithms for solving

those problems. These heuristics and meta-heuristics algorithms often provide poor quality

solutions. They cannot give any worst-case performance guarantee, which raises the necessity

to design/implement approximation algorithms that can solve large-scale problems while

providing a worst-case performance guarantee.
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Submodularity property is useful in providing a performance guarantee of approximation

algorithms. Though some research studied submodularity in the SPEU literature, they

limit their analysis to one or two probability distributions having special properties (e.g.,

semigroup property). But, many other widely used probability distributions do not possess

this particular property. Therefore, there is a need to conduct further analysis of the SPEU

framework's submodularity for those probability distributions and explore the bene�t of

submodularity in application areas such as complex system reliability.

4.1.2 Related Literature

We provide a review of the literature related to our study from the perspective of complex

system reliability allocation, continuous submodular optimization, and the submodularity of

the SPEU framework in this sub-section.

The complex system reliability problem has not been studied as extensively as for

purely series, purely parallel, and series-parallel systems. The reliability of complex

systems can be enhanced by increasing the reliability of components consuming certain

resources or adding redundancy to the components [77]. Most recent studies in the

literature used heuristics or meta-heuristics methods to solve complex systems reliability

optimization problems. However, early works on complex systems reliability literature used

mathematical programming frameworks to model the complex systems reliability problem

and developed/implemented exact solution approaches to solve the problems to optimality.

Among the early studies, the Lagrangian relaxation approach was introduced to solve the

nonlinear models of complex systems reliability allocation problems in di�erent engineering

applications [60] and a complex distributed system [115]. Kim and Frair [67] modeled

a redundancy allocation problem in a complex system as a nonlinear model and then

reformulated the model before solving it using a quasi-Newton method. Li et al. [77] studied a

reliability maximization problem using redundancy for the components in a complex system,

where the authors modeled the problem as a mixed-integer nonlinear program. The authors

proposed an exact decomposition algorithm for solving the resulting model.

Despite the above-mentioned exact optimization approaches attempt to provide optimal

solutions to the complex systems reliability optimization problems, their application often
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limits the structure and size of the problem to be solved, eventually restricting the bene�t

of these approaches [31]. Therefore, recent studies focused on designing/implementing

heuristics and meta-heuristics algorithms to solve large-sized problems in the complex

systems reliability literature. Ravi et al. [121] studied a multi-objective complex system

reliability optimization problem and implemented a variant of simulated annealing meta-

heuristics�threshold accepting�to solve the problem. Among the metaheuristic methods,

genetic algorithm (GA) has been used in solving the complex system reliability optimization

problems. Kumar et al. [74] presented a multi-objective GA to optimize the reliability of

a complex telecommunication network. Sheikhalishahi et al. [129] proposed a hybrid GA-

particle swarm optimization (PSO) for solving a reliability-redundancy allocation problem

for complex systems. Some studies implemented PSO in solving complex systems reliability

optimization problems, such as PSO based on Monte Carlo simulation for reliability

optimization [145] and PSO for redundancy allocation [107] of complex systems. Recently,

Kumar et al. [73] proposed a new metaheuristics algorithm�gray wolf�for complex system

reliability optimization.

Though it is essential to account for the underlying uncertainty, few studies have explicitly

modeled uncertainty in complex system reliability optimization. Marseguerra et al. [89]

and Marseguerra et al. [90] explicitly modeled the uncertainty in parameters�failure and

repair rate of components�in reliability optimization problem of complex systems, where

the authors used a multi-objective GA to solve their problem.

Though submodularity has been studied extensively for the discrete case in submodular

optimization literature, continuous submodular optimization has also gained attention

recently. Bian et al. [19] studied the submodularity of a continuous function and

proposed a variant of conditional gradient method (a.k.a., Frank-Wolfe) that provides

(1 − 1/e) − ε approximation guarantee in maximizing a monotone and diminishing return

(DR) submodular function subject to down-closed convex constraints. Hassani et al.

[51] studied a stochastic continuous submodular optimization problem that maximizes the

objective function expressed as an expectation of submodular second-stage functions. The

authors proposed a stochastic gradient method providing a worst-case performance guarantee

for maximizing a monotone continuous DR-submodular function under general convex
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constraint. Mokhtari et al. [103] is another study on maximizing a monotone and continuous

DR-submodular function subject to general convex constraint that proposed a variant of the

Frank-Wolfe algorithm. As discrete greedy algorithms usually fail to provide the tightest

guarantees for many classes of feasibility constraints, many studies have used the continuous

relaxations of submodular functions in discrete domains [103]. Studies obtained continuous

relaxations through multilinear extension and proposed continuous greedy algorithms in

maximizing monotone DR-submodular functions subject to matroid constraint with an

approximation guarantee (e.g., [26, 27, 135, 141]).

In the SPEU literature, Karaesmen and Van Ryzin [65] analyzed the submodularity of

the objective function of a two-stage stochastic program for an airline revenue management

problem that seeks to determine the number of overbooking levels in di�erent inventory

classes. They modeled uncertainty using binomial distributions, where all the binomial

random variates have the same probability of success. The authors proved that the expected

value function (objective function) f(θ) is submodular in θ and componentwise concave

in θi if the random variables θi have semigroup property�if two independent random

variables Y1 and Y2 are stochastically equivalent to x(θ1) and x(θ2), respectively, then

Y1 + Y2 is stochastically equivalent to x(θ1 + θ2). Later, Medal et al. [94] studied a two-

stage stochastic program with endogenous uncertainty similar in structure to the problem

studied by Karaesmen and Van Ryzin [65] that uncertainty was modeled using independent

binomial random variables. Unlike Karaesmen and Van Ryzin [65], in Medal et al. [94],

submodularity was studied for binomial random variables having di�erent probabilities of

success. Also, Medal et al. [94] studied the problem in which the allocation of resources to

the facilities was discrete.

4.1.3 Contributions

In summary of the existing literature, uncertainty in system parameters has not been

considered much, and mostly heuristics and meta-heuristics methods lacking performance

guarantee are used in complex systems reliability optimization problems. Moreover, the

theoretical properties of the complex system reliability allocation problem have not been

explored to date. But, the theoretical analysis provides a better understanding of the problem
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structure that can facilitate solution approaches. Also, in SPEU literature, a few studies

analyzed the submodularity for binomial distribution having semigroup property, whereas

other widely used probability distributions such as exponential have not been investigated.

Therefore, this chapter studies a complex submodular systems reliability optimization

problem under uncertainty in the component's lifetime. We present a two-stage SPEU

model to maximize a complex system's reliability by allocating resources among the system

components. This research extends the complex system reliability allocation and SPEU

literature by establishing the mathematical formulation's theoretical properties that enable

solving large-scale complex systems reliability problems and provides insights into the

problems. Speci�cally, we made the following contributions: (1) proved that the reliability

maximization objective function of the SPEU model is submodular when the lifetimes of the

network components follow exponential distributions, (2) implemented a continuous greedy

approximation algorithm capable of providing worst-case performance guarantee utilizing the

submodularity and provided computational experiments to demonstrate the performance

of the algorithm in solving large-scale reliability maximization problems, e�ects of model

parameters on the runtime and solution quality of the algorithm.

4.2 Problem Description

In this problem, with a limited budget, a decision-maker seeks to optimally invest resources

to the components of a complex submodular system to maximize reliability�the probability

that the network provides a minimum required utility for a speci�ed time horizon. A real-

application of this type of system is sensor placement in a water supply network, where the

goal is to maximize the probability that the network is capable of satisfying the demand

of a certain amount of population for a speci�ed time horizon. For instance, consider a

water distribution network where sensors are placed to detect malicious contaminations and

to ensure the supply of pure drinking water to an area for a speci�ed time horizon. The

utility (demand coverage) provided by this network demonstrates a diminishing return in the

number of sensors' survival over the speci�ed time horizon; the more sensors survive over the

speci�ed time horizon, the less demand coverage can be obtained from an additional sensor's
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survival. This network structure is complex as it is not possible to represent the network as

a series-parallel combination of the components.

As the network components are exposed to the natural environment, their performance

degrades over time and eventually become inoperable. Decision-makers can invest their

limited resources to reduce the rate of degradation and enhance the components' lifetime.

However, the lifetime of the network components is usually uncertain as it is di�cult to

accurately estimate the e�ects of numerous environmental factors on their performance.

To re�ect this phenomenon, we assume that the decision-maker does not know whether a

component survives for a given time horizon. Therefore, each component can arrive in either

of the two possible (binary) states�survival or failure�after the speci�ed time horizon.

To represent uncertainty in the components' states after a speci�ed time horizon, we

construct a set of scenarios. Each scenario represents a particular realization of all the

components' survival/failure states. The total number of scenarios is equal to the number of

possible combinations of the components' states. After realizing the survival/failure states

of the components in a scenario, we can determine the utility provided by the network.

We assume that components' lifetimes follow exponential distributions. To be realistic, we

assume that if a decision-maker invests more resources on a component, such as installs an

expensive but better quality sensor in the water supply network by incurring more cost, the

survival probability of that component increases. Therefore, the survival probability of a

component is a function of investment decisions, making the uncertainty in this problem to

be decision-dependent (endogenous).

4.3 Mathematical Formulation

We formulate the reliability maximization problem as a two-stage stochastic program with

endogenous uncertainty. The necessary sets, parameters, and variables supporting the

mathematical formulations are listed in Table 4.1.

The �rst-stage model (4.2) seeks to maximize the probability that the minimum required

utility η is maintained by the network for a time horizon T by optimally investing the limited

budget B among the network components. We assume that each component's lifetime is
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Table 4.1: Notation.

(a) Sets

Sets Description

L Set of all components indexed by `
Ω Set of all scenarios indexed by ω
Lω Set of all components that survived in scenario ω

(b) Parameters

Parameters Description

B Decision maker's budget
η Minimum required utility to be provided by the network
T Speci�ed time horizon

(c) Variables

Variables Description

y` Amount of investment on component `
λ` Failure rate of component `
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uncertain, making the survival/failure state of a component at the end of time horizon T

uncertain. To represent uncertainty in the components' states, we construct a �nite set of

scenarios, where ω ∈ Ω represents a particular realization of the components' survival/failure

states. As each component's lifetime follows an exponential distribution, we can compute

the probability that component ` survives the time horizon T using the survival function

e−λ`T , where λ` is the failure rate. A key feature of this reliability maximization problem is

that the survival probability of component ` is a function of the investment amount y` on

that component. To represent this decision-dependent (endogenous) probability structure,

we model the failure rate λ` of component ` to be a function of the investment amount y`,

i.e., λ` = 1
y`
. Therefore, we can consider λ` to be a decision variable replacing y`. In this

case, failure rates λ of the components a�ect the probability of scenario ω expressed as in

Eq. (4.1).

Pω(λ) =
∏

`∈Lω e−λ`T
∏

`∈L\Lω

(
1− e−λ`T

)
(4.1)

Equation (4.1) shows that the probability of a scenario ω is a function of the failure

rates λ. The smaller the value of λ` for component `, the larger the probability of survival.

Therefore, the goal of our stochastic programming model is to �nd the optimal value of λ

that maximizes the probability that the minimum required utility η is maintained by the

network for a time horizon T under uncertainty in components' states.

The �rst-stage of our two-stage stochastic program is presented below:

max h̄(λ) =
∑
ω∈Ω

∏
`∈Lω

e−λ`T
∏

`∈L\Lω

(
1− e−λ`T

)
1η(ω) (4.2a)

s.t.
∑
`∈L

λ−1
` ≤ B (4.2b)

λ` ≥ 0 ∀` ∈ L (4.2c)

The objective function (4.2a) seeks to maximize the total probability that the minimum

required utility η is maintained by the network for the time horizon T . The indicator
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function, 1η(ω), ensures that the objective function (4.2a) only accounts for the probabilities

of the scenarios where the second-stage objective value (utility provided by the network) gω

is at least the minimum required utility η, i.e., gω ≥ η. The indicator function is de�ned as

follows:

1η(ω) =

1 if gω ≥ η

0 otherwise

The constraint (4.2b) ensures that the total investment on the components in reducing

their failure rates cannot exceed the decision maker's budget.

Realizing the survival/failure states of the components after duration T , we solve the

second-stage model for each scenario ω to obtain the utility (gω ) provided by the network

in each scenario. As the second-stage model is speci�c to a particular application problem,

we present the second-stage model for a case study in Section 4.6.1.

4.4 Theoretical Properties

We analyze the submodularity property of the �rst-stage reliability maximization objective

function (4.2a). As we study a submodular system, the second-stage objective function in

scenario ω (gω) is submodular. We discuss the submodularity of the second-stage objective

function speci�c to the application problem in Section 4.6.1.

To establish the proof of submodularity of the �rst-stage objective function (4.2a), we

need the following de�nition of submodularity for a di�erentiable function taken from Topkis

[138].

De�nition 1. (Submodularity) A twice di�erentiable function f(·) is submodular if and

only if all o�-diagonal entries of its Hessian matrix are non-positive, i.e., ∀x ∈ X, ∂
2f(x)
∂xi∂xj

≤

0, ∀i 6= j.

Theorem 1 establishes the submodularity of the reliability function h̄(λ) de�ned in Eq.

(4.2a), when the components' lifetimes are exponentially distributed.
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Theorem 1. Given that lifetime of the network components are exponentially distributed

with failure rate λ = (λ1, . . . , λ|L|), the reliability function, h̄(λ) (4.2a) is submodular in

λ = (λ1, . . . , λ|L|).

Proof. The reliability function is as follows:

h̄(λ) =
∑

ω∈Ω

∏
`∈Lω e−λ`T

∏
`∈L\Lω

(
1− e−λ`T

)
1η(ω)

Classifying the scenarios into two groups such that in one group component i survives

(ωi = 1), whereas in another group it fails (ωi = 0), we have

h̄(λ) =
∑

ω∈Ω(ωi=1)

∏
`∈Lω e−λ`T

∏
`∈L\Lω

(
1− e−λ`T

)
1η(ω)1

+
∑

ω∈Ω(ωi=0)

∏
`∈Lω e−λ`T

∏
`∈L\Lω

(
1− e−λ`T

)
1η(ω)0

∂h̄(λ)
∂λi

= −
∑

ω∈Ω(ωi=1) T
∏

`∈Lω e−λ`T
∏

`∈L\Lω

(
1− e−λ`T

)
1η(ω)1

+
∑

ω∈Ω(ωi=0) Te
−λiT

∏
`∈Lω e−λ`T

∏
`∈L\Lω∪{i}

(
1− e−λ`T

)
1η(ω)0

= |Ω|
2
T
[∑

ω∈Ω(ωi=0) e
−λiT

∏
`∈Lω e−λ`T

∏
`∈L\Lω∪{i}

(
1− e−λ`T

)
1η(ω)0

−
∑

ω∈Ω(ωi=1) e
−λiT

∏
`∈Lω\{i} e

−λ`T
∏

`∈L\Lω

(
1− e−λ`T

)
1η(ω)1

]
Set, |Ω|

2
T = M . Pairing the scenarios from the two groups, where each pair (ω1, ω2) is

formed as ω1 ∈ Ω(ωi=0) and ω
2 ∈ Ω(ωi=1) such that only the state of component i is di�erent

between ω1 and ω2, i.e., ω` ∈ ω1 = ω` ∈ ω2 ∀` ∈ L \ {i}. Then, we have

∏
`∈Lω e−λ`T

∏
`∈L\Lω∪{i}

(
1− e−λ`T

)
=
∏

`∈Lω\{i} e
−λ`T

∏
`∈L\Lω

(
1− e−λ`T

)
Therefore, ∂h̄(λ)

∂λi
can be written as a sum of the scenario pairs

∂h̄(λ)
∂λi

= M
[
e−λiT

∏
`∈Lω e−λ`T

∏
`∈L\Lω∪{i}

(
1− e−λ`T

)
(1η(ω)0 − 1η(ω)1) + . . .

]
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As gω is nondecreasing submodular in ω, 1η(ω) is also nondecreasing submodular in ω,

making (1η(ω)0 − 1η(ω)1) ≤ 0 and thus ∂h̄(λ)
∂λi
≤ 0.

Now, classifying each of the two groups of scenarios, Ω(ωi=0) and Ω(ωi=1), further into

two groups such that component j survives (ωj = 1) in one group whereas fails (ωj = 0) in

another, we have

∂h̄(λ)
∂λi

= M
[∑

ω∈Ω(ωi=0,ωj=0) e
−λiT

∏
`∈Lω e−λ`T

∏
`∈L\Lω∪{i}

(
1− e−λ`T

)
1η(ω)00

+
∑

ω∈Ω(ωi=0,ωj=1) e
−λiT

∏
`∈Lω e−λ`T

∏
`∈L\Lω∪{i}

(
1− e−λ`T

)
1η(ω)01

−
∑

ω∈Ω(ωi=1,ωj=0)

∏
`∈Lω e−λ`T

∏
`∈L\Lω

(
1− e−λ`T

)
1η(ω)10

−
∑

ω∈Ω(ωi=1,ωj=1)

∏
`∈Lω e−λ`T

∏
`∈L\Lω

(
1− e−λ`T

)
1η(ω)11

]
∂2h̄(λ)
∂λi∂λj

= M
[∑

ω∈Ω(ωi=0,ωj=0) Te
−λiT e−λjT

∏
`∈Lω e−λ`T

∏
`∈L\Lω∪{i,j}

(
1− e−λ`T

)
1η(ω)00

−
∑

ω∈Ω(ωi=0,ωj=1) Te
−λiT e−λjT

∏
`∈Lω\{j} e

−λ`T
∏

`∈L\Lω∪{i}
(
1− e−λ`T

)
1η(ω)01

−
∑

ω∈Ω(ωi=1,ωj=0) Te
−λiT e−λjT

∏
`∈Lω\{i} e

−λ`T
∏

`∈L\Lω∪{j}
(
1− e−λ`T

)
1η(ω)10

+
∑

ω∈Ω11(ωi=1,ωj=1) Te
−λiT e−λjT

∏
`∈Lω\{i,j} e

−λ`T
∏

`∈L\Lω

(
1− e−λ`T

)
1η(ω)11

]
Combining scenarios into groups of four scenarios (ω1, ω2, ω3, ω4), where ω1 ∈ Ω(ωi=0,ωj=0),

ω2 ∈ Ω(ωi=0,ωj=1), ω
3 ∈ Ω(ωi=1,ωj=0), and ω

4 ∈ Ω(ωi=1,ωj=1) such that

ω` ∈ ω1 = ω` ∈ ω2 = ω` ∈ ω3 = ω` ∈ ω4 ∀` ∈ L \ {i, j}

We have,

∏
`∈Lω e−λ`T

∏
`∈L\Lω∪{i,j}

(
1− e−λ`T

)
=
∏

`∈Lω\{j} e
−λ`T

∏
`∈L\Lω∪{i}

(
1− e−λ`T

)
=
∏

`∈Lω\{i} e
−λ`T

∏
`∈L\Lω∪{j}

(
1− e−λ`T

)
=
∏

`∈Lω\{i,j} e
−λ`T

∏
`∈L\Lω

(
1− e−λ`T

)
Therefore,
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∂2h̄(λ)
∂λi∂λj

= M ′
[
e−λiT e−λjT

∏
`∈Lω e−λ`T

∏
`∈L\Lω∪{i,j}

(
1− e−λ`T

)
(1η(ω)00 − 1η(ω)01 − 1η(ω)10 + 1η(ω)11) + . . .

]
Where M ′ = M |Ω|

4
T . As 1η(ω) is submodular, the following inequality holds,

1η(ω)11 + 1η(ω)00 ≤ 1η(ω)01 + 1η(ω)10

Therefore,

∂2h̄(λ)
∂λi∂λj

≤ 0, ∀i 6= j

Thus, by de�nition, the reliability function, h̄(λ), is submodular.

We also analyze whether our reliability function (4.2a) is DR-submodular. A twice

di�erentiable function f(·) is DR-sumodular if and only if ∀x ∈ X, ∂
2f(x)
∂xi∂xj

≤ 0,∀i, j [20]. The

proof of Theorem 1 shows that the ∂2h̄(λ)
∂λi∂λj

≤ 0,∀i 6= j. Therefore, we need to check whether

the diagonal entries of the Hessian matrix of h̄(λ) are non-positive, i.e., ∂
2h̄(λ)

∂λ2i
≤ 0, ∀i.

Theorem 2. Given that lifetime of the network components are exponentially distributed with

failure rate λ = (λ1, . . . , λ|L|), the reliability function, h̄(λ) (4.2a) is not DR-submodular.

Proof. From the proof of Theorem 1, we have

∂h̄(λ)
∂λi

= M
[∑

ω∈Ω(ωi=0) e
−λiT

∏
`∈Lω e−λ`T

∏
`∈L\Lω∪{i}

(
1− e−λ`T

)
1η(ω)0

−
∑

ω∈Ω(ωi=1) e
−λiT

∏
`∈Lω\{i} e

−λ`T
∏

`∈L\Lω

(
1− e−λ`T

)
1η(ω)1

]
∂2h̄(λ)

∂λ2i
= M

[∑
ω∈Ω(ωi=0)−Te−λiT

∏
`∈Lω e−λ`T

∏
`∈L\Lω∪{i}

(
1− e−λ`T

)
1η(ω)0

+
∑

ω∈Ω(ωi=1) Te
−λiT

∏
`∈Lω\{i} e

−λ`T
∏

`∈L\Lω

(
1− e−λ`T

)
1η(ω)1

]
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Pairing the scenarios from the two groups, where each pair (ω1, ω2) is formed as ω1 ∈

Ω(ωi=0) and ω
2 ∈ Ω(ωi=1) such that only the state of component i is di�erent between ω1 and

ω2, i.e., ω` ∈ ω1 = ω` ∈ ω2 ∀` ∈ L \ {i}, we have

∏
`∈Lω e−λ`T

∏
`∈L\Lω∪{i}

(
1− e−λ`T

)
=
∏

`∈Lω\{i} e
−λ`T

∏
`∈L\Lω

(
1− e−λ`T

)
Therefore, ∂

2h̄(λ)

∂λ2i
can be written as a sum of the scenario pairs as follows

∂2h̄(λ)

∂λ2i
= M ′

[
e−λiT

∏
`∈Lω\{i} e

−λ`T
∏

`∈L\Lω

(
1− e−λ`T

)
(1η(ω)1 − 1η(ω)0) + . . .

]
As 1η(ω) is nondecreasing submodular in ω, (1η(ω)1 − 1η(ω)0) ≥ 0.

Therefore,

∂2h̄(λ)

∂λ2i
≥ 0, ∀i

Thus, by de�nition, the reliability function, h̄(λ), is not DR-submodular.

4.5 Solution Approach

This section details the solution algorithm for solving our two-stage stochastic program. As

we prove in Theorem 1 that the objective function (4.2a) of our SPEU model is submodular,

we can use algorithms for continuous submodular function (CSF) maximization to solve our

model. As discussed in Section 4.1.2, in CSF literature, there exist di�erent algorithms for

maximizing a constrained continuous submodular function with a worst-case performance

guarantee. Some of the recent notable algorithms include conditional gradient (a.k.a., Frank-

Wolfe) algorithm [103], stochastic gradient method [51] for continuous DR-submodular

function maximization with general convex constraint, continuous greedy algorithm for

continuous monotone submodular function maximization subject to down-closed constraint

[141] and general matroid constraint [26, 64].
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The objective function (4.2a) of our SPEU model is similar to the multilinear extension of

a discrete submodular function maximized using the continuous greedy algorithm in Jegelka

[64], with the di�erence that our objective function has probability functions instead of

probabilities. Therefore, we implement the continuous greedy approximation algorithm

presented in Jegelka [64] to solve our continuous submodular stochastic program (4.2). This

algorithm is also similar to Calinescu et al. [26]. This continuous greedy approximation

algorithm provides a worst-case performance guarantee of (1− 1
e
)OPT − ε for maximizing a

continuous DR-submodular function subject to a general matroid constraint, where ε = Cg

2K
.

This worst-case performance improves as the number of iterations (K) increases. The

algorithm is presented in Algorithm 2.

Algorithm 2 Continuous Greedy Algorithm
1: function Continuous Greedy

2: initialize λ0 = 0

3: while k ≤ K do

4: δk = arg maxδ∈conv(I)〈δ,∇h̄(λk)〉

5: λk+1 = λk + αkδ
k

6: k ← k + 1

7: end while

8: return λK

9: end function

At each iteration k of the algorithm, we �nd a direction δk by solving a maximization

problem over conv(I), where I is the independent set of a matroid. In our problem, the

conv(I) is de�ned for the uniform matroid by the inequality shown in Eq. (4.2b). At each

iteration k, we take linear combination of the current iterate (λk) and direction δk to obtain

the next iterate (λk+1). In this algorithm, the step size (αk) is determined as αk = 1
K
.
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4.6 Case Study

In this section, we present a case study for a complex submodular system reliability

allocation problem. We conduct computational experiments to evaluate the performance of

the stochastic programming model and the continuous approximation algorithm in solving

a complex submodular system reliability allocation problem and provide insights into the

problem.

4.6.1 Case Study Description

As a case study, we consider a sensor placement problem in a water supply network. It is

crucial to detect malicious contaminations in the water supply as contaminations can a�ect

a large population [72]. To detect malicious contaminations and to ensure the supply of

pure drinking water to an area, sensors are placed in the network. We assume that the

network con�guration is �xed, meaning that the water supply network's sensor locations

are pre-determined. This network aims to cover (satisfy) the minimum required demand for

pure drinking water over a speci�ed time horizon T . We generate networks based on the

southeastern United States (according to the American Association of Geographers), where

each node represents a city in the southeastern United States. We generate di�erent-sized

networks based on a threshold population, for example, considering cities with more than

100,000 population results in a 121-node network. We solve the maximum covering location

model of Church and ReVelle [28] for the generated networks to determine the location of the

sensors. There are two sets of nodes in the resulting network�sensor locations and demand

points. Let S denotes the set of demand points indexed by s. Demand as of node s is set

to the corresponding city population divided by 103. A 32-node network is shown in Figure

F.7 (Appendix F) . This network structure is complex as it is not possible to represent the

network as a series-parallel combination of the sensors.

As the sensors are exposed to the natural environment, their performance degrades over

time and eventually becomes inoperable [72]. The network managers can invest their limited

budget in placing better quality sensors having a longer lifetime to ensure the detection

of contaminations and thus enable the supply of pure drinking water. However, as it is
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di�cult to accurately estimate the e�ects of numerous environmental factors on the sensors'

performance, their lifetime is usually uncertain, making their survival/failure states of being

uncertain at the end of time horizon T . Each scenario ω ∈ Ω of our stochastic programming

model represents a particular realization of all the sensors' survival/failure states at the end

of time horizon T . To represent the survival/failure state of a sensor ` in scenario ω, we

de�ne the parameter eω` as follows

eω` =

1 if sensor ` survives after timeT in scenarioω

0 otherwise

Realizing the sensors' survival/failure states in scenario ω, we can compute the amount

of demand covered by the sensors survived in scenario ω. Let D be the maximum distance

from a demand point s within which a sensor should exist (survive) for the demand point

to be covered. We refer this distance D as coverage radius. De�ning the distance between a

demand point s and a sensor ` surviving in a scenario as ds`, the demand point s is considered

to be covered if ds` ≤ D. Therefore, the set of neighboring sensors covering a demand point

s is de�ned as Ns := {` ∈ L|ds` ≤ D}. To represent whether a demand point s is covered in

scenario ω, we de�ne the variable xωs as follows:

xωs =

1 if the demand point s is covered in scenarioω

0 otherwise

The goal of the network managers here is to optimally invest their budgets among

the sensors to maximize the total probability over all scenarios in Ω that the minimum

required demand coverage η is maintained in this network. Network managers can use the

stochastic programming model (4.2) to compute the optimal investment decisions. Realizing

the sensors' survival/failure states in scenario ω, the second-stage model (4.3) maximizes the

amount of demand covered in the network.
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gω = max
∑
s∈S

asx
ω
s (4.3a)

s.t.
∑
`∈Ns

eω` ≥ xωs ∀s ∈ S (4.3b)

xωs ∈ {0, 1} ∀s ∈ S (4.3c)

The objective function (4.3a) computes the maximum demand covered in scenario ω.

Each constraint (4.3b) ensures that a demand point is covered in scenario ω if at least a

sensor within distance D from the demand point survives in that scenario ω.

The second-stage demand coverage function gω is submodular in ω = (ω`)`∈L, where ω`

denotes the state of sensor ` in scenario ω. The submodularity of the second-stage objective

function (4.3a) is very intuitive. The value of demand covered gω increases as more sensors

survive the time horizon T in scenario ω. But, the improvement in gω for an additional

sensor's availability (survival) decreases (nonincreasing) as the number of surviving sensors

so far increases.

This second-stage model's key feature is that unlike the traditional two-stage stochastic

programs, second-stage computation depends on the �rst-stage decision variables, computa-

tion of the second-stage model (4.3) is independent of the �rst-stage model (4.2). Therefore,

we can compute the second-stage values prior to solving the �rst-stage model.

4.6.2 Experimental Setup

We implemented the reliability maximization model and continuous greedy approximation

algorithm for the water supply network discussed above in Python 2.7. We conduct numerical

experiments to provide insights into the following research questions: (1) how large problems

can be solved by the continuous greedy algorithm within a reasonable time, (2) how does the

network size�number of nodes and number of sensors�a�ect the algorithm runtime, (3)

how does the decision maker's budget a�ect the maximum reliability (objective value), (4)

how do the model parameters�coverage radius (D) and minimum required demand coverage
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(η)� a�ect the maximum reliability? In the numerical experiments, we used the parameter

values as shown in Table 4.2.

4.6.3 Performance of Continuous Greedy Algorithm

This section presents the performance�runtime and solution quality�of the continuous

greedy algorithm in solving our submodular stochastic programming model for the water

supply networks. To test the computational e�ciency of the algorithm, we ran experiments

on a personal computer running MacOS with Intel Core i9 @2.9 GHz with 16GB of

installed RAM. Figures 4.1 and 4.2 demonstrate the runtime and objective value (reliability),

respectively, of the continuous greedy algorithm for solving di�erent-sized problem instances

with varying number of sensors, number of iterations, and decision maker's budget. We

allowed the algorithm to run for 1 hour.

Figure 4.1 demonstrates that the continuous greedy algorithm can solve the stochastic

submodular reliability allocation problem for most 69- and 121-node network instances in

less than 30 minutes. We see from Figure 4.1 that runtime increases substantially as the

number of sensors in a network increases. As the number of sensors increases, the number

of scenarios in our stochastic programming model increases substantially. Therefore, in each

iteration of the algorithm, the gradient is computed for an increased number of scenarios,

resulting in a larger runtime. Figure 4.1 shows that runtime increases with the number of

iterations (K) within the same budget level, which is intuitive. The algorithm runtime does

not show any noticeable trend as the network size increases.

Figure 4.2 shows that the solution quality improves as the number of iterations increases

within the same budget level, consistent with the algorithm's theoretical performance. As

mentioned earlier, the worst-case performance
(

(1− 1
e
)OPT − Cg

2K

)
improves as the number

of iterations increases. However, it is evident from Figure 4.2 that the rate of improvement

in solution quality diminishes as the number of iterations increases beyond a certain value

while increasing runtime substantially. For instance, we see in Figure 4.1 that the algorithm

cannot solve the problem instances with 18 sensors (number of scenarios, |Ω| > 260, 000)

within 1 hour when the number of iterations goes beyond 40. Therefore, practitioners should
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Table 4.2: Parameters and their values used in the computational experiments.

Parameter Values Used

Network size (Number of nodes) 69, 121
Number of sensors, |L| 12, 15, 18

Coverage radius, D (low, high) (50 miles, 350 miles)
Minimum required demand coverage, η (low, high) (10%, 90%)

Budget, B (low, high) (10, 120)
Number of iterations, K (low, high) (10, 100)
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Figure 4.1: Impact of network size, number of sensors, number of iterations, and decision-
maker's budget on runtime.
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Figure 4.2: Impact of number of sensors, number of iterations, and decision maker's budget
on reliability.
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consider this trade-o� between the runtime and solution quality in setting the algorithm's

number of iterations (K) parameter.

4.6.4 E�ect of Budget, Coverage Radius, and Minimum Required

Demand Coverage on Reliability

Figure 4.3 demonstrates the variation of reliability with the decision maker's budget for two

di�erent networks, 69- and 121-node networks, each with 15 sensors. We see that reliability

increases as the decision maker's budget increases, which is very intuitive. With an increased

budget, the decision-maker can invest more resources in the sensors, reducing their failure

rate and increasing the likelihood of survival. As the more sensors survive, the more demand

can be covered, which increases the probability that the minimum required demand is covered

in the network.

However, reliability does not increase uniformly as the budget increases. Initially, with a

small amount of budget, it is impossible to make su�cient investment to increase the lifetime

of the sensors substantially. As the budget increases, more investment is made to the critical

sensors that cover a substantial amount of demand, increasing the reliability at a higher rate.

However, as the budget becomes large enough that a large investment can be made to most

of the sensors, the additional budget has less impact on reliability improvement.

Practitioners can use our model along with their own datasets to produce a �gure like

Figure 4.3 to decide on the amount to invest in the network sensors, depending on their

desired reliability.

We demonstrate a solution for a 32-node network instance obtained from the continuous

greedy algorithm in Figure F.7 (Appendix F) to clarify how a given budget is allocated to

the sensors to maximize reliability. The solution demonstrates that when the budget is not

large enough to invest a fair amount of resources to all sensors to reduce all the sensors'

failure rate, the model tries to minimize the failure rate of the critical sensors that cover

larger demand.

Table 4.3 demonstrates the variation of reliability (objective value) with coverage radius

across di�erent decision maker's budget levels. As the coverage radius in the water supply

138



Figure 4.3: Variation of reliability with decision maker's budget for 69- and 121-node
networks.
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Table 4.3: Variation of reliability with coverage radius, D. Other parameters are: K = 80
and η = 60% of the total demand.

D
Budget

20 50 80 110

50 0 0 0 0
100 0 0.0121 0.0244 0.0935
150 0.0001 0.0346 0.2005 0.4696
200 0.0025 0.1538 0.3832 0.6414
250 0.0089 0.1489 0.4951 0.7438
300 0.0081 0.1702 0.5138 0.8086
350 0.0093 0.1784 0.5841 0.8632
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network increases, a demand point can be covered by a sensor located far away from the

demand point. Therefore, the larger the coverage radius, the more fraction of the total

demand is covered in the scenarios, resulting in a higher probability that the minimum

required demand (η) is covered by the network.

Table 4.4 demonstrates the variation of reliability with the minimum required demand

coverage (η) in the network for di�erent budget levels. Here, η is shown as a percentage of

the total demand in the network. As the minimum required demand coverage (η) increases,

the network fails to cover this larger η in more number of scenarios, i.e., gω < η. Therefore,

the probability of these scenarios has no contribution to the objective value of the stochastic

program (reliability). Thus the larger the value of η, the smaller is the reliability within the

same budget level.

4.7 Conclusions

We studied a particular case of a complex system reliability allocation problem, where

the system is submodular. In this problem, the decision-maker seeks to optimally invest

the limited resources to the network components to maximize the probability that the

network provides a minimum required utility over a speci�ed time horizon. We assume that

components' lifetimes are uncertain to the decision-maker and distributed exponentially.

The lifetime of a component depends probabilistically on the investment amount to that

component.

We formulated the problem as a two-stage stochastic programming model with endoge-

nous uncertainty, where the �rst-stage investment decisions a�ect the scenario probabilities.

Utilizing the complex system's submodularity, we proved that our stochastic programming

model's objective function is also submodular. This research contributes to the SPEU

literature by establishing the SPEU modeling framework's submodularity when probability

distribution (exponential distribution) governing uncertainty does not have semigroup

property. We implemented a continuous greedy approximation algorithm to solve our

submodular stochastic programming model.
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Table 4.4: Variation of reliability with minimum demand to be covered η. Other parameters
are: K = 80 and D = 150 miles.

η%
Budget

20 50 80 110

20 0.1552 0.4823 0.7847 0.9307
30 0.1044 0.3793 0.7077 0.8735
40 0.0389 0.1600 0.4788 0.7299
50 0.0060 0.1417 0.3987 0.6279
60 0.0001 0.0346 0.2006 0.4696
70 0.0001 0.0128 0.0779 0.2214
80 0 0.0069 0.0338 0.0894
90 0 0 0 0.001
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We conduct computational experiments based on a case study of sensor placement in a

water supply network. Results show that the continuous approximation algorithm can solve

large problem instances within a reasonable amount of time (less than an hour). Algorithm

runtime increases as the network size, the number of sensors in the water supply network,

and iterations increase. System reliability increases as the decision maker's budget increases.

Reliability also increases as the maximum distance (coverage radius) within which a sensor

should exist to cover a demand point increases. Reliability decreases as the minimum required

demand coverage in the network increases.

This research can be extended in several possible directions. We plan to provide a

numerical performance comparison of the continuous approximation algorithm with a global

optimization solver (e.g., BARON). A possible extension is to study the submodularity in

SPEU literature for other probability distributions commonly used in reliability allocation

problems, such as the Weibull distribution. Another possible extension is to establish the

worst-case performance guarantee of the continuous approximation algorithm in solving

the submodular SPEU framework for exponential and Weibull distributions. Also, other

application areas of submodular systems can be explored, such as maximizing marketing

coverage of new products, where the investment decisions can a�ect the underlying

uncertainty as well.

143



Chapter 5

Conclusions

This dissertation focuses on (1) developing new SPEU models for problems having natural

endogenous (decision-dependent) uncertainty, (2) presenting mathematical reformulations to

linearize the nonconvex models, (3) establishing submodularity of the modeling framework

for some probability distributions, (4) designing and implementing exact and approximate

solution approaches utilizing the structure of the models, and (5) demonstrating the bene�t

of this modeling and solution approaches to di�erent application areas. Methodologies

presented in this dissertation are useful for practitioners in solving problems with endogenous

uncertainty. The numerical results provide key managerial insights and policy-making

implications to the practitioners in those application areas. Practitioners can also adopt

the proposed models and solution approaches in other application areas.

The following sections draw more speci�c conclusions to each aspect of this dissertation

and discuss potential future research directions.

5.1 Models and Applications of SPEU

This dissertation presents new SPEU models for both discrete and continuous decision

variables. In chapters 2 and 3, we introduced new data-driven SPEU models with discrete

decision variables, whereas chapter 4 presents an SPEU model with continuous decision
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variables. The models presented in chapters 2 and 3 are data-driven as they integrate super-

vised machine learning algorithms into these stochastic programming models to estimate the

probability distributions of the uncertain parameters by analyzing historical/survey data.

Chapter 2 introduces a data-driven two-stage SPEU model for a risk-based incentive

structure design problem seeking to optimally allocate monetary incentives to private

landowners to encourage them in reducing the risk of potential future wild�res by

implementing hazardous fuel reduction treatment. This model provides the solution to

a practical and challenging problem that has not been addressed to date. Our proposed

model captures the realistic nature of the problem by modeling landowner behavior to

be a probabilistic function of the incentive amount o�ered to the landowners. This data-

driven model integrates a logistic regression model to estimate the conditional probability

distributions of the landowners' accepting a given incentive amount. As the probability

distributions of landowners' behaviors are a function of incentive allocation decisions,

and thus, scenarios probabilities are a function of the decisions, the resulting stochastic

optimization model is nonconvex. Results from the model based on Santa Fe National Forest

data provide policy implications to the �re managers in investing their limited budgets and

choosing budget allocation levels to best accomplish their wild�re risk-mitigating objectives.

Chapter 3 presents a new data-driven stochastic programming model for problems where

both endogenous and exogenous uncertainties coexist. Unlike the SPEU model of chapter

2, �rst-stage decisions a�ect only the scenario probabilities, in this model, some �rst-stage

decision variables a�ect the scenario probabilities (decision-dependent uncertainty) whereas,

other variables a�ect recourse decisions as in exogenous uncertainty. The proposed model is

used to formulate an integrated network design and infrastructure protection problem with

the realistic assumption that the e�ects of protection and disruption on infrastructure are

imperfect. Infrastructure is likely to have a higher post-disruption capacity as the protection

investment increases and disruption intensity to which it is exposed decreases. We integrated

several supervised machine learning algorithms into the stochastic optimization model to

estimate the conditional probability distributions of the post-disruption capacities. As the

scenario probabilities are a function of the protection investment decisions, the resulting

model is nonconvex.
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Computational results demonstrate that computational complexity in solving the model

with endogenous and exogenous uncertainty is substantially higher than solving the model

with only endogenous uncertainty, as in chapter 2. But, modeling the realistic imperfect

protection and disruption using the data-driven SPEU model provides a substantially better

solution than the models assuming perfect protection. Also, we found that the proposed

model in chapter 3 provides a substantially better solution than the models ignoring

underlying uncertainty. Another key �nding is that the optimal solution of the data-driven

stochastic optimization model is sensitive to the estimation error of the supervised learning

algorithms used. Therefore, practitioners should consider using a supervised learning

algorithm with the least estimation error.

Chapter 4 studies the submodularity of the reliability maximization objective function

of a complex submodular system. We formulated the problem as a two-stage SPEU model,

where the continuous investment decision variables probabilistically a�ect the lifetime of the

system components. We conduct a case study based on a water supply network to present

insights into the problem.

5.2 Theoretical Properties and Solution Approaches for

SPEU

This dissertation presents mathematical reformulations for linearizing nonconvex models.

It also presents simulation, exact decomposition, and approximation approaches to solve

optimization problems under endogenous uncertainty.

In chapter 2, we implemented a reformulation technique to linearize the nonconvex model.

We faced a challenge in solving a realistic-size problem over large landscapes because the

number of scenarios in our stochastic program and the wild�re sub-scenarios in each scenario

becomes very large (millions), making the model computationally intractable. To overcome

this challenge, we integrated a simulation program that computes the second-stage objective

value in each scenario by modeling the wild�re spread through the landscape, accounting for

fuel reduction treatment information, weather and landscape characteristics. We modeled the

146



landscape as a directed network and wild�re spread as a network �ow problem in computing

the wild�re damage in each scenario. This network �ow problem relates our problem to the

class of stochastic network interdiction problem, as the allocation of fuel treatment resources

interdicts (prevents) the spread of wild�res. Computational results suggest that this data-

driven simulation-integrated SPEU model can be used to solve realistic-size problems within

a reasonable time.

Chapter 3 proposes a mathematical reformulation to linearize the nonconvex model and

prove that this reformulation is exact without any approximation gap. Taking advantage

of the structure of the reformulated model presented in chapter 3, we implemented a L-

shaped decomposition algorithm to solve the model. We introduced several valid inequalities

to enhance the computational e�ciency of the algorithm. We found that this exact

decomposition algorithm's runtime increases exponentially as the problem size�number

of nodes and facilities, number of protection levels, and capacity states�increases. The

accelerated L-shaped algorithm can solve moderately large-sized problem instances (32-node

network with six facilities) within a reasonable time (2 hours). Remarkably, the algorithm

fails to solve larger problems when the number of scenarios in the stochastic program goes

beyond 3000, i.e., |Ω| > 3000. This computational limitation raises the necessity of a more

e�cient algorithm or further enhancement to this algorithm's computational e�ciency.

Chapter 4 studies the submodularity of the objective function of the SPEU framework

when the uncertain parameters follow an exponential distribution. We proved that the

reliability maximization objective function is submodular but not DR-submodular for the

exponential distribution. Taking advantage of this submodularity, we implemented a

continuous greedy approximation algorithm capable of solving large-scale problems much

faster than the exact algorithms.

5.3 Limitations and Future Work

We assumed in the mathematical models and reformulations that the elements (e.g.,

facilities) are independent of each other, meaning that one element's probability distribution

is independent of another. But, in some application areas, such as in power systems,
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components can be interdependent. For example, the failure of a substation can cause

the failure of another, leading to a cascading failure. In this case, our exact reformulation

does not work. This limitation spurs the necessity to develop a new SPEU model and

reformulations to solve problems with interdependent elements.

Our proposed accelerated L-shaped decomposition algorithm has computational limita-

tions in solving a very large problem when both endogenous and exogenous uncertainties

coexist. A sample average approximation algorithm can be used to alleviate the issue with

a large number of scenarios.

Though multi-stage stochastic programs have been extensively studied in SPEA litera-

ture, this framework has not gained much attention in SPEU literature to date. But, the

multi-stage SPEU model is bene�cial in many application areas, such as the multi-period

version of the incentive structure design for fuel reduction treatment in the wild�re risk

reduction problem studied in chapter 2. Naturally, fuel reduction treatment is a multi-

period problem, as fuel accumulates over time in the landscape. Therefore, to reduce the

risk of wild�res over a long time, an incentive program needs to be designed that accounts

for the fuel re-growth each year and make adjustments in the decisions over the planning

horizon. This requires to model the problem as a multi-stage SPEU and warrants developing

new solution approaches.

A possible extension can be developing mean-risk SPEU models by incorporating risk

measures such as conditional-value at risk and develop new solution approaches. Some

applications of this new mean-risk modeling and solution approaches include mitigating the

risk of substantially large �nancial damage and fatalities from catastrophic wild�res and

mitigating the risk of severe cyber-attacks [15], where investment decisions can reduce the

likelihood of attack success.

Theoretical properties of the SPEU framework can be studied for other commonly used

probability distributions. It would also be bene�cial to study whether the mean-risk objective

function of the SPEU framework is submodular. Submodularity of the mean-risk function

would bene�t many real-life application areas, including but not limited to cyber-security,

disaster mitigation, supply chain management.
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A Additional Results of Chapter 2

A.1 Parameters

Table A.1 includes the number of acres owned by each landowner j for landscapes having

|J | =4, 6, 8, 10 total landowners, and Table A.2 shows the dollar amounts for each allocation

level k when there are |K| =2, 4, 6, 8, 10 allocation levels.

A.2 Average Runtime

Table A.3 shows the average runtimes of the risk-based allocation experiments for the Santa

Fe landscape. Cells marked with asterisk (*) represent the combinations that cannot reach

optimality within 6 hours (21600 seconds) and provide sub-optimal solution at termination.

Tables A.4 and A.5 show the average runtimes of the uniform and hybrid allocation

experiments, respectively, for the Santa Fe landscape. Compared to the average runtimes for

the risk-based allocation experiments, discussed in Section 2.4.2, the runtimes for uniform

and hybrid allocation methods are more consistent across number of cost-share allocation

levels |K|, for each number of landowners |J |.

A.3 Impact of Budget on Expected Damage

Table A.6 shows that increasing the budget by $20,000 from $20,000 to $100,000 provides,

on average, a 33.18% improvement in the expected damage reduction to the landscape when

using risk-based allocation. These values are also displayed in Figure 2.4 in Section 2.4.3.

Cells marked with asterisk (*) represent the combinations that cannot reach optimality

within 6 hours (21600 seconds). The solutions of these timed-out combinations are sub-

optimal for which we use the best upper bound found at termination as expected damage.

As shown in Table A.7, budget increases of $20,000 from $20,000 to $100,000 provide, on

average, a 31.33% reduction in the expected damage to the landscape when using uniform

allocation. Similarly, Table A.8 shows an average improvement of 33.31% from increasing

the budget by $20,000 from $20,000 to $100,000 when using hybrid allocation.
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Table A.1: Landowner acreage for each modi�ed landscape.

Landowner j
Number of Landowners |J |
4 6 8 10

1 584.7 325.2 224.9 179.9
2 539.7 415.1 356.3 294.1
3 498.2 377.1 204.1 193.7
4 539.7 314.8 314.8 207.6
5 � 346.0 238.7 221.4
6 � 384.0 259.5 214.5
7 � � 242.2 228.3
8 � � 321.7 166.1
9 � � � 179.9
10 � � � 276.8
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Table A.2: The cost-share assistance amounts associated with each allocation level k,
according to the total number of levels |K|.

Level k
Number of Levels |K|

2 4 6 8 10

0 $0.00 $0.00 $0.00 $0.00 $0.00
1 $39.83 $13.28 $7.97 $5.69 $4.43
2 � $26.55 $15.93 $11.38 $8.85
3 � $39.83 $23.90 $17.07 $13.28
4 � � $31.86 $22.76 $17.70
5 � � $39.83 $28.45 $22.13
6 � � � $34.14 $26.55
7 � � � $39.83 $30.98
8 � � � � $35.40
9 � � � � $39.83
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Table A.3: Risk-based allocation runtimes (in seconds) by number of landowners |J |,
cost-share budget size B, and number of cost-share allocation levels |K|.

|J | B
|K| Average

Runtime for |J |2 4 6

4

$20,000 181.83 182.56 182.29
$40,000 184.02 184.43 185.15
$60,000 183.13 183.08 184.04
$80,000 182.87 183.96 183.90
$100,000 181.68 183.70 184.05
Average 182.70 183.55 183.89 183.38

6

$20,000 730.60 733.48 736.28
$40,000 735.81 736.16 739.83
$60,000 736.97 736.80 736.07
$80,000 736.07 733.81 732.81
$100,000 738.11 741.00 735.62
Average 735.51 736.25 736.12 735.96

8

$20,000 2821.89 2815.90 2888.43
$40,000 2804.90 2857.99 3402.12
$60,000 2877.44 2906.68 3284.45
$80,000 2824.73 2849.41 2963.43
$100,000 2825.10 2832.76 2922.51
Average 2830.81 2852.55 3092.19 2925.18

10

$20,000 11558.93 12316.99 *
$40,000 11593.11 17595.83 *
$60,000 11620.34 17066.81 *
$80,000 11677.09 13582.60 *
$100,000 11710.05 12924.61 *
Average 11631.91 14697.37 * 16260.70*
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Table A.4: Uniform allocation runtimes (in seconds) by number of landowners |J |, budget
size B, and number of allocation levels |K|.

|J | B
|K| Average

Runtime for |J |2 4 6

4

$20,000 183.92 184.97 184.97
$40,000 183.30 185.80 185.91
$60,000 185.40 186.20 185.24
$80,000 184.72 186.14 186.08
$100,000 185.79 182.75 185.59
Average 184.63 185.17 185.56 185.12

6

$20,000 741.66 740.81 737.86
$40,000 728.32 724.13 725.49
$60,000 729.08 732.72 735.20
$80,000 733.00 732.17 736.18
$100,000 736.73 733.09 736.38
Average 733.76 732.59 734.22 733.52

8

$20,000 2863.46 2791.33 2787.83
$40,000 2787.66 2787.99 2788.61
$60,000 2786.87 2789.77 2786.47
$80,000 2787.82 2787.17 2785.09
$100,000 2782.54 2784.41 2781.10
Average 2801.67 2788.13 2785.82 2791.87

10

$20,000 11383.86 11312.21 11336.02
$40,000 11425.71 11378.79 11459.91
$60,000 11413.46 11424.82 11379.98
$80,000 11376.19 11505.71 11554.96
$100,000 11476.50 11596.44 11588.25
Average 11415.14 11443.60 11463.82 11440.85
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Table A.5: Hybrid allocation runtimes (in seconds) by number of landowners |J |, budget
size B, and number of allocation levels |K|

|J | B
|K| Average

Runtime for |J |2 4 6

4

$20,000 180.54 183.39 183.66
$40,000 184.74 184.66 182.32
$60,000 184.52 183.95 184.79
$80,000 183.33 184.27 185.65
$100,000 182.57 185.09 186.21
Average 183.14 184.27 184.53 183.98

6

$20,000 738.48 740.64 741.88
$40,000 744.43 739.76 739.40
$60,000 741.05 738.01 740.64
$80,000 739.94 738.61 739.37
$100,000 741.62 737.78 740.16
Average 741.11 738.96 740.29 740.12

8

$20,000 2891.66 2884.88 2893.03
$40,000 2889.63 2888.29 2893.67
$60,000 2891.90 2887.64 2893.26
$80,000 2891.07 2885.75 2888.84
$100,000 2887.75 2883.89 2893.41
Average 2890.40 2886.09 2892.44 2889.64

10

$20,000 11615.71 11716.40 11868.53
$40,000 11635.37 11717.39 11772.88
$60,000 11677.41 11763.81 11773.85
$80,000 11669.92 11713.65 11779.22
$100,000 11698.73 11707.93 11761.60
Average 11659.43 11723.84 11791.22 11724.83
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Table A.6: Average percent improvement in expected damage reduction due to budget B
for |J | landowners across |K| allocation levels using risk-based allocation.

|J | B
|K| Improvement

from Previous

Improvement

over $20,0002 4 6

4

$20,000 149.00 137.75 131.23 � �
$40,000 126.09 91.45 86.52 27.3% 27.3%
$60,000 82.33 58.17 55.11 35.7% 53.2%
$80,000 53.29 32.39 32.52 39.6% 71.7%
$100,000 26.27 26.23 26.40 33.3% 81.1%

6

$20,000 132.92 123.14 124.18 � �
$40,000 104.92 84.28 84.43 28.0% 28.0%
$60,000 60.32 54.55 53.59 38.4% 55.7%
$80,000 41.67 32.78 30.82 37.5% 72.3%
$100,000 25.32 25.36 25.36 27.8% 80.0%

8

$20,000 133.24 122.11 119.49 � �
$40,000 96.02 81.95 81.02 30.9% 30.9%
$60,000 63.10 52.08 50.20 36.1% 55.9%
$80,000 36.17 29.94 29.18 42.4% 74.6%
$100,000 24.59 24.59 24.60 22.6% 80.3%

10

$20,000 123.67 119.11 117.85* � �
$40,000 89.36 79.05 78.73* 31.5% 31.5%
$60,000 56.48 49.55 49.21* 37.2% 57.0%
$80,000 32.03 29.03 28.37* 42.4% 75.2%
$100,000 23.85 23.83 23.81* 20.1% 80.2%
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Figure A.1: Impact of budget on expected damage using hybrid and uniform cost-share
allocation strategies.
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Table A.7: Average percent improvement in expected damage reduction due to budget B
for |J | landowners across |K| allocation levels using uniform allocation.

|J | B
|K| Improvement

from Previous
Improvement
over $20,0002 4 6

4

$20,000 179.35 179.49 142.65 � �
$40,000 179.14 116.14 103.09 20.6% 20.6%
$60,000 179.23 58.80 68.36 23.1% 38.9%
$80,000 179.14 58.78 42.84 8.4% 44.0%
$100,000 26.31 26.25 26.27 71.9% 84.3%

6

$20,000 177.41 177.70 140.43 � �
$40,000 177.30 113.72 100.78 20.9% 20.9%
$60,000 177.28 56.96 66.31 23.3% 39.3%
$80,000 177.25 56.88 41.34 8.3% 44.4%
$100,000 25.45 25.32 25.28 72.4% 84.7%

8

$20,000 175.77 175.90 138.36 � �
$40,000 175.80 111.63 98.69 21.2% 21.2%
$60,000 175.85 55.27 64.56 23.4% 39.7%
$80,000 175.85 55.29 40.08 8.3% 44.7%
$100,000 24.60 24.61 24.61 72.8% 84.9%

10

$20,000 174.15 174.20 136.25 � �
$40,000 174.17 109.43 96.49 21.6% 21.6%
$60,000 174.17 53.65 62.74 23.6% 40.0%
$80,000 174.22 53.65 38.78 8.2% 45.0%
$100,000 23.81 23.81 23.83 73.2% 85.3%
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Table A.8: Average percent improvement in expected damage reduction due to budget B
for |J | landowners across |K| allocation levels using hybrid allocation.

|J | B
|K| Improvement

from Previous
Improvement
over $20,0002 4 6

4

$20,000 149.11 137.88 131.82 � �
$40,000 126.24 103.20 88.38 24.1% 24.1%
$60,000 82.61 58.65 66.96 34.5% 50.3%
$80,000 53.42 53.26 42.89 28.2% 64.3%
$100,000 26.33 26.21 26.28 47.3% 81.2%

6

$20,000 132.92 123.12 125.25 � �
$40,000 104.97 84.74 90.72 26.5% 26.5%
$60,000 60.00 56.89 56.21 38.3% 54.6%
$80,000 41.69 41.61 41.25 28.0% 67.3%
$100,000 25.40 25.35 25.36 38.9% 80.0%

8

$20,000 133.32 126.15 121.36 � �
$40,000 95.93 86.49 83.26 30.2% 30.2%
$60,000 63.05 55.28 54.61 34.9% 54.6%
$80,000 36.34 36.30 36.38 37.0% 71.4%
$100,000 24.62 24.57 24.59 32.3% 80.6%

10

$20,000 123.77 120.54 120.01 � �
$40,000 89.42 80.41 80.71 31.2% 31.2%
$60,000 56.62 53.61 54.58 34.2% 54.8%
$80,000 31.91 31.95 31.97 41.9% 73.7%
$100,000 23.83 23.83 23.83 25.4% 80.4%
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A.4 Cost-Share Allocation Levels in Each Allocation Strategy

Table A.9 demonstrates the cost-share assistance levels allocated to each landowner for each

parameter combination in each allocation strategy. Cells marked with asterisk (*) represent

the combinations that cannot reach optimality within 6 hours (21600 seconds) and yield the

best found sub-optimal solution at termination.

A.5 Results of the Logistic Regression Model

The logistic regression model is used to predict the probability of a landowner to accept a

cost-share program for a given amount or level of �nancial assistance. Let's consider that

the minimum and the maximum cost-share amount that an agency can o�er to a landowner

are $0 and $39.82, respectively. Also, assume that the number of allocation levels |K| = 4.

The discretized cost-share allocation levels with the corresponding cost-share amounts (U.S.

dollar) are shown in Table A.10.

The logistic regression model is trained using the synthetic data containing the cost-

share amounts (U.S. dollar) and the landowner's accept/reject decisions. Now the �tted

model is used to predict the probability of a landowner's acceptance or rejection for each of

the cost-share amounts in Table A.10. The estimated probabilities of accepting or rejecting

the cost-share o�er for a given dollar amount or the corresponding allocation level are shown

in Table A.11.

The probability of a landowner accepting a cost-share o�er is used in the stochastic

programming model.
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Table A.9: Cost-share assistance levels allocated to each landowner in uniform, hybrid,
and risk-based allocation strategies, where B is budget, |K| = 6 is the number of allocation
levels, |J | is the number of landowners.

B |J | Uniform Allocation Hybrid Allocation Risk-Based Allocation

$20,000

4 [1, 1, 1, 1] [2, 2, 0, 0] [1, 3, 0, 0]

6 [1, 1, 1, 1, 1, 1] [0, 3, 3, 0, 0, 0] [0, 4, 2, 0, 0, 0]

8 [1, 1, 1, 1, 1, 1, 1, 1] [3, 3, 3, 0, 0, 0, 0, 0] [2, 4, 3, 0, 0, 0, 0, 0]

10 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [3, 3, 3, 0, 0, 0, 0, 3, 0, 0] [2, 3, 3, 3, 0, 0, 0, 0, 0, 0]*

$40,000

4 [2, 2, 2, 2] [3, 3, 0, 3] [4, 4, 1, 0]

6 [2, 2, 2, 2, 2, 2] [4, 4, 4, 0, 0, 0] [4, 4, 2, 3, 1, 0]

8 [2, 2, 2, 2, 2, 2, 2, 2] [3, 3, 3, 3, 0, 0, 3, 3] [3, 4, 4, 2, 3, 0, 3, 0]

10 [2, 2, 2, 2, 2, 2, 2, 2, 2, 2] [3, 3, 3, 3, 3, 3, 0, 3, 3, 0] [3, 4, 4, 4, 1, 3, 0, 0, 0, 3]*

$60,000

4 [3, 3, 3, 3] [4, 4, 0, 4] [3, 4, 4, 3]

6 [3, 3, 3, 3, 3, 3] [4, 4, 4, 0, 4, 4] [5, 4, 3, 4, 2, 3]

8 [3, 3, 3, 3, 3, 3, 3, 3] [4, 4, 4, 4, 4, 4, 4, 0] [4, 4, 5, 4, 3, 2, 3, 3]

10 [3, 3, 3, 3, 3, 3, 3, 3, 3, 3] [4, 4, 4, 4, 4, 4, 4, 0, 0, 4] [4, 5, 4, 4, 3, 4, 2, 4, 3, 2]*

$80,000

4 [4, 4, 4, 4] [4, 4, 4, 4] [5, 5, 4, 4]

6 [4, 4, 4, 4, 4, 4] [4, 4, 4, 4, 4, 4] [5, 5, 5, 5, 5, 3]

8 [4, 4, 4, 4, 4, 4, 4, 4] [5, 5, 5, 5, 5, 0, 5, 5] [5, 5, 5, 5, 4, 4, 5, 4]

10 [4, 4, 4, 4, 4, 4, 4, 4, 4, 4] [5, 5, 5, 5, 5, 5, 5, 5, 0, 5] [5, 5, 5, 4, 5, 5, 4, 4, 4, 5]*
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Table A.10: Cost-share amount and the corresponding allocation levels

Allocation level (k) Cost-share amount (ck)

0 $0.00
1 $13.28
2 $26.55
3 $39.83
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Table A.11: Estimated probabilities of accepting the cost-share program

Cost-share
amount (ck)

Allocation level
(k)

Probability of
Acceptance

Probability of
Rejection

0 0 0.273 0.727
13.28 1 0.524 0.476
26.55 2 0.765 0.235
39.83 3 0.905 0.095
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B Mean Value Model of Chapter 3

The mean value model is presented as follows:

min
∑

(i,j)∈A

tijfij (1a)

s.t.
∑
k∈K

yzk = 1 ∀z ∈ NF (1b)∑
`∈L

C`x` +
∑
z∈NF

∑
k∈K

Ckyzk ≤ B (1c)

fij ≤ Uijx`(i,j) ∀(i, j) ∈ A (1d)∑
(i,j)∈RS(n)

fji −
∑

(i,j)∈FS(n)

fij = dn ∀n ∈ ND (1e)

∑
(i,j)∈FS(z)

fij −
∑

(i,j)∈RS(z)

fji ≤
∑
k∈K

(E [azs|yzk = 1] yzk) ∀z ∈ NF (1f)

∑
(i,j)∈FS(D)

fij ≤ CD (1g)

yzk ∈ {0, 1} ∀z ∈ NF , k ∈ K (1h)

x` ∈ {0, 1} ∀` ∈ L (1i)

fij ≥ 0 ∀(i, j) ∈ A (1j)

E [azs|yzk = 1] =
∑

ω∈Ω PωhPωzs(z ,ω)m(z ,ω)ka
ω
zs
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C Numerical Example of the Probability-Chain Refor-

mulation

We consider the small example shown in Section 3.2 as well as the probabilities demonstrated

in Table 3.1.

We assume that 1 unit of protection is allocated to the �rst facility and no protection is

allocated to the second facility, i.e., y11 = 1, y20 = 1. We also consider that the PDTC in

a given scenario ω is 4000 units where both facilities have a PDCS of 0. According to Eqs.

(3.7), we have:

�rst facility:

qω11 ≤ 4000y11

second facility :

qω20 ≤ 4000y20

The PPWPDTC corresponding to the �rst facility in scenario ω is computed using the

recursive Eq. (3.5) as follows:

qω11 = Pω1,0,0,1y11 × 4000 = 0.15× 4000 = 600

Using the value of qω11 in the recursive Eqs. (3.6), we compute the PPWPDTC upto the

second facility in scenario ω as follows:

qω11 = 1
Pω
2,0,0,0

× qω20 ⇒ qω20 = 0.90× 600 = 540

Therefore, the probability-weighted transportation cost in scenario ω is 540.
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D Test Networks of Chapter 3

D.1 16-Node Networks

This section demonstrates the changes in the optimal solution as the decision maker's budget

varies for a 16-node networks with 4 facilities. This section also presents the variation of the

expected fraction of total demand as budget changes. Figure D.2 demonstrates the optimal

link construction and protection investment decisions for the 16-node network with $10,000

budget, number of protection levels, |K| = 3 and number of capacity states, |S| = 3. The

number inside each node is the index of that node. The name of the city represented by each

node and the corresponding demand of that node (inside parenthesis) are given adjacent

to each node. The numbers above each link inside the parenthesis represent the index and

transportation cost of per unit �ow through that link, respectively. The numbers inside the

parenthesis next to each facility represent the capacity of that facility prior to its exposure

to a disruption and the protection level (k) invested to that facility, respectively. The solid

and dashed lines between nodes represent the constructed and unconstructed links in the

optimal solution, respectively.

Figure D.2 shows that given this small amount of budget, the decision maker can

construct few links in the network and is unable to invest any protection to the facilities.

It is to be noted that, given a small amount of budget, the primary concern is to construct

links in the network, allowing transportation of commodities. The total demand of this 16-

node network is 570.59 units. It is found that the optimal solution with this $10,000 budget

satis�es an expected demand of 308.80 units, which is 54.12% of the total demand.

Figure D.3 demonstrates the optimal link construction and protection investment

decisions for the 16-node network with $40,000 budget, number of protection levels, |K| = 3

and number of capacity states, |S| = 3. Unlike the solution with $10,000 budget, after

opening some links in the network, the optimal solution with $40,000 budget invests some

protection resources to the facilities that are exposed to high level of disruption intensity.

The expected fraction of the total demand satis�ed by the optimal solution with $40,000

budget is found to be 95.4%.
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Figure D.2: 16-node network with $10,000 budget
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Figure D.3: 16-node network with $40,000 budget
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Figure D.4 demonstrates the optimal solution for the 16-node network with $110,000

budget, number of protection levels, |K| = 3 and number of capacity states, |S| = 3.

With this large amount of budget, the decision maker can open enough links to transport

commodities to all the demand locations as well as invest highest level of protection resources

to all the facilities. Therefore, the expected fraction of the total demand satis�ed by the

optimal solution with $110,000 budget is found to be 100%.

D.2 25-Node Network

Figure D.5 demonstrates a 25-node network with 4 facilities used in the computational

experiments. The optimal solution for this 25-node network with $40,000 budget, number

of protection levels, |K| = 3 and number of capacity states, |S| = 3 is also demonstrated in

Figure D.5.

D.3 32-Node Network

Figure D.6 demonstrates a 32-node network with 4 facilities used in the computational

experiments. Figure D.6 also shows the optimal solution with $120,000 budget, number of

protection levels, |K| = 3 and number of capacity states, |S| = 3.
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Figure D.4: 16-node network with $110,000 budget
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Figure D.5: A 25-node network
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Figure D.6: A 32-node network.
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E Runtime of the Accelerated L-shaped Decomposition

Algorithm

Table E.12 demonstrates some of the runtime results for 25- and 32- node networks with 4 and

6 facilities and di�erent number of protection levels and capacity states. The �Runtime� and

�Gap� columns represent the runtime and the optimality gap of the algorithm at termination

after 2 hours, respectively.
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Table E.12: Runtime of the accelerated L-shaped algorithm (MCut + TR + nLimit + VI
+ PCut)

Network
Size, |N | |NF | B |S| |K| |Ω| Runtime Gap(%)

25 4 30000 3 3 324 351.73 0
25 4 30000 3 4 324 490.41 0
25 4 30000 4 3 1024 1262.08 0
25 4 30000 4 4 1024 1582.73 0
25 4 70000 3 3 324 425.66 0
25 4 70000 3 4 324 651.62 0
25 4 70000 4 3 1024 1498.31 0
25 4 70000 4 4 1024 2034.98 0
25 4 90000 3 3 324 318.48 0
25 4 90000 3 4 324 516.53 0
25 4 90000 4 3 1024 1260.24 0
25 4 90000 4 4 1024 1681.64 0
25 6 30000 3 3 2916 3687.68 0
25 6 30000 3 4 2916 5982.02 0
25 6 30000 4 3 16384 * 100
25 6 30000 4 4 16384 * 100
25 6 70000 3 3 2916 * 44.98
25 6 70000 3 4 2916 * 88.48
25 6 90000 3 3 2916 4021.31 0
25 6 90000 3 4 2916 6402.82 0
25 6 90000 4 3 16384 * 100
25 6 90000 4 4 16384 * 100
32 4 30000 3 3 324 652.34 0
32 4 30000 3 4 324 773.85 0
32 4 30000 4 3 1024 1872.57 0
32 4 30000 4 4 1024 2459.05 0
32 4 70000 3 3 324 924.47 0
32 4 70000 3 4 324 1383.31 0
32 4 70000 4 3 1024 2261.78 0
32 4 70000 4 4 1024 2946.77 0
32 4 90000 3 3 324 680.03 0
32 4 90000 3 4 324 831.49 0
32 4 90000 4 3 1024 1958.67 0
32 4 90000 4 4 1024 2513.24 0
32 6 30000 3 3 2916 * 16.51
32 6 30000 3 4 2916 * 28.87
32 6 30000 4 3 16384 * 100
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F A 32-Node Test Network of Chapter 4

Figure F.7 shows a 32-node water supply network with eight sensors. Figure F.7 also

demonstrates the solution provided by the continuous greedy algorithm for this 32-node

network with 25 units budget, 250 miles coverage radius, 80 iterations, and 60% minimum

required demand coverage.

The number inside each node is the index of that node. The name of the city represented

by each node and the corresponding demand of that node (inside parenthesis) are given

adjacent to each node. The number above each link represents the great-circle distance

between the two end nodes of that link. The number inside the parenthesis next to each

sensor shows the failure rate (λ) determined by the algorithm.

We know that the goal of our model is to optimally invest resources to the sensors

or equivalently to reduce the failure rate of the sensors to enhance their lifetime. As more

resources are invested in the sensors, and their failure rate decreases, their survival probability

increases. The more sensors survive the time horizon T , the more demand can be covered.

This eventually increases the reliability�probability that the minimum required demand is

covered. When the budget is not large enough to invest a fair amount of resources to all

sensors or reduce all the sensors' failure rate, the model tries to minimize the failure rate of

the critical sensors that cover large demand. We see from Figure F.7 that with a 25 unit

budget, the sensors' have di�erent failure rates in the �nal solution. As the 25 unit budget

is not large enough to reduce the failure rate of all the sensors equally, the model prioritizes

enhancing the lifetime of the critical sensors located in Huntsville (λ = 0.16), St. Petersburg

(λ = 0.70), and Virginia Beach (λ = 0.20). Because these sensors cover a larger amount of

demand than the other sensors, their survival during the time horizon is crucial to maximize

reliability. On the other hand, the sensor located in Jacksonville has the highest failure rate

(λ = 73.18). Because this sensor covers the least amount of demand and therefore gets the

least priority in enhancing its lifetime.
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Figure F.7: Solution for a 32-node network
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