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Abstract

Decision-making optimisation problems can include discrete selections, e.g. selecting a route,

arranging non-overlapping items or designing a network of items. Branch-and-bound (B&B),

a widely applied divide-and-conquer framework, often solves such problems by considering a

continuous approximation, e.g. replacing discrete variable domains by a continuous superset.

Such approximations weaken the logical relations, e.g. for discrete variables corresponding to

Boolean variables. Branching in B&B reintroduces logical relations by dividing the search space.

This thesis studies designing B&B branching strategies, i.e. how to divide the search space, for

optimisation problems that contain both a logical and a continuous structure.

We begin our study with a large-scale, industrially-relevant optimisation problem where the

objective consists of machine-learnt gradient-boosted trees (GBTs) and convex penalty functions.

GBT functions contain if-then queries which introduces a logical structure to this problem. We

propose decomposition-based rigorous bounding strategies and an iterative heuristic that can

be embedded into a B&B algorithm. We approach branching with two strategies: a pseudocost

initialisation and strong branching that target the structure of GBT and convex penalty aspects

of the optimisation objective, respectively. Computational tests show that our B&B approach

outperforms state-of-the-art solvers in deriving rigorous bounds on optimality.

Our second project investigates how satisfiability modulo theories (SMT) derived unsatisfiable

cores may be utilised in a B&B context. Unsatisfiable cores are subsets of constraints that

explain an infeasible result. We study two-dimensional bin packing (2BP) and develop a B&B

algorithm that branches on SMT unsatisfiable cores. We use the unsatisfiable cores to derive

cuts that break 2BP symmetries. Computational results show that our B&B algorithm solves

20% more instances when compared with commercial solvers on the tested instances.

Finally, we study convex generalized disjunctive programming (GDP), a framework that supports

logical variables and operators. Convex GDP includes disjunctions of mathematical constraints,

which motivate branching by partitioning the disjunctions. We investigate separation by

branching, i.e. eliminating solutions that prevent rigorous bound improvement, and propose a

greedy algorithm for building the branches. We propose three scoring methods for selecting

the next branching disjunction. We also analyse how to leverage infeasibility to expedite the

B&B search. Computational results show that our scoring methods can reduce the number of

explored B&B nodes by an order of magnitude when compared with scoring methods proposed

in literature. Our infeasibility analysis further reduces the number of explored nodes.
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Table 1 lists the abbreviations used in this thesis.

Table 1: Abbreviations
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B&B Branch-and-bound
CNF Conjunctive normal form
CLay Constrained layout

Convex MINLP Mixed-integer convex programming
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D2BP Two-dimensional bin packing decision problem
DNF Disjunctive normal form
DPLL Davis-Putnam-Logemann-Loveland
GBT Gradient-boosted tree
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IIS Irreducible infeasible subsystem

LBBD Logic-based Benders decomposition
LP Linear programming

MILP Mixed-integer linear programming
MINLP Mixed-integer nonlinear programming

MISOCP Mixed-integer second-order cone programming
ML Machine-learning

MLLP Mixed logical-linear programming
NLP Nonlinear programming
OPP Orthogonal packing problem
PCA Principal component analysis
PSO Particle swarm optimisation
SA Simulated annealing

SAT Propositional satisfiability
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Abbreviation Description

SMT Satisfiability modulo theories
SOCP Second-order cone programming

Notation

Table 2: General notation used for mathematical and propositional symbols, and in formulation
frameworks.

Symbol Description

Sets

B Boolean domain: {True, False}.
R Set of real numbers.
Z Set of integers.

S⊲⊳k {x ∈ S |x ⊲⊳ k} where S ⊆ R, ⊲⊳∈ {≥, >, <,≤}, and k ∈ R.
∅ Empty set.

[n], n ∈ Z {1, . . . , n} if n > 0, otherwise ∅.
K Index set of disjunctions in generalized disjunctive program-

ming.
Dk Index set of disjuncts for disjunction k ∈ K in generalized

disjunctive programming.

Parameters

nr, nb ∈ Z≥0 Number of real and Boolean variables, respectively.
ε > 0 Small constant, e.g. 10−6.
f(·) Optimisation objective function.
g(·) Optimisation constraint function, often stated as g(·) ≤ 0.
r(·) Constraint present in generalized disjunctive programming

disjunctive constraint.
c Linear objective cost coefficients.

A, B Linear constraint coefficients.
b Linear constraint right-hand side.

xL, xU Lower and upper bounds on variables x, respectively.
Ω : Bnb → B Propositional constraint.

Mikj Big-M parameter for constraint rikj in generalized disjunctive
programming.

Variables

x ∈ R, x ∈ R
nr Continuous variables: scalar and vector form, respectively.

y ∈ {0, 1}, y ∈ {0, 1}nb Binary variables: scalar and vector form, respectively.
z ∈ Z, z ∈ Z

nI Integer variables: scalar and vector form, respectively.
Y ∈ B, Y ∈ B

nb Boolean variables: singular and vector form, respectively.
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Symbol Description

νik ∈ R
nr Disaggregation of x corresponding to generalized disjunctive

programming disjunction k ∈ K and disjunct i ∈ Dk.

Functions and Operators

¬ : B→ B Logical NOT.
∧,∨ : Bn → B Logical AND and OR, respectively. May be stated with an

infix notation when n = 2.
→,↔: B2 → B Logical IF-THEN and IFF, respectively. Usually stated with

an infix notation.
∨ : Bn → B True if and only if exactly one of the arguments is True.

c⊤ Transpose of vector c.
‖·‖, ‖·‖p : Rn → R≥0 Arbitrary norm and p-norm, respectively.

proj Projection operator
Branch-and-bound

Q List/set of unexplored nodes
S Node of the B&B tree

UB Global upper bound
lb(S) Local lower bound on B&B node S

Table 3: Symbols used for Chapters 3 and 4 model and B&B algorithm.

Symbol Description

GBT Ensemble Definition

nC Number of the GBT-trained function (continuous) variables
i Continuous variable index
xi Continuous variable
x Vector (x1, . . . , xnC

)T

T Set of gradient boosted trees
t Gradient boosted tree
Vt Set of split nodes (vertices) in tree t
Lt Set of leaf nodes in tree t
s Split node associated with a tree t and mainly referred to as (t, s)

i(t, s) Continuous variable index associated with split node s in tree t
v(t, s) Splitting value of variable xi(t,s) at split node s in tree t

GBTt(x) Tree t evaluation at point x

GBT(x) GBT ensemble evaluation at point x

Convex MINLP with GBTs Problem Definition

cvx(x) Convex function evaluation at point x

mi Number of variable xi splitting values
vi,j j-th greatest variable xi splitting value

vL
i or vi,0 Variable xi lower bound

vU
i or vi,mi+1 Variable xi upper bound
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Symbol Description

vL Vector (vL
1 , . . . , vL

n )
vU Vector (vU

1 , . . . , vU
n )

Leftt,s Set of leaves in the subtree rooted in the left child of s in tree t
Rightt,s Set of leaves in the subtree rooted in the right child of s in tree t

Ft,l Contribution of leaf node l in tree t
yi,j Binary variable indicating whether xi ≤ vi,j, or not
zt,l Binary variable specifying whether tree t evaluates at leaf l
d Maximum tree depth

Branch-and-Bound Algorithm Overview

[vL,vU ] Optimisation problem global domain
S = [L,U ] Optimisation problem subdomain / B&B node

(xi, v) GBT splitting point / B&B branch
Sleft, Sright, Sc, S ′ B&B nodes

Q Set of unexplored B&B nodes
Proot Initial GBT ensemble partition at B&B root node

P, P ′, P ′′ GBT ensemble partitions
bcvx,S Convex lower bound over domain S

bGBT,S,P GBT lower bound over domain S with respect to partition P

Lower Bounding

W S Optimal objective value, i.e., tightest relaxation
Ŵ S Relaxation dropping linking constraints

bGBT,S,∗ Optimal GBT lower bound over domain S
x∗ Optimal solution

i, j, l Subset indices of a GBT ensemble partition
k GBT ensemble partition size

Ti, Tj, T
′, T ′′ Subsets of GBTs

N GBT ensemble subset size
nT ,S Number of leaves in GBT subset T over domain S
f ∗ Best found feasible objective
q Time limit on lower bound improvement algorithm

Branching

B Branch ordering
r((xi, v), t) Set of nodes in tree t that split on (xi, v)

d(s) Depth of split node s (root node has zero depth)
w(s) Weight of split node s
i(s) Number of inactive leaves below split s when branching with respect

to (xi, s)
weight((xi, v), t) Weight assigned to (xi, v) in tree t
weight((xi, v), T ) Weight assigned to (xi, v) in GBT ensemble T
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S, Sleft, Sright, S0 B&B nodes denoted by their corresponding domain
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Chapter 1

Introduction

1.1 Motivation

Decision-making optimisation problems encountered in science and engineering can involve both

logical and continuous elements. In chemical engineering, for example, heat exchanger network

synthesis, an application that re-uses excess heat by designing a network of heat exchangers,

involves the logical decisions of which heat exchangers exist and continuous constraints derived

from the physics of heat exchange (Yee and Grossmann, 1990; Furman and Sahinidis, 2002).

Similarly, in computer science, resource constrained scheduling, an application that schedules

tasks subject to resource limitations, involves the logical relations relating to precedence between

tasks and continuous constraints modelling resource capacities (Brucker et al., 1999; Hartmann

and Briskorn, 2010). Globally optimal solutions to such problems are preferable since they can

relate to lower operating costs, improved energy efficiency, and faster delivery times.

Modelling frameworks capable of formulating optimisation problems that contain both a continu-

ous and logical structure include mixed-integer nonlinear programming (MINLP) (Williams, 1990)

and generalized disjunctive programming (GDP) (Raman and Grossmann, 1994). MINLP formu-

lations involve continuous variables, integral variables and mathematical inequality constraints,

and GDP extends MINLP with Boolean variables, propositional constraints and disjunctions,

i.e. logical OR, of mathematical inequality constraints (Williams, 1990; Nemhauser and Wolsey,

1
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1988; Belotti et al., 2013; Raman and Grossmann, 1994; Grossmann and Trespalacios, 2013).

Solution strategies for solving MINLP and GDP instances include the branch-and-bound (B&B)

divide-and-conquer framework (Land and Doig, 1960). B&B proves optimality by constructing

a search tree of subproblems. The search tree recursively partitions the feasible domain, i.e. the

subproblems associated with a complete set of sibling nodes cover the feasible region of the

problem associated with the parent node. In the worst case, B&B will have exponential runtime

since the search tree may enumerate all logical/discrete assignments. However, this worst case

is generally avoided by discarding search tree nodes that are proven to be devoid of any global

optima, such a proof often compares local bounds on optimality to known feasible solutions.

State-of-the-art solvers capable of solving subclasses of MINLP and GDP implement variants of

B&B, e.g. Sahinidis (1996); Achterberg (2009); Misener and Floudas (2014).

This thesis aims at designing branching strategies, i.e. the ‘divide’ part of the B&B divide-

and-conquer algorithm, for problems involving both logical and continuous structure. Different

branching strategies can effect the total solve time, tree depth and number of B&B nodes visited

(Achterberg et al., 2005; Vanderbeck, 2011; Ostrowski et al., 2011). The most common approach

for branching involves selecting a variable and dividing its domain into two child problems.

Alternative strategies include leveraging an underlying ordering (Beale and Tomlin, 1970; Beale

and Forrest, 1976), forming subproblems with complementary constraints (Karamanov and

Cornuéjols, 2011; Cornuéjols et al., 2011), or constructing multiple child problems (Beaumont,

1990; Lee and Grossmann, 2000; Morrison et al., 2014).

1.2 Objectives and Contributions

This thesis investigates B&B branching, on optimisation problems with a logical and mathe-

matical structure, from three perspectives. Chapter 4 assesses how structural information from

a large-scale application with an inherent logical structure may be leveraged for branching.

Chapter 5 assesses how a tool that provides explanations of local infeasibilities can guide

branching decisions. Chapter 6 assesses how branches may constructed for convex GDP to
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reduce redundancy in the search.

Chapter 3 formulates a large-scale, industrially-relevant optimisation problem whose objective

contains gradient-boosted trees (GBTs) and penalty functions mitigating risk. Chapter 4, our

first line of work, develops a solution strategy for this optimisation problem. GBTs are a

supervised statistical learning method for estimating an unknown function (Friedman, 2001;

Hastie et al., 2009). Evaluating a trained GBT function involves traversing decision trees

(Breiman et al., 1984). This evaluation via tree traversals introduces a logical structure to

the Chapter 3 optimisation problem. Chapter 4 proposes solving the Chapter 3 optimisation

problem with a B&B approach. With respect to branching, Chapter 4 questions:

How can GBT problem structure be exploited for branching?

Developing the B&B algorithm requires strategies for (i) branching, (ii) deriving bounds on

optimality, and (iii) finding heuristic solutions. Chapter 4 addresses the Chapter 3 GBT

optimisation problem with a decomposition that separates the GBT elements from the penalty

functions. The algorithm addresses branching in two ways: (a) a pseudocost initialisation

strategy and (b) applying strong branching. The pseudocost initialisation strategy assigns scores

to potential branches and aims to quantify how effective a branch, if selected, is at reducing the

size of the resulting GBT structure. Strong branching leverages relative efficiency with which

the penalty aspect of the decomposition may be solved to derive suboptimality proofs quickly.

We develop a further decomposition for the GBTs (assumed to be large-scale) to derive bounds

on optimality. We propose an iterative deterministic heuristic that considers the optimisation

problem for a subset of the GBT decision trees and iterative introduces previously excluded

decision trees to generate candidate solutions. Numerical results show that our B&B algorithm

achieves tighter bounds on optimality than a state-of-the-art commericial solver under a 1 hour

time limit. On tested instances where the penalty is more heavily weighted, our optimality

bounds are significantly tighter. Our pseduocost initialisation strategy is also shown to be

effective as, when comparing with random branch selection, the pseudocost initialisation strategy

consistently outperforms random selection. The decomposition-based GBT lower bound that

we propose is also shown to be capable of achieving a 4-times speed up in the time-to-bound

when comparing with commercial solvers. Chapters 3 and 4 contribute to:
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Mistry, M., Letsios, D., Krennrich, G., Lee, R. M., and Misener, R. (2018b). Mixed-

integer convex nonlinear optimization with gradient-boosted trees embedded. arXiv

e-prints. arXiv:1803.00952.

Chapter 5, our second line of work, studies how satisfiability modulo theories (SMT), a con-

straint feasibility checker guided by a propositional satisfiability solver, may be leveraged in an

optimisation setting (Bjørner and De Moura, 2011). SMT modelling offers more freedom than

GDP, since mathematical constraints can be used in arbitrary propositional formulas (opposed

to just disjunctions). Chapter 5 studies two-dimensional bin packing (Chung et al., 1982), an

application that assigns a set of rectangles to a minimal number of identical larger rectangular

bins such that each rectangle is contained in its assigned bin and no two rectangles overlap.

Two-dimensional bin packing can contain many equivalent symmetric solutions, e.g. a feasible

assignment of rectangles to more than one bin may be converted to an equivalent solution by

permuting bin indices. Such symmetries can hinder optimality proofs (Margot, 2010; Liberti,

2012). Employing an SMT solver is interesting because it utilises the relative efficiency of

modern propositional satisfiability solvers (Malik and Zhang, 2009), which opposes the common

MINLP and GDP solving approach where efficient mathematical solvers take a similar role of a

propositional satisfiability solver in SMT. Furthermore, SMT solvers are capable of deriving

proofs of infeasibility, i.e. a subset of constraints responsible for the infeasibility. With respect

to branching, Chapter 5 questions:

How can we leverage SMT derived infeasibility proofs for two-dimensional bin packing subprob-

lems to branch in an instance specific manner?

Chapter 5 proposes three algorithms for leveraging SMT: (i) an iterative algorithm that removes

the number of available bins that terminates at a result of infeasibility, (ii) an iterative algorithm,

inspired by logic-based Benders decomposition (Hooker and Ottoson, 2003), that increases the

number of available bins that terminates at a result of feasibility, and (iii) an extension to

the second iterative algorithm where branches are formed on non-trivial proofs of infeasibility.

Furthermore, the third algorithm proposes further symmetry breaking enhancements that are

introduced by (a) branching on a proof of infeasibility and (b) the presence of identical rectangles.

Numerical results show that our SMT-based B&B algorithm is capable of proving optimality of
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an additional 20% of the tested instances when compared to commercial solvers. We also show

that our branching and SMT-based symmetry breaking enhancements are effective, since the

B&B algorithm is able to solve at least 10% more of the tested instances when compared with

the two iterative algorithms. Chapter 5 contributes to:

Mistry, M., Callia D’Iddio, A., Huth, M., and Misener, R. (2018a). Satisfiability

modulo theories for process systems engineering. Computers & Chemical Engineering,

113:98–114.

Chapter 6, our final line of work, designs a B&B algorithm for convex GDP, a subclass of GDP

that assumes all continuous constraints are convex. Convex GDP is an interesting subclass of

GDP, since, the (more general) GDP framework is likely to utilise a convex GDP approximation

when deriving bounds on optimality in a B&B setting (Lee and Grossmann, 2001), i.e. efficient

solutions of convex GDPs may be required to solve GDP. With respect to branching, Chapter 6

questions:

How can we construct branches in a convex GDP B&B algorithm to avoid redundancy in the

search?

Chapter 6 designs a B&B algorithm for convex GDP that (i) uses (mathematical programming)

hull relaxations (Stubbs and Mehrotra, 1999; Grossmann and Lee, 2003), (ii) branches over the

convex GDP disjunct selection constraint, and (iii) propagates local infeasibilities across the

B&B search tree. Solving a hull relaxation to optimality derives a lower bound and provides a

relaxation solution. If this relaxation solution does not correspond to a feasible convex GDP

solution, allowing any descendant node to reach this solution again is a redundancy in the search.

Chapter 6 proposes a greedy algorithm that constructs branches by splitting a disjunction and

aims to avoid this redundancy, this algorithm adapts a cutting plane separation problem (Stubbs

and Mehrotra, 1999; Vecchietti et al., 2003). The B&B algorithm has to select a disjunction for

branching. Chapter 6 suggests three scoring methods for selecting which disjunction to branch

on. Finally, the B&B algorithm propagates local infeasibilities in the form of conflict clauses

(Marques-Silva and Sakallah, 1996) over the GDP Boolean variables by analysing irreducible

infeasible subsystems (Chakravarti, 1994), derived by an underlying mathematical solver. We
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test our methods on the constrained layout problem (CLay) (Sawaya, 2006) which, given a set

of circles that are fixed in the 2-D plane, finds the optimal arrangement of a set of rectangles

such that they do not overlap and each rectangle is contained in a circle. CLay, as defined by

Sawaya (2006), is such that no disjunction shares variables with the objective. We consider

an additional equivalent form of CLay that has disjunctions that do share variables with the

objective to assess whether having disjunctions that are more directly connected to the objective,

i.e. via shared variables, affects the B&B algorithm performance. Numerical tests show that our

disjunction selecting scoring methods can result in a large reduction in the number of explored

nodes. This result is more pronouned for the formulation where disjunctions share variables with

the objective and our centre-shifted most fractional disjunction selection strategy consistently

outperforms the other tested disjunction selection strategies. Our infeasibility propagation is

also shown to be effective as it can result a significant reduction in the number of explored on

the tested instances.

1.3 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 covers background material

used throughout the thesis. Chapter 3 introduces gradient-boosted trees and formulates an

optimisation that contains gradient-boosted tree functions as part of its objective. Chapter 4

develops a B&B solution methodology and proposes heuristics for the Chapter 3 optimisation

problem. Chapter 5 studies how satisfiability modulo theories-derived infeasibility proofs may

be utilised in an optimisation context. In particular, Chapter 5 develops a B&B strategy that

branches on the infeasibility proof that satisfiability modulo theories derives. Chapter 6 presents

a B&B algorithm for convex GDP that constructs branches by separating integer infeasible

relaxation solutions and propagates local infeasibilities by converting an infeasible subsystem

of constraints to GDP no-good cuts. Chapter 7 concludes by summarising achievements and

proposes interesting directions for future work.



Chapter 2

Background Theory

This chapter provides background theory for constraint satisfaction and optimisation modelling

frameworks and solution algorithms.

2.1 Constraint Satisfaction Frameworks

Constraint satisfaction addresses whether a given set of constraints admits a satisfying solution.

If such solution exists, the constraint set is called feasible or satisfiable. Otherwise, the constraint

set is called infeasible or unsatisfiable. This section discusses propositional satisfiability (SAT),

constraint programming (CP) and satisfiability modulo theories (SMT).

2.1.1 Propositional Satisfiability

Traditional propositional satisfiability only incorporates Boolean variables.

Definition 2.1. Let Ω : B
n → B be a propositional formula. The feasibility problem SAT

assesses whether exists an assignment Ŷ ∈ B
n such that Ω(Ŷ ) = True.

There exist efficient, satisfiability-preserving transformations from any propositional formula

Ω(Y ) to conjunctive normal form (CNF) (Tseitin, 1983; Plaisted and Greenbaum, 1986; Eén

7
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and Sörensson, 2006), so SAT solvers typically assume that Ω(Y ) is written in CNF. In CNF:

literals, i.e. propositional variables Yi or their negation ¬Yi, form clauses Ωj(Y ), i.e. disjunctions

(∨) of literals. The final propositional formula Ω(Y ) =
m∧

j=1
Ωj(Y ) is a conjunction of clauses.

SAT applications include: planning (Kautz and Selman, 1992), model checking (Biere et al.,

1999) and scheduling (Zhang, 2002). Although SAT is NP-complete (Cook, 1971) and the

worst-case complexity is exponential, modern SAT solvers can handle problems with hundreds

of thousands of variables (Malik and Zhang, 2009).

Most SAT solvers implement the Davis-Putnam-Logemann-Loveland (DPLL) search algorithm

(Davis and Putnam, 1960; Davis et al., 1962). DPLL fixes variable Yi assignments, i.e. truth

assignments, using a tree-based branching approach. DPLL propagates truth assignments to

all clauses Pj. Propagating truth values may allow DPLL to assign further variables a truth

value. If DPLL finds that a partial assignment is unsatisfiable, i.e. cannot satisfy Ω, then the

algorithm backtracks and assigns a different value to one of the variables. DPLL continues until

it either: (i) finds a combination of truth values for Yi satisfying Ω or (ii) proves the formula Ω

is unsatisfiable. DPLL also has functionality supporting warm starts.

SAT solving techniques include (Biere et al., 2009): (i) Boolean constraint propagation, where

the current fixed variable set implies variable assignments, (ii) resolution, where sets of clauses

derive additional clauses, (iii) and conflict driven clause learning, where an unsatisfiable result

derives extra clauses pruning the search tree (Davis and Putnam, 1960; Davis et al., 1962; Silva

and Sakallah, 1996). SAT solving methods are highly applicable to optimisation (Hooker and

Osorio, 1999; Achterberg, 2007a).

2.1.2 Satisfiability Modulo Theories

Satisfiability modulo theories (SMT) incorporates continuous, integer, and Boolean variables to

assess constraint set satisfiability by separating truth value assignment from the correctness

reasoning with respect to a theory. SMT consists of: (i) a SAT solver and (ii) a theory solver

for a theory of our choice (De Moura and Bjørner, 2008). The SMT approach to constraint
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satisfaction uses powerful SAT solving to derive a, potentially smaller, set of constraints to

assess theory satisfiability. A background theory is a set of axioms and symbols, e.g. the theory

of arithmetic. An SMT solver consists of a SAT solver and a theory solver. The idea is to

leverage the strength and robustness of modern SAT solvers to search for a feasible solution. The

modelling framework exposed by SMT allows for Boolean variables to be used with background

theory variables, e.g Y → (x ≥ 0) where x is continuous and Y is Boolean, so SMT is a natural

choice when logical decisions form a part of the modelled system.

SMT research dates back to the 1970s with early work on decision procedures (Nelson and Oppen,

1979, 1980; Shostak, 1979, 1982). Available SMT theories include: equality with uninterpreted

functions, linear arithmetic, and arrays (Biere et al., 1999). Most SMT solvers, e.g. Z3, can also

handle nonlinear arithmetic, i.e. polynomial functions. DPLL(T ) generalises DPLL (Ganzinger

et al., 2004). SMT is primarily applied in program verification and formal methods, but it

also has scheduling and planning applications (Bjørner and De Moura, 2011). SMT provides a

(provable) guarantee of feasibility/infeasibility. This is the different from the idea of a feasibility

pump that uses heuristics to (hopefully) generate a feasible solution, e.g. in D’Ambrosio et al.

(2012).

SMT assesses the satisfiability of a model and, if the model is satisfiable, the SMT solver returns

a witness. If the model is unsatisfiable the SMT solver can return an unsatisfiable core, a

mutually unsatisfiable subset of model constraints. An unsatisfiable core is a useful tool when

addressing why a model does not behave how we expect or to understand why a model fails.

Example 2.1. Suppose that we wish to satisfy Equation (2.1). Equation (2.1) combines SAT

and the theory of real arithmetic.

(x1 ≤ 1) ∧ (x2 ≤ 2) ∧ ((x1 ≥ 5) ∨ (x3 ≤ 3)) ∧ (x1 + x2 + x3 ≥ 10) (2.1)

For Equation (2.1), SMT leverages a SAT solver by replacing each inequality with auxiliary

propositional variables, e.g. Y1 = (x1 ≤ 1), and assessing propositional satisfiability of the
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resulting formula:

Y1 ∧ Y2 ∧ (Y3 ∨ Y4) ∧ Y5. (2.2)

The SAT solver returns an assignment satisfying Equation (2.2), e.g. Yi = True, ∀ i. Then, the

real arithmetic theory solver checks the propositional variable meaning. Here, the theory solver

deduces that the assignment is incorrect because we cannot have both Y1 = (x1 ≤ 1) = True

and Y3 = (x1 ≥ 5) = True. The theory solver encodes additional propositional clauses, e.g.

(¬Y1 ∨ ¬Y3), augments Equation (2.2), and passes Equation (2.3) to the SAT solver:

Y1 ∧ Y2 ∧ (Y3 ∨ Y4) ∧ Y5 ∧ (¬Y1 ∨ ¬Y3). (2.3)

SMT iterates between the SAT and theory solvers until the algorithm terminates, in this case

with a proof of unsatisfiability.

Example 1 suggests that the SAT and theory solvers are disjoint, but the most efficient and

stable SMT tools integrate the two components (Sebastiani, 2007). Interaction between the

theory solver and partial SAT solutions allow the theory solver to identify unsatisfiability in a

partial assignment.

The efficacy of an SMT solver depends on the quality of the theory solver since a propositional

encoding has to be created for the SAT solver. If the encoding is weak and the theory solver

cannot strengthen it effectively, the SMT solver will, in worst case, enumerate all propositional

solutions. Being built on top of a SAT solver, SMT natively support propositional variables

and connectives, regardless of the theory. In terms of mathematical constraints, i.e. constraints

relevant to this thesis, SMT theories include linear and nonlinear rational and real arithmetic.

SMT solvers often implement exact arithmetic as they are often used in verification contexts.

SMT solvers may output (i) sat, (ii) unsat, and (iii) unknown when assessing constraint feasibility.

An output of sat corresponds to the constraint set being feasible and the solver will generally

return a witness. An output of unsat corresponds to the constraint set being infeasible and,

if supported, the solver can return an unsatisfiable core. An output of unknown corresponds
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to the solver being unable to assess whether the constraint set is feasible or infeasible. The

output of unknown may occur when using nonlinear theories, since SMT solvers often use exact

arithmetic and nonlinear equation systems can be undecidable (Zhu, 2006; Liberti, Leo, 2019).

An alternative approach to handling nonlinear equations is using δ-completeness (Gao et al.,

2012). δ-completeness takes positive rational parameter δ and introduces the notion of δ-sat

to the SMT solver which corresponds to proving feasibility of the relaxed constraint set where

equations of the form g(x) = 0 are relaxed to |g(x)| ≤ δ. Commonly used SMT solvers include

Z3 (De Moura and Bjørner, 2008) and MathSAT5 (Cimatti et al., 2013). Z3 implements linear

and nonlinear, rational and real arthimetic theory solvers. MATHSAT5 implements linear,

rational and real arithmetic theory solvers. An SMT solver that supports δ-completeness is

dReal (Gao et al., 2013).

2.1.3 Constraint Programming

SMT supports Boolean variables, integer variables, mathematical inequalities and propositional

constraints. With these elements, we may model the constraint set of combinatorial optimisation

problems. However, for some combinatorial optimisation constraint sets, being limited to

mathematical inequalities can result in large formulations when modelling problem structure

that is conceptually simple. Constraint programming (CP) (Van Hentenryck, 1989; Tsang, 1993;

Rossi et al., 2006) addresses constraint satisfiability by designing specialised constraints and

associated handling methods that are tailored for concepts that are difficult to model consisely

using only propositional constraints and mathematical inequalities.

CP approaches generally apply (i) backtracking search, and (ii) constraint propagation. Back-

tracking search in CP is similar to that of the DPLL algorithm in SAT (Davis and Putnam,

1960; Davis et al., 1962), however CP variable domains may be larger than two or be continuous

(SAT variable domains are all Boolean). Hence, CP may employ alternative approaches to

divide the problem into subproblems (van Beek, 2006). Constraint propagation infers whether

we can reason over a constraint, given the current state of the (sub-)problem, to reduce the

domains of variables (Apt, 1999). For a constraint propagation example, consider CP constraint
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all different(x1, ..., xn) that models all variables in {x1, . . . , xn} taking different values.

This constraint is applicable in the travelling salesman problem (Bellmore and Nemhauser, 1968),

a problem that may need many variables and constraints if only using mathematical inequalities

(Kulkarni and Bhave, 1985; Orman and Williams, 2007). Assume that all variables initially have

domain {1, . . . , n} and x1 is set to n, e.g. set during the search, then constraint propagation

over the all different constraint reduces the domains of x2, . . . , xn to {1, . . . , n− 1}.

To assess feasibility of constraint set I, CP solvers often explore a search tree that enumerates all

solutions. At each node of the search tree, CP applies constraint propagation to reduce variable

domains. The result at each node is either (i) a feasible solution is found, (ii) a variable’s domain

becomes empty after propagation, or (iii) constraint propagation cannot further reduce variable

domains and all variable domains are non-empty. Case (i) terminates the algorithm, case (ii)

corresponds to the local instance being infeasible and the search algorithm backtracks, and

case (iii) employs branching, i.e. splitting the instance, to further the search. Enhancements to

the CP solution algorithm include nogood recording to propagate local infeasibilities globally

(Stallman and Sussman, 1977), constraint propagation ordering heuristics to reduce the time

spent applying constraint propagation (Wallace and Freuder, 1992; Schulte and Stuckey, 2004,

2008), and symmetry breaking to prevent variables assignments that are equivalent in the search

from being revisited (Puget, 1993, 2002, 2005a,b; Backofen and Will, 1999).

Difference between CP and SMT. CP and SMT differ in their handling of Boolean

variables, propositional constraints and their solution strategies. Consider the disjunction

Y1 ∨ C1(x) ∨ C2(x) (2.4)

where Y1 ∈ B and C1, C2 are constraints that do not involve Boolean variables or propositional

connectives. SMT expects access to corresponding theory solvers for C1 and C2. SMT assesses

feasibility of Equation (2.4) by relaxing to a propositional formula and testing the relaxation

assignment against the theory solver. CP expects that corresponding constraint propagation

methods are available for C1, C2 and propositional calculus. CP assesses feasibility of Equa-
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tion (2.4) using search and constraint propagation. Specialised disjunction handling techniques

include Van Hentenryck et al. (1998), Würtz and Müller (1996) and Lhomme (2003). As shown

above, SMT hands all aspects related to propositional calculus to a SAT solver and invokes

the remaining theory solver on a set of theory specific constraints. This constraint set may

be smaller than the entire set of theory constraints, given the propositional assignment, e.g.

Y1 = True in Equation (2.4). CP handles all constraint types directly in a single search tree.

Hence, CP addresses the entire instance and can propagate or branch on theory elements before

the propositional elements.

2.2 Mathematical Optimisation

Optimisation is often a natural follow-up question after constraint satisfaction. For example,

after finding a feasible schedule for some set of tasks, we may then aim to find an optimal

schedule that minimises the total completion time.

A mathematical optimisation problem is a constraint satisfaction problem combined with an

optimisation objective. An optimisation objective is a function f : RnC × B
nB × Z

nI → R. The

optimisation objective assigns scores to the feasible solutions. We assume that the goal is always

to minimise the objective function. Mathematical optimisation problems are often formulated

as

min f(x,Y , z) (2.5a)

subject to Ci(x,Y , z), ∀i ∈ [p] (2.5b)

x ∈ R
nc (2.5c)

Y ∈ B
nb (2.5d)

z ∈ Z
nI , (2.5e)

where Ci : RnC × B
nB × Z

nI → B are constraints. Note that the conjunction between constraint

functions is not explicitly stated.
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Algorithm 1 (Sebastiani and Tomasi, 2015; Callia D’Iddio and Huth, 2017)

S: initial problem
if S 6= ∅ then

return infeasible
end if
while S 6= ∅ do

Select (x̂, Ŷ , ẑ) ∈ S
S ← S ∧ (f(x,Y , z) < f(x̂, Ŷ , ẑ))

end while
return (x̂, Ŷ , ẑ)

2.2.1 Adapting a Constraint Satisfaction Solver

Assume that an instance of Problem (2.5) has an optimal solution with objective value f ∗. Then

the constraint set [Equations (2.5b) to (2.5e), (f(x,Y , z) < f∗)]. On this principle, we may

adapt a constraint satisfaction solver using Algorithm 1 (Sebastiani and Tomasi, 2015; Callia

D’Iddio and Huth, 2017). Algorithm 1 treats the objective function as a bounded constraint and

iteratively tightens the bound using the best found feasible objective. If the underlying constraint

satisfaction solver does not support strict inequalities, we may add (f(x,Y , z) ≤ f(x̂, Ŷ , ẑ)− δ)

on each iteration in Algorithm 1 where δ > 0 is an appropriately chosen value to enforce ε-global

optimality. Algorithm 1 is a simple approach for adapting a constraint satisfaction solver for

optimisation, alternative approaches maintain both upper and lower bounds (Sebastiani and

Tomasi, 2015; Callia D’Iddio and Huth, 2017).

2.2.2 Branch-and-Bound

Branch-and-bound (B&B) (Land and Doig, 1960) is versatile algorithmic framework capable

of solving Problem (2.5) instances. Using a divide-and-conquer principle, B&B forms a tree

of subproblems and searches the domain of feasible solutions. Key aspects of B&B are: (i)

rigorous lower (upper) bounding methods for minimisation (maximisation) subproblems, (ii)

branch selection, and (iii) feasible solution generation. In the worst case, B&B enumerates all

solutions, but generally it avoids complete enumeration by pruning subproblems, i.e. removing

infeasible subproblems or nodes with lower bound exceeding the best found feasible solution
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Algorithm 2 Branch-and-Bound(Sroot, f) (Morrison et al., 2016)

1: Assumption: f is bounded below over Sroot

2: Q← {Sroot} ⊲ Nodes to explore
3: UB←∞
4: while Q 6= ∅ do
5: Select S ∈ L
6: if (x̂, Ŷ , ẑ) ∈ {(x,Y , z) ∈ S | f(x,Y , z) < UB} can be found then ⊲ Heuristics
7: (x∗,Y ∗, z∗)← (x̂, Ŷ , ẑ)
8: UB← f(x̂, Ŷ , ẑ)
9: end if

10: if lb(S, f) < UB then ⊲ Bounding and Fathoming
11: Create partition P of S ⊲ Branching
12: Q← Q ∪ P
13: end if
14: Q← Q \ {S}
15: end while
16: if UB <∞ then
17: return (x∗,Y ∗, ẑ∗)
18: else
19: return infeasible
20: end if

(Morrison et al., 2016).

Algorithm 2 (Morrison et al., 2016) lists the main steps in B&B algorithms. Lines 6 to 8 search

for the optimal solution. Line 7 derives rigorous lower bounds and, if possible, prunes the

current node being explored. Line 11 constructs the new branches.

Upper bounds B&B Algorithm 2 initialises an upper bound of ∞. Assuming a feasible

solution exists, Algorithm 2 generates a sequence of feasible solutions {(x(i),Y (i), z(i))}k
i=1

satisfying f
(

x(i),Y (i), z(i)
)

> f
(

x(i+1),Y (i+1), z(i+1)
)

, i ∈ [k − 1] and returns the solution

(x(k),Y (k)) on line 17. The solution (x(k),Y (k), z(k)) satisfies ε-global optimality. General

purpose heuristics for Problem (2.5) often derive an assignment (Ŷ , ẑ) and perform a local

search on the remaining continuous problem to populate x (Fischetti and Lodi, 2011; Berthold,

2014; Sharma et al., 2016; Belotti and Berthold, 2017; Berthold, 2017).

Lower bounds Line 10 of Algorithm 2 derives a rigorous lower bound on min(x,Y ,z)∈S f(x,Y , z).

These lower bounds are calculated by relaxing a mathematical programming reformulation of



16 Chapter 2. Background Theory

the problem instance. A mathematical programming reformulation of Problem (2.5) constructs

an equivalent instance that replaces Boolean variables with binary variables (domain {0, 1})

and propositional constraints with mathematical constraints using reformulation techniques

(Nemhauser and Wolsey, 1988; McCormick, 1976; Grossmann and Trespalacios, 2013). Sec-

tion 2.2 discusses mathematical programming reformulations of Problem (2.5) instances. A

relaxation to the mathematical programming reformulation is given by an auxiliary problem

whose (i) feasible region contains the reformulation feasible region and (ii) objective bounds

the reformulation objective from below. Relaxations approaches include continuous relaxations,

Lagrangian relaxations (Geoffrion, 1974; Fisher, 1981; Tanaka and Araki, 2008; Rostami and

Bagherpour, 2017), and Benders master problems (Benders, 1962; Hooker, 2007; Gendron et al.,

2016; Moreno et al., 2019).

Fathoming and Branching Lines 10 to 12 of Algorithm 2 apply fathoming and branching.

Algorithm 2 fathoms node S if lb(S, f) ≥ UB where lb(S, f) ≤ min(x,Y ,z)∈S f(x,Y , z) (lb(·) is

calculated using a relaxation). If a node cannot be fathomed then Algorithm 2 creates partition

P of S, the subproblems S ′ ∈ P are branches. Furthermore, every subset of P belongs to

the same class of problems as S, i.e. B&B applies the same relaxation and branching strategy

recursively.

Optimality Tolerances Algorithm 2 assumes all computation is exact. In practice, this

assumption may hinder an optimality proof, e.g. using a finite precision representation might

not be sufficient. Implementations often introduce tolerances to assess optimality, e.g. Ryoo and

Sahinidis (1996); Tawarmalani and Sahinidis (2005); Misener and Floudas (2014).

Definition 2.2. Let ε > 0 be a small constant, e.g. 10−6. The absolute optimality gap is defined

as absgap(l, u) = u− l. The relative optimality gap is defined as relgapε(l, u) = absgap(l,u)
|l|+ε

.

Algorithm 2 implementations often introduce an optimality tolerance for the fathoming decision

on Line 10. Let εopt > 0 be a small constant, e.g. 10−6. Algorithm 2 fathoms with an

optimality tolerance by replacing the Line 10 condition with gap(lb(S), UB) ≤ εopt where
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gap ∈ {absgap, relgapε} for small ε > 0.

2.3 Mathematical Optimisation Frameworks

This section discusses frameworks that are capable of formulating (sub-)instances of Problem (2.5)

and associated algorithms.

2.3.1 Mixed-Integer Convex Programming

Mixed-integer convex programming (convex MINLP) considers optimisation instances that can

be formulated using continuous and integral variables, convex constraints and a convex objective

function. Convex MINLP can capture many Problem (2.5) instances by considering binary

variable equivalents, i.e. domain {0, 1}, for Boolean variables. Without loss of generality, convex

MINLP is defined as (Kronqvist et al., 2019):

min c⊤
1
x + c⊤

2
z (2.6a)

subject to gj(x, z) ≤ 0, j ∈ [p] (2.6b)

Ax + Bz ≤ b, (2.6c)

zL ≤ z ≤ zU , (2.6d)

x ∈ R
nC , z ∈ Z

nI , (2.6e)

where nC , and nI are the number of continuous and integer variables, respectively. Parameters

c1 ∈ R
nC , c2 ∈ R

nI are cost coefficients on the continous and integer variables, respectively.

Functions gj : RnC+nI → R are nonlinear convex functions. Parameters A ∈ R
q×nC , B ∈ R

q×nI ,

and b ∈ R
q are linear constraint coefficients on the continuous variables, coefficients on the integer

variables, and right-hand side, respectively. Parameters zL ∈ Z
nI , and zU ∈ Z

nI are lower

and upper bounds on the integer variables, respectively. Mixed-integer nonlinear programming

(MINLP) generalises Problem (2.6) by allowing nonconvex nonlinearities in Equation (2.6b).

Global MINLP solution algorithms may apply systematic convexification techniques (McCormick,
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1976; Maranas and Floudas, 1992; Liu and Floudas, 1993) which construct convex MINLP

approximations when deriving rigorous bounds on optimality.

Let S be a Problem (2.5) instance. Reformulate S to an equivalent instance S ′ that (i) does

not contain logical operators → or ↔ by applying logical equivalences, and (ii) propagate any

¬ operators by using distributivity and De Morgans laws such that all applications of ¬ in S ′

only occur on Boolean atoms or a mathematical constraint. If the ¬ operator does not apply

to any occurence of a mathematical constraint in S ′, all mathematical constraints are convex,

and all inequalities are non-strict, then an equivalent Problem (2.6) formulation is constructed

using systematic reformulation techniques, e.g. McCormick (1976); Grossmann and Trespalacios

(2013). Generally reformulation involves (i) replacing Boolean variables by binary equivalents,

i.e. variables with domain {0, 1}, and propositional constraints with arithmetic constraints

over the new binary variables, and (ii) decomposing complex interactions between logical and

mathematical constraints into simpler separate propositional constraints and mathematical

constraints by introducing fresh variables.

Continuous Relaxation

B&B implementations that solve Problem (2.6) instances often utilise a continuous relaxation.

The continuous relaxation of Problem (2.6) is given by replacing z ∈ Z
nI with z ∈ R

nI

in Problem (2.6e). Let RC(S) denote the continuous relaxation of Problem (2.6) instance

S. We have that min(x,z)∈RC(S) c
⊤
1
x + c⊤

2
z ≤ min(x,z)∈S c⊤

1
x + c⊤

2
z. Futhermore, if (x̂, ẑ) ∈

arg min(x,z)∈RC(S) c
⊤
1
x + c⊤

2
z and (x̂, ẑ) ∈ S then (x̂, ẑ) an optimal solution of S.

The continuous relaxation of a Problem (2.6) instance is a convex optimisation problem. Classes

of convex optimisation problems may be solved efficiently (Khachiyan, 1979; Karmarkar, 1984;

Nesterov and Nemirovskii, 1994; Ben-Tal and Nemirovski, 2001; Boyd and Vandenberghe, 2004).
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Cutting Plane Methods

B&B algorithms approach convex MINLP with divide-and-conquer, i.e. the problem is split

into disjoint subproblems which are handled independently. The theory of convex optimisation

(Boyd and Vandenberghe, 2004), allows for an alternative class of global optimisation algorithms

called cutting plane methods.

Definition 2.3. Let S ⊂ R
n. A cutting plane for S is a pair a ∈ R

n, b ∈ R with a 6= 0 such

that for all x ∈ S, a⊤x ≤ b.

Cutting plane methods solve convex MINLP by strengthening a single relaxation iteratively

with cutting planes (Gomory, 1958; Duran and Grossmann, 1986b; Fletcher and Leyffer, 1994;

Westerlund and Pettersson, 1995; Kronqvist et al., 2016).

Theorem 2.1 (Boyd and Vandenberghe (2004)). Let g : [xL,xU ] → R. The function g is

convex if and only if

g(x) ≥ g(x̂) +∇g(x̂)⊤(x− x̂), ∀x ∈ [xL,xU ]. (2.7)

Let S(g) = {x ∈ [xL,xU ] | g(x) ≤ 0}. The following consequences of Theorem 2.1 motivate

cutting plane algorithms for convex MINLP:

S(g) = {x ∈ [xL,xU ] | g(x̂) +∇g(x̂)⊤(x− x̂) ≤ 0, x̂ ∈ [xL,xU ]} (2.8)

S(g) ⊆ {x ∈ [xL,xU ] | g(x̂) +∇g(x̂)⊤(x− x̂) ≤ 0, x̂ ∈ X ⊆ [xL,xU ]}, (2.9)

i.e. the first-order Taylor approximations of g at x̂ ∈ X ⊆ [xL,xU ] forms a linear relaxation

of g(x) ≤ 0. When X is finite, we may construct a finite relaxation for g(x) ≤ 0 by replacing

the nonlinear convex constraint with |X| linear inequalities as defined by Equation (2.9). The

relaxation may be tightened by considering further linearisation points from [xL,xU ] \X.

Duran and Grossmann (1986b) present an outer approximation approach for convex MINLPs

where the integer variables only participate linearly. The outer approximation algorithm
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iterates between solving an MILP master problem and an NLP subproblem. The MILP master

approximates all nonlinear functions with a linear outer approximation. Solving the MILP

master derives lower bounds on the optimum and provides a candidate assignment ẑ on the

integer variables. The original problem where z = ẑ forms a convex NLP which is solved to

optimality. If the NLP is infeasible, a cut excluding ẑ is added to the MILP master. Otherwise,

a linearisation at (x̄, ŷ), the optimal solution of the NLP, for each nonlinear function is added

to the MILP master. Fletcher and Leyffer (1994) extend the Duran and Grossmann (1986b)

algorithm to handle convex MINLP instances where integer variables participate nonlinearly.

Applying cutting plane approaches in a B&B algorithm gives the branch-and-cut framework.

Branch-and-cut generates cutting planes at nodes of the search tree. Cut generation at a node

level can improve local lower bounds and reduce the size of the search tree. Branch-and-cut has

been extensively applied in solving MILPs (Balas et al., 1993, 1996; Ceria et al., 1998). Stubbs

and Mehrotra (1999) develop a branch-and-cut algorithm for bounded convex MINLPs where

all integral variables are binary, i.e. domain {0, 1}. Their cutting plane generation extends

the Balas et al. (1993) cutting plane generation for 0-1 MILPs to the 0-1 convex MINLP case.

Bonami (2011) develops lift-and-project cuts for convex MINLP. Branch-and-cut is also applied

to nonconvex MINLP (Tawarmalani and Sahinidis, 2005).

Mixed-Integer Linear Programming

When p = 0, Problem (2.6) also belongs to the subclass of mixed-integer linear programming

(MILP). MILP continuous relaxations are linear programs (LPs). We may solve LPs with

interior point methods, e.g. Karmarkar (1984), or with the simplex algorithm (Dantzig, 1998).

While the simplex algorithm exhibits poor theoretical worst-case performance (Klee and Minty,

1972), average performance is competetive. Robust commercial codes often implement both

interior point and simplex methods for LPs.

Mixed-Integer Second-Order Cone Programming Mixed-integer second-order cone pro-

gramming (MISOCP) considers Problem (2.6) instances where the Equation (2.6b) are second-
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order cone constraints (Ben-Tal and Nemirovski, 2001), i.e. of the form:

‖Ax,ix + Az,iz + bi‖2 ≤ d⊤
x,ix + d⊤

z,iz + ei, i ∈ [p]. (2.10)

An MISOCP continuous relaxation is a second-order cone program (SOCP). SOCPs can be

efficiently solved using interior point methods (Nesterov and Nemirovskii, 1994). Let S be an

SOCP instance. Interior point methods solve a sequence {S(j)} of auxiliary problems whose

corresponding optimal solutions form a sequence that converges to an optimal solution of S

(Nesterov and Nemirovskii, 1994; Ben-Tal and Nemirovski, 2001; Boyd and Vandenberghe, 2004).

In particular, when an interior point method solves an SOCP, each auxiliary problem iterate

will always satisfy any corresponding Equation (2.10) constraint strictly. We explain using

optimisation Problem (2.11) below:

min c⊤x (2.11a)

subject to A(i)x + s(i) = b(i), i ∈ [p] (2.11b)

a
(i)⊤
0 x + s

(i)
0 = b

(i)
0 , i ∈ [p] (2.11c)

∥
∥
∥s(i)

∥
∥
∥

2
≤ s

(i)
0 , i ∈ [p] (2.11d)

x ∈ R
n, s(i) ∈ R

mi , s
(i)
0 ∈ R, (2.11e)

where A(i) ∈ R
mi×n, a(i)

0 ∈ R
n, b(i) ∈ R

mi and b
(i)
0 ∈ R. An interior point method constructs

an auxiliary problem of Problem (2.11) using a barrier function.

Definition 2.4 (Ben-Tal and Nemirovski (2001)). Let X be a closed convex set and F : intX →

R a well-defined, smooth, strongly convex function. We call F a barrier function if for all

sequences {x(i)}∞
i=1, x

(i) ∈ intX :

lim
i→∞

x(i) ∈ ∂X =⇒ lim
i→∞
F
(

x(i)
)

=∞.

In particular, FL

(

s
(i)
0 , s(i)

)

= − ln
(

s
(i)2
0 − s(i)⊤s(i)

)

is a barrier function for the constraint
∥
∥
∥s(i)

∥
∥
∥

2
≤ s

(i)
0 . The auxiliary problem associated with Problem (2.11) removes the Equa-
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tion (2.11d) constraints and replaces the Equation (2.11a) objective with

min c⊤x + t
∑

i∈[p]

FL

(

s
(i)
0 , s(i)

)

for some t > 0. Clearly, as ‖s(i)‖2 → s
(i)
0 , FL(s(i)

0 , s(i)) → ∞. Hence, to apply an interior

point method, the feasible region must be strictly feasible with respect to constraints that are

associated with a barrier (Slater, 1959).

An alternative to interior point methods is a cutting plane approach. Vielma et al. (2017) study

polyhedral relaxations of SOCP constraints and propose an outer approximating strategy that

supports iterative improvement in its approximation quality.

2.3.2 Disjunctive Programming

Balas developed disjunctive programming in the 1970s (Balas, 1974, 1975, 1977, 1979, 2018).

A disjunctive program is given by a linear objective and the disjunction of systems of linear

constraints:

min
x

c⊤x

s.t.
k∨

i=1

Aix ≤ bi

x ∈ R
n,

(2.12)

with parameters c ∈ R
n, Ai ∈ R

m×n and bi ∈ R
m ∀i = 1, . . . , k. The disjunctive program in

Equation (2.12) may be written equivalently as a mixed-integer linear program (MILP) by

introducing binary variables y and auxiliary continuous disaggregated variables νi (Hooker,
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2002):

min c⊤x (2.13a)

s.t. Aiνi ≤ biyi, ∀i = 1, . . . , k (2.13b)

x = ν1 + . . . + νk (2.13c)

k∑

i=1

yi = 1 (2.13d)

xLyi ≤ νi ≤ xUyi ∀i = 1, . . . , k (2.13e)

νi ∈ R
n ∀i = 1, . . . , k (2.13f)

x ∈ R
n,y ∈ {0, 1}k. (2.13g)

Disjunctive programming allows model developers to write certain problems more concisely

and/or more meaningfully. For example, selecting one element i out of a set i ∈ { 1, . . . , n }, i.e.

set partitioning, is a common constraint in process systems engineering:

n∑

i=1

yi = 1 where yi ∈ { 0, 1 } . (2.14)

As a disjunctive constraint, Equation (2.14) is easily identified as a selection constraint:

n∨

i=1



yi = 1 ∧
∧

i6=j

yj = 0



 .

Most approaches for solving disjunctive programs replace propositional variables with binary

variables. In the resulting model, yi = 1 implies a set of active constraints and yi = 0 implies

associated inactive constraints. Disjunctive programming has a rich cutting plane and duality

theory (Balas, 1974, 1975, 1979; Jeroslow, 1977). Furthermore, Balas (1998) characterises the

convex hull of a disjunctive program. A disjunctive constraint is satisfied if at least one of its

disjuncts is satisfied, Beaumont (1990) develops a branch-and-bound algorithm that branches

on disjunctions directly, Beaumont (1990) considers a more general version of Equation (2.12)

that allows for multiple disjunctive constraints.
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2.3.3 Convex Generalized Disjunctive Programming

Convex generalized disjunctive programming (convex GDP) extends convex NLP with Boolean

variables, disjunctions of groups of mathematical constraints and propositional variables (Raman

and Grossmann, 1994; Grossmann and Ruiz, 2012; Grossmann and Trespalacios, 2013).

Without loss of generality, a convex GDP formulation is (Grossmann and Trespalacios, 2013):

min c⊤x (2.15a)

gj(x) ≤ 0, j ∈ [p] (2.15b)

∨

i∈Dk







Yik

rikj(x) ≤ 0, j ∈ [pik]







, k ∈ K (2.15c)

∨
i∈Dk

Yik, k ∈ K (2.15d)

Ω(Y ), (2.15e)

xL ≤ x ≤ xU , (2.15f)

x ∈ R
n, (2.15g)

Yik ∈ {True, False}, k ∈ K, i ∈ Dk, (2.15h)

where gj : R
nC → R, rikj : R

nC → R are convex, Ω(Y ) is a propositional formula, and

c ∈ R
nC . Equation (2.15a) is the optimisation objective. Equation (2.15b) are global constraints.

Equation (2.15c) are disjunctive constraints. Equation (2.15d) selects that exactly one disjunct in

each disjunction K. Equation (2.15e) defines a propositional constraint on the Boolean variables.

Equation (2.15f) are bounds on the continuous variables. Equations (2.15g) and (2.15h) are the

domains of the model variables. The more general GDP framework allows for nonconvex gj or

rikj in Problem (2.15) (Jackson and Grossmann, 2001; Grossmann and Ruiz, 2012). Nonconvex

GDP solution algorithms may consider convex GDP relaxations (Lee and Grossmann, 2001).
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Basic Steps

A Problem (2.15) instance with |K| ≥ 1 and |K| + p ≥ 2 has more than one equivalent

representation (Balas, 1985; Sawaya and Grossmann, 2012; Ruiz and Grossmann, 2012). These

equivalent representations are constructed by applying basic steps. Basic steps in convex GDP

are an application of distributivity of ∧ over ∨. Let K ′ be a subset of disjunctions and global

constraints (here we treat global constraints as a disjunctions of length 1). We define the

following for notational convenience:

d00 ≡
[

gj(x) ≤ 0, j ∈ p0

]

dik ≡
[

rikj(x) ≤ 0, j ∈ [pik]
]

, k ∈ K, i ∈ Dk

where p0 ⊆ [p]. Let D0 = {0}, K ′ ⊆ {0} ∪K, |K| ≥ 2, and |p0| ≥ 1 if 0 ∈ K ′. The basic step

over K ′ is:
∧

k∈K′

∨

i∈Dk

dik ≡
∨

I∈
∏

k∈K′

zip(k,Dk)

∧

(k,{i})∈I

dik (2.16)

where zip(k, D) = {(k, {i}) | i ∈ D}. The basic step replaces the conjunction of constraints

indexed by K ′ by a single equivalent disjunction.

Balas (1985) proposes basic steps for disjunctive programming as a means of utilising the logical

structure to systematically construct tighter continuous relaxations. Sawaya and Grossmann

(2012) and Ruiz and Grossmann (2012) extend this theory to linear GDP and convex GDP,

respectively. While basic steps can improve continuous relaxation tightness, as Equation (2.16)

shows, the resulting disjunction has
∏

k∈K′|Dk| disjuncts. However, it may be possible to reduce

the size of the disjunction if some of the resulting disjuncts are infeasible (Trespalacios and

Grossmann, 2015a).
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Mathematical Programming Reformulations of Convex GDPs

Convex GDPs are often reformulated as convex MINLPs when solving either the original convex

GDP or a continuous relaxation (Caballero and Grossmann, 2001; Castro and Marques, 2015;

Jonuzaj et al., 2016). Only Equations (2.15c) to (2.15e) and (2.15h) involve variables and

operators that are not allowed in mathematical programming.

A mathematical programming reformulation takes the form:

min c⊤x (2.17a)

subject to [reformulation of disjunction k], k ∈ K, (2.17b)
∑

i∈Dk

yik = 1, k ∈ K, (2.17c)

Ay ≤ b, (2.17d)

yik ∈ {0, 1}, k ∈ K, i ∈ Dk, (2.17e)

Equations (2.15b), (2.15f) and (2.15g). (2.17f)

Equation (2.17a) is the unchanged objective. Problem (2.17) introduces a binary variable yik

for each Boolean variable Yik. Equation (2.17b) introduces a set of constraints and variables

depending on the reformulation strategy (discussed below). Equation (2.17c) is equivalent to

Equation (2.15d). Equation (2.17d) is a transformation of Equation (2.15e), see Grossmann and

Trespalacios (2013). Equation (2.17e) are variable domains. Equation (2.17f) are unchanged

constraints. The Equation (2.17b) reformulation can involve big-M and hull reformulations for

the disjunctions.

Big-M reformulation. Reformulating disjunction k ∈ K with a big-M approach introduces

rikj(x) ≤Mikj(1− yik), i ∈ Dk, j ∈ [pik] (2.18)

in place of Equation (2.17b) (Nemhauser and Wolsey, 1988; Trespalacios and Grossmann, 2014).

The tightest value for Equation (2.18) parameter Mikj, i.e. the smallest value that does not
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exclude any feasible solutions, is given by:

sup
{

rikj(x)
∣
∣
∣ g(x) ≤ 0,x ∈ T,x ∈

[

xL,xU
]}

, j ∈ [pik], (2.19)

where sup ∅ = −∞, and

S =






y

∣
∣
∣
∣
∣
∣

Ay ≤ b;
∑

i∈Dk

yik = 1, k ∈ K; yik ∈ {0, 1}, k ∈ K, i ∈ Dk






, (2.20)

T =
⋃

y∈S

{x | rikj(x) ≤ 0, (i, k) ∈ {(i, k) | yik = 1} , j ∈ [pik]} . (2.21)

The Equation (2.19) bound considers all (exponential) assignments. Hence, calculating the

Equation (2.19) bound has the same time complexity as finding an optimal solution by enumer-

ating all assignments. As Mikj is a modelling parameter, it is often more efficient to consider an

upper bound on Equation (2.19) that admits a simpler calculation, e.g. supx∈[xL,xU ] rikj(x).

Trespalacios and Grossmann (2015b) propose an improvement for GDP big-M reformulations by

considering substituting Equation (2.17c) into Equation (2.18) for yik. This substitution gives

(Trespalacios and Grossmann, 2015b):

rikj(x) ≤
∑

i′∈Dk\{i}

Mii′kjyi′k.

A direct substitution gives Mii′kj = Mikj, however Mii′kj ≤ Mikj may also be attainable for

some of the i′ ∈ Dk \ {i}. Trespalacios and Grossmann (2015b) show that using this approach

can result in tighter root node relaxations, reduced solve times and a lower number of explored

nodes.
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Hull reformulation. Reformulating disjunction k ∈ K with a hull approach introduces

(Grossmann and Lee, 2003):

yikrikj(νik/yik) ≤ 0, i ∈ Dk, j ∈ [pik] (2.22a)

x =
∑

i∈Dk

νik (2.22b)

xLyik ≤ νik ≤ xUyik, i ∈ Dk (2.22c)

νik ∈ R
n, i ∈ Dk (2.22d)

in place of Equation (2.17b). The left-hand side of Equation (2.22a) is the perspective transfor-

mation of rikj, defined as (Rockafellar, 1970; Hiriart-Urruty and Lemaréchal, 1993):

yikrikj(νik/yik) =







yikrikj(νik/yik), if yik > 0

0, if yik = 0 and νik = 0.
(2.23)

Note that Equation (2.22c) ensures that constraint set (2.22) evaluates the perspective transfor-

mation where it is defined.

Mathematical programming solvers derive bounds by considering the relaxation of a convex

approximation of the reformulation. The relaxation of a convex GDP reformulation is given by

relaxing the integrality requirement on binary variables yik, i.e. Equation (2.17e) becomes

yik ∈ [0, 1], k ∈ K, i ∈ Dk. (2.24)

For fixed k ∈ K, when rikj, i ∈ Dk, j ∈ [pik] are convex, Equations (2.17c), (2.22) and (2.24)

limited to k define the convex hull of disjunction k (Grossmann and Lee, 2003). Hence, for a

given GDP instance, a hull relaxation is always at least as tight as a big-M relaxation.

While the hull reformulation does not require any additional parameters, it does require many

additional variables νik and can cause numerical issues as yik → 0 when used directly. The

division-by-zero issue can be avoided for disjunctions that only contain linear or SOCP constraints

(Balas, 1998; Ben-Tal and Nemirovski, 2001). For general nonlinear convex rikj, Grossmann and
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Lee (2003) propose

(yik + ε)rikj(νik/(yik + ε)) ≤ 0 (2.25)

for small ε > 0 as an approximation for Equation (2.22a) that avoids a division-by-zero. However,

Equation (2.25) is incorrect for yik ∈ {0, 1}. Furthermore, Sawaya and Grossmann (2007) identify

that ε may have to be very small to satisfy solver tolerances when yik = 0, which can cause

numerical issues. Sawaya (2006) suggests replacing Equation (2.22a) with

((1− ε)yik + ε)rikj(νik/((1− ε)yik + ε))− εrik(0)(1− yik) ≤ 0 (2.26)

for small ε > 0. Equation (2.26) is correct for yik ∈ {0, 1}, however rikj(0) must be defined and

0 ≤ νik ≤ xUyik must hold. Furman et al. (2020) establish theoretical properties relating to

correctness, convexity and tightness of the Equation (2.26) perspective reformulation. Alterna-

tively, we may handle the perspective function directly in a solver. Frangioni and Gentile (2006)

propose perspective cuts that outer approximate the perspective function. Hence, a cutting

plane algorithm that lazily generates perspective cuts may be employed.

Since convex GDPs can be reformulated as convex MINLPs, any supporting convex MINLP

solver can be used directly to solve the convex GDP instance. Alternatively, we can design

convex GDP-specific cutting plane methods or B&B algorithms.

Cutting Plane Methods for Convex Generalized Disjunctive Programming

Let S be a convex GDP instance. We denote the hull relaxation of S with RH(S).. Let

S∗ be a Problem (2.15) convex GDP instance with p = 0 and |K| = 1. Then any (x̂, ŷ) ∈

proj(x,y) arg min(x,y,ν)∈RH(S∗) c
⊤x can be converted into an optimal solution (x̂, Ŷ ) of S∗. Con-

sider an arbitrary convex GDP instance S. If S has global constraints or more than one

disjunction then basic steps systematically build a finite sequence of equivalent instances that

terminates at an instance satisfying the required property for S∗. We have that RH(S∗) ⊆ R(S)

where R(S) denotes a big-M or hull relaxation of S.

Given a solution x̂ ∈ projx R(S), either x̂ ∈ projx RH(S∗) or x̂ /∈ projx RH(S∗). For the
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former case, x̂ can be converted into an optimal solution whereas for the latter we can generate

a cutting plane for R(S) to separate x̂. A cutting plane a⊤x ≤ b for R(S) that separates

x̂ /∈ projx RH(S∗) must satisfy a⊤x̂ > b. We derive the pair (a, b) by solving a separation

problem (Stubbs and Mehrotra, 1999; Vecchietti et al., 2003):

min ‖x− x̂‖ (2.27a)

subject to x ∈ projx R′(S ′), (2.27b)

where S ′ is problem S after applying zero or more basic steps and R′(·) is a relaxation strategy.

Equation (2.27a) minimises the distance of the solution from x̂ for some norm. Equation (2.27b)

constrains x̂ to R′(S ′). In practice R′(S) is generally a constructed by taking a hull reformulation

of S or applying basic steps to S (Vecchietti et al., 2003; Trespalacios and Grossmann, 2016a).

When x̂ ∈ projx R′(S ′), the optimal solution to Problem (2.27) is x̄ = x̂ with optimal objective

of 0. If R′(S ′) = RH(S) then x̂ is optimal for S. If R′(S ′) 6= RH(S) then we have to construct a

tighter constraint set R′′(S ′′), e.g. by making further basic steps or considering a hull relaxation.

When x̂ /∈ projx R′(S ′), the optimal solution to Problem (2.27) is x̄ 6= x̂ with optimal objective

greater than 0. The linear inequality:

ξ⊤ (x− x̂) ≥ 0, (2.28)

where ξ is a subgradient of ‖x − x̂‖ at x̄, can define a valid cutting plane for R(S) that

separates x̂ (Stubbs and Mehrotra, 1999). Among the subgradients, there exists ξ∗ for which

Equation (2.28) separates x̂, i.e. x̂ /∈ {x | ξ∗⊤(x− x̂) ≥ 0}∩projx R(S). Cutting plane methods

maintain a convex GDP master problem that extends the Problem (2.17) constraint set with

additional linear cuts. The number of cuts increases as the algorithm progresses.

Vecchietti et al. (2003) propose using cutting planes in a branch-and-cut framework that main-

tains a big-M reformulated GDP where cutting planes are generated against a hull reformulation.

Sawaya and Grossmann (2005) investigate the effect of the Vecchietti et al. (2003) cutting plane

approach and the choice of the Equation (2.27a) norm when applied at the root node of a



2.3. Mathematical Optimisation Frameworks 31

B&B algorithm for linear GDP. Trespalacios and Grossmann (2016a) extend the Vecchietti

et al. (2003) approach by considering a tighter separation problem constraint set generated by

applying basic steps.

Cutting plane strategies iteratively separate infeasible relaxation solutions with the explicit

introduction of a cutting plane. As investigated by Trespalacios and Grossmann (2016a), the

application of basic steps can induce tighter cuts when considering a hull relaxation. The

application of basic steps combined with a hull relaxation may be viewed as an implicit

simultaneous introduction of many cutting planes. Trespalacios and Grossmann (2015a) propose

a convex GDP solution strategy that maintains a single hull reformulated disjunction and the

remaining disjunctions are big-M reformulated. Their algorithm iteratively aggregates basic

steps into the hull relaxed disjunction.

Branch-and-Bound Methods for Convex Generalized Disjunctive Programming

B&B methods for convex GDP branch over disjunctions, i.e. splitting a disjunctions into

subdisjunctions. Candidates for branching are identified by considering fractionality in their

continuous relaxations.

Definition 2.5 (Lee and Grossmann (2000)). Let ŷ be an assignment on binary variables y

for some relaxation solution of convex GDP problem S.

Disjunction k ∈ K (i) selects disjunct i ∈ Dk under ŷ if ŷik = 1; (ii) is integer feasible under

ŷ if, for some i ∈ Dk, it selects disjunct i; and (iii) is fractional under ŷ if it is not integer

feasible under ŷ.

The assignment ŷ is: (i) integer feasible for S if every disjunction k ∈ K is integer feasible

under ŷ; and (ii) fractional for S if some disjunction k ∈ K is fractional under ŷ.

Beaumont (1990) develops a B&B algorithm for disjunctive programming that, at each node

with fractional assignment ŷ, branches by partitioning fractional disjunction k to construct

|Dk| children. Lee and Grossmann (2000) generalise the Beaumont (1990) B&B algorithm to
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convex GDP. The algorithm considers hull relaxations at each B&B node. If the relaxation

binary assignment is not integer feasible, the branching strategy branches on the binary variable

with the largest fractional assignment. Trespalacios and Grossmann (2016b) study Lagrangian

relaxations for linear GDPs and develop a heuristic that is embedded into the Beaumont (1990);

Lee and Grossmann (2000) B&B algorithm. B&B methods for nonconvex GDP utilise spatial

branching and convexification techniques (McCormick, 1976; Smith and Pantelides, 1997; Lee

and Grossmann, 2001; Kirst et al., 2017).

2.3.4 Mixed Logical-Linear Programming

Mixed logical-linear programming (MLLP) is formulated (Hooker and Osorio, 1999):

min c⊤x

s.t. Ωp
j(Y ,y)→ (Ajx ≥ bj), j ∈ J

∣
∣
∣ Ωq

i (Y ,y), i ∈ I .

(2.29)

Equation (2.29) splits the constraints into continuous and logical parts, on the left and right of

the bar, respectively. The logical part consists of formulas Ωq
i (Y ,y) where Y ∈ {True, False}nB

and y ∈ Z
nI . The continuous part is formulated as logical implications such that if Ωp

j(Y ,y) is

true then the constraint Ajx ≥ bj is imposed.

MLLP models are solved by branching on the propositional variables Y and discrete variables

y. As branching takes place, MLLP progressively strengthens the relaxation by enforcing

constraints Ajx ≥ aj if the corresponding antecedent Ωp
j is true. Since the logical part is

separated from the continuous part, MLLP enables propositional satisfiability algorithms to

derive further logical constraints and prune the search space.

An MLLP model may look different from the equivalent MILP. For many cases, e.g. where MILP

binary variables model existence or assignment, MLLP may result in an easier-to-comprehend

model with fewer variables. MLLP may be extended to models with nonlinear constraints, i.e.

to mixed logical-nonlinear programming (Türkay and Grossmann, 1996; Bollapragada et al.,

2001; Bemporad and Giorgetti, 2004, 2006; Carbonneau et al., 2011, 2012).
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2.3.5 Optimisation Methods based on Satisfiability Modulo Theo-

ries

The SMT language enables a user to easily model applications with logical and continuous

constraints. Indeed, such models are also GDP (Grossmann and Ruiz, 2012) representable.

However, GDP formulations are more restrictive when modelling interactions between continuous

and propositional variables since these interactions can only occur in disjunctive constraints.

Therefore, a GDP equivalent of an SMT formulation may be less expressive, e.g. when modelling

implications. SMT solvers support logical theories and dependencies, do precise arithmetic,

and enable incremental solving. But SMT solvers may have performance issues with division,

reasoning over integers, and only limited support for transcendental functions (de Moura and

Passmore, 2013). MINLP tools support the transcendental functions and scale well for mixed-

integer reasoning (Carvajal et al., 2014), but MINLP solvers cannot solve incrementally and

have limited support for logical constraints and are sensitive to rounding errors.

Two of the most prominent SMT-based optimisation methods are optimisation modulo theories

and integer linear programming modulo theories.

Optimisation modulo theories integrates optimisation and SMT with respect to the theory of

linear arithmetic over the rationals (Sebastiani and Tomasi, 2015). Sebastiani and Tomasi (2015)

consider different approaches to solve the MILP problems, e.g. offline and inline schemas with

linear, binary or adaptive search. Sebastiani and Tomasi (2015) compare optimisation modulo

theories versus linear GDP using both a convex hull and a big-M relaxation. The comparisons,

based on strip packing and job shop scheduling case studies (Sawaya and Grossmann, 2005),

show that an SMT solver may be used for optimisation.

Integer linear programming modulo theories is an optimisation framework where MILP,

rather than SAT, is leveraged as the efficient solver (Manolios and Papavasileiou, 2013). Integer

linear programming modulo theories is an optimisation framework in which difference logic

is used to communicate with the solver. Manolios and Papavasileiou (2013) implement their

framework as a constraint handler for the MILP solver SCIP (Achterberg, 2007b, 2009). A
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weakness of an MILP-based approach is that floating point calculations may lead to wrong

answers. Errors based on floating point do not happen in SMT because all formulae evaluate to

true or false only.

2.3.6 Logic-Based Benders Decomposition

Hybrid optimisation/logic approaches have been developed combining mixed-integer linear

programming (MILP) and constraint programming (CP), e.g. Jain and Grossmann (2001);

Maravelias and Grossmann (2004); Li and Womer (2008); Sitek (2014), or multiple levels of MILP,

e.g. Maravelias (2006). The hybrid formulations usually use logic-based Benders decomposition

(LBBD) (Hooker and Ottoson, 2003), a generalisation of Benders decomposition (Benders, 1962).

The principles of Benders decomposition remain: we have a master problem and a subproblem

which generates cuts if the solution from the master problem is infeasible. The difference

is that LBBD requires a logic proof deriving an objective bound. Other hybrid algorithms

use branch-and-check (Thorsteinsson, 2001) or Lagrangian decomposition (Papageorgiou and

Trespalacios, 2018).

Hybrid MILP/CP methods are typically applied to scheduling and its variants (Sitek, 2014).

This is reasonable: CP is very good at assessing scheduling feasibility. The problem with hybrid

MILP/CP is that, if the application does not have a suitable CP constraint, a hybrid method

may be poor since bespoke CP constraints take full advantage of very specific mathematical

structures.

2.4 Metaheuristics

2.4.1 Particle Swarm Optimisation

Kennedy and Eberhart (1995) introduce PSO for optimising continuous nonlinear functions.

PSO computes a good heuristic solution by triggering m particles that collaboratively search the
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Algorithm 3 Particle Swarm Optimisation

Compute initial position x
(0)
i ∈ R

n and velocity v
(0)
i ∈ R

n for each particle i = 1, . . . , m.
pi ← x

(0)
i

g ← arg min{f(pi)}
k ← 0
while the time limit is not exceeded do

for i = 1, . . . , m do
Choose random values r1, r2 ∼ U(0, 1)
v

(k+1)
i ← ωv

(k)
i + c1 · r1 · (pi − x

(k)
i ) + c2 · r2 · (g − x

(k)
i )

x
(k+1)
i ← x

(k)
i + v

(k+1)
i

if f(x(k+1)
i ) < f(pi) then

pi ← x
(k+1)
i

end if
end for
g ← arg min{f(pi)}
k ← k + 1

end while

feasibility space. PSO picks the initial particle position x
(0)
i and search direction v

(0)
i of particle

i randomly. The search occurs in a sequence of rounds. In round k, every particle chooses its

next position x
(k+1)
i by following the direction specified by a weighted sum of: (i) the current

trajectory direction v
(k)
i , (ii) the particle’s best found solution pi, (iii) the globally best found

solution g, and moving by a fixed step size. The inertia term ωv
(k)
i controls how quickly a

particle changes direction. The cognitive term c1 · r1 · (pi − x
(k)
i ) controls the particle tendency

to move to the best observed solution by that particle. The social term c2 · r2 · (g−x
(k)
i ) controls

the particle tendency to move toward the best solution observed by any particle. Coefficients ω,

c1, and c2 are tunable parameters. Termination occurs either when all particles are close, or

within a specified time limit. Algorithm 3 lists the PSO algorithm.

2.4.2 Simulated Annealing

Simulated annealing (SA) is a metaheuristic method for producing a near-optimal solution to

an optimisation problem (Metropolis et al., 1953). SA is inspired by a well-known analogy

between the physical annealing process of metals commonly employed in metallurgy. Above

their melting point, metals are in liquid states and their atoms are randomly arranged, relatively



36 Chapter 2. Background Theory

free to move. By cooling, i.e. annealing, a metal transitions into lower energy states and settles

into a solid state with ordered crystalline structures. At temperature T , the probability of an

energy increase of magnitude ∆E is exp(−∆E/kT ), where k is the Boltzmann’s constant. By

very slow cooling, the material settles into a low energy state and the material properties are

improved.

If we interpret (i) material states as feasible solutions, (ii) state changes as transitions to

neighboring solutions, (iii) energy as objective function cost, and (iv) temperature as control

parameter, we may use SA as a metaheuristic approach for solving combinatorial optimisation

problems. SA starts with an initial solution x(0), temperature T (0), and iteratively moves to

new solutions x(1),x(2), . . ., until it ends up with its last, good heuristic solution x(ℓ) while the

temperature is dropped. During this process, transitions to certain solutions may be rejected.

As opposed to local search that only accepts transitions to solutions with strictly better objective

values, i.e. f(x(k−1)) > f(x(k)) ∀k ∈ {1, . . . , ℓ}, SA may probabilistically accept transitions to

worse solutions with the aim of escaping local minima. Initially, the temperature is high enough

so that all transitions are allowable and SA performs a sort of random search in the feasibility

space. As the algorithm progresses and the temperature decreases, the tendency to move to

worse solutions decreases.

Algorithm 4 lists the simulated annealing algorithm (Kirkpatrick et al., 1983). The initial

temperature is typically set T (0) = 1. We may naively set the probability constant c = 1, or

select c to normalise the objective function in a way that all transitions are accepted in the

starting temperature T (0) = 1. Temperature is gradually decreased according to a fixed rule such

that limt→∞ T (t) = 0. Typically, the rule T (t) = αT (t−1) is adopted, where α ∈ [0.8, 0.99]. At a

given temperature level T (t), a number r ∈ [100, 1000] of iterations (repetitions) is performed

before a temperature decrease. In each iteration, we investigate a randomly chosen solution

x in the neighborhood N (x(k)) of the current solution x(k). If the new solution improves, i.e.

f(x) < f(x(k)), the algorithm moves to the new solution. If the new solution is of worse objective

value than the current one, then it is accepted with probability exp(−(f(x)− f(x(k)))/cT (t)).

The algorithm terminates when the temperature is sufficiently small, i.e. when |T (t)| ≤ ε, or

equivalently when a certain number of temperature decreases has been performed.
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Algorithm 4 Simulated Annealing

1: Compute an initial solution x(0) ∈ R
n.

2: Set initial temperature T (0) = 1 and probability constant c = 1.
3: Set temperature factor α ∈ [0.80, 0.99].
4: t = 0, k = 0
5: while T (t) > ε do
6: for r iterations do
7: Select a neighboring solution x ∈ N (x(k)) randomly.
8: if f(x) < f(x(k)) then
9: x(k+1) ← x

10: k ← k + 1
11: else
12: Choose p ∼ U(0, 1)
13: if exp(−(f(x)− f(x(k)))/cT (t)) > p then
14: x(k+1) ← x

15: k ← k + 1
16: end if
17: end if
18: end for
19: T (t+1) ← αT (t)

20: t← t + 1
21: end while



Chapter 3

Application Background -

Gradient-Boosted Trees

Consider integrating an unknown function into an optimisation problem, i.e. without a closed-

form formula, but with a data set representing evaluations over a box-constrained feasibility

domain. Optimisation in the machine learning literature usually refers to the training procedure,

e.g. model accuracy maximisation (Sra et al., 2012; Snoek et al., 2012). This chapter considers

optimising after the training procedure, where the trained predictive model is embedded in the

optimisation problem. We consider optimisation methods for problems with gradient-boosted

tree (GBT) models embedded (Friedman, 2001; Hastie et al., 2009). Advantages of GBTs are

myriad (Chen and Guestrin, 2016; Ke et al., 2017), e.g. they are robust to scale differences in

the training data features, handle both categorical and numerical variables, and can minimise

arbitrary, differentiable loss functions.

We consider an optimisation problem that incorporates an additional convex penalty term in

the objective, accounting for risky predicted values in parts of the feasibility domain where the

machine learning model is not well trained due to missing data. However, penalising a greater

distance from the candidate solution to the existing data may not be the only reason to add a

convex penalty function, e.g. our numerical tests consider an instance with an additional soft

constraint. Duran and Grossmann (1986a) document several other convex terms commonly

38
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appearing in process engineering, any of those convex nonlinear equations could be incorporated

into this framework. Another possible application area for this work is in portfolio optimisation,

e.g. as an extension to the Markowitz model with cardinality constraint and buy-in threshold

constraints (Bienstock, 1996). Several authors have considered more elaborate extensions, e.g.

by integrating uncertainty in the expected return estimate (Bonami and Lejeune, 2009) or

considering concave transaction costs (Konno and Wijayanayake, 2001). But the framework

we present here could use GBT models to develop data-driven uncertainty or cost models.

Meanwhile, the well known Markowitz model is convex.

Related Work Lombardi and Milano (2018) survey approaches for embedding machine

learning models as parts of decision-making problems. We encode the ML model using the

native language (Lombardi and Milano, 2018), i.e. in an optimisation modelling framework,

namely, mathematical programming. Resulting optimisation models may be addressed using

local (Nocedal and Wright, 2006) or deterministic global (Schweidtmann and Mitsos, 2019)

methods. The value of global optimisation is known in engineering (Boukouvala et al., 2016), e.g.

local minima can lead to infeasible parameter estimation (Singer et al., 2006) or misinterpreted

data (Bollas et al., 2009). For applications where global optimisation is less relevant, we still

wish to develop optimisation methods for discrete and non-smooth machine learning models, e.g.

regression trees. Discrete optimisation methods allow repurposing a legacy model, originally

built for prediction, into an optimisation framework. In a closely related line of work, Donti

et al. (2017) investigate training machine learning models in a manner that captures the task

for which they will be used. Here, we focus on generating optimal decisions once the ML model

has been trained.

This chapter formulates a problem that is closely related to Mǐsić (2017), the contents of this

chapter and Chapter 4 differs from Mǐsić (2017) as follows.

1. Mǐsić (2017) studies the problem of optimising over a tree ensemble whereas our problem

formulation includes a convex penalty in the objective as well.

2. Both Mǐsić (2017) and Chapter 4 develop approaches for relaxing the tree ensemble
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optimisation problem to derive rigorous bounds. Mǐsić (2017) proposes a hierarchy of

relaxations that approximate each tree in the ensemble up to a certain depth. Furthermore,

Mǐsić (2017) quantifies an approximation guarantee on their relaxation. Instead of reducing

the instance size with respect to tree depth, our tree ensemble relaxation partitions the

ensemble into smaller tree ensembles. The bound is calculated by considering these smaller

instances independently. We show that a partial ordering over the partitions guarantees

improvement in the relaxation tightness.

3. In terms of solution methodologies, Mǐsić (2017) develops a Benders decomposition

(Benders, 1962) strategy and a split generation approach that lazily reintroduces split

nodes that can be used as part of an iterative method that tightens a depth d relaxation.

Our work develops a B&B strategy and heuristics for the problem that we consider. In

particular, we develop a pseudocost initialisation strategy, a strong branching approach

and an iterative mixed-integer convex programming-based heuristic. The pseudocost

initialisation strategy may be used to guide branch selection for the optimisation problem

that Mǐsić (2017) considers as well.

Chapter Organisation Section 3.1 introduces GBTs, Section 3.2 introduces the optimisation

problem and Section 3.3 formulates the optimisation problem as a convex MINLP.

3.1 Gradient-Boosted Trees

This section describes gradient-boosted trees (GBTs) (Friedman, 2001, 2002). In this work,

GBTs are embedded into the Section 3.2 optimisation problem. GBTs are a subclass of boosting

methods (Freund, 1995). Boosting methods train many weak learners iteratively that collectively

produce a strong learner, where a weak learner is at least better than random guessing. Each

boosting iteration trains a new weak learner against the residual of the previously trained

learners by minimising a loss function. For GBTs, the weak learners are classification and

regression trees (Breiman et al., 1984).
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1 tree

depth 2

3 trees

depth 3

Figure 3.2: GBT approximations to the dashed function: 1 tree of depth 2 (left) and 3 trees of
depth 3 (right).

Table 3.1: Mixed-integer convex programming model sets, parameters and variables.

Symbol Description

vL
i , vU

i Lower and upper bound of variable xi

xi Continuous variable, i ∈ {1, . . . , nC}
t ∈ T Indices of GBTs
l ∈ Lt Indices of leaves for tree t
s ∈ Vt Indices of split nodes for tree t

mi Number of variable xi splitting values
vi,j Variable i’s j-th breakpoint, j ∈ {1, . . . , mi}
Ft,l Value of leaf (t, l)
yi,j Binary variable indicating whether variable xi < vi,j

zt,l Nonnegative variable that activates leaf (t, l)

of x1 < 2 is false, since x1 = 4.2, so we follow the right branch. Following this branch

encounters another split node. The next query of x2 < 4 is true, since x2 = 2.8, so we

follow the left branch. The final branch reaches a leaf with value 4.3, hence GBTt1(x) = 4.3.

The remaining trees also return a value after making similar queries on x. This results in

GBT(x) =
∑|T |

i=1 GBTti
(x) = 4.3 +

∑|T |
i=2 GBTti

(x).

3.2 Optimisation Problem

This chapter considers an optimisation problem that includes a GBT-trained function in the

objective. The choice of using GBTs for the machine-learning task leverages two strategies:

boosting and decision trees. Boosting (Freund, 1995), in the context of GBTs, trains many

relatively low depth decision trees in sequence where consecutive trees are trained against

the residual of the previously trained trees. Decision trees (Breiman et al., 1984) partition

the domain and assign each disjoint region a score. This partitioning of the domain, allows
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each tree to consider the disjoint regions in isolation, i.e. the scores assigned to the disjoint

regions do not influence each other. This disjointedness allows the decision trees to capture

sudden changes, e.g. nonconvex behaviour, in the underlying training data without fitting a

continuous function. However, while GBT-trained functions may result in good predictors, we

may want to optimise over the value being predicted. For example, the Chapter 4 numerical tests

consider a GBT-trained function that predicts the compressive strength of concrete. Using this

GBT-trained function for prediction questions: given input x, what is the compressive strength?

Whereas in the optimisation context, the question becomes: what input x predicts the maximal

compressive strength? This move from prediction to optimisation motivates box-constrained

optimisation Problem (3.1), where the objective is the sum of a convex nonlinear function and a

GBT-trained function:

min
vL≤x≤vU

cvx(x)
︸ ︷︷ ︸

Convex Part

+ GBT(x)
︸ ︷︷ ︸

GBT Part

, (3.1)

where x = (x1, . . . , xnC
)⊤ is the variable vector. GBT(x) is the GBT-trained function value

at x. Table 3.1 defines the model sets, parameters and variables. Problem (3.1) is relevant,

for example, in cases where a GBT function has been trained to data but we may trust an

optimal solution close to regions with many training points. A convex penalty term may

penalise solutions further from training data. For instance, consider historical data from a

manufacturing process for quality maximisation. The data may exhibit correlation between

two process parameters, e.g. the temperature and the concentration of a chemical additive. A

machine learned model of the system assigns weights to these parameters for future predictions.

Lacking additional information, numerical optimisation may produce candidate solutions with

temperature and concentration combinations that (possibly incorrectly) suggest temperature

is responsible for an observed effect. The convex penalty term helps control the optimiser’s

adventurousness by penalising deviation from the training data subspace and is parameterised

using principal component analysis (Vaswani et al., 2018). Large values of this risk control term

generate conservative solutions. Smaller penalty values explore regions with greater possible

rewards but also additional risk. Further to modelling distance to training data, the convex

penalty may be used to characterise additional soft constraints.
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A given problem instance may sum independently-trained GBT functions. Without loss of

generality, we equivalently optimise a single GBT function which is the union of all original

GBTs.

3.3 Mixed-Integer Convex Formulation

Problem (3.1) consists of a continuous convex function and a discrete GBT function. The discrete

nature of the GBT function arises from the left/right decisions at the split nodes. So we consider

a mixed-integer nonlinear program with convex nonlinearities (convex MINLP) formulation.

The main ingredient of the convex MINLP model is a mixed-integer linear programming (MILP)

formulation of the GBT part which merges with the convex part via a linking constraint. The

high level convex MINLP is:

min
vL≤x≤vU

cvx(x) + [GBT MILP objective] (3.2a)

s.t. [GBT MILP constraints], (3.2b)

[Variable linking constraints]. (3.2c)

3.3.1 Gradient-Boosted Trees Mixed-Integer Linear Programming

Formulation

We form the GBT MILP using the Mǐsić (2017) approach, which recalls the state-of-the-

art in modelling piecewise linear functions (Misener et al., 2009; Misener and Floudas, 2010;

Vielma et al., 2010). Alternative modelling approaches include the Verwer et al. (2017) MILP

formulation, the Bonfietti et al. (2015) constraint programming formulation, and the Lombardi

et al. (2017) satisfiability modulo theories formulation.

Figure 3.1 shows how a GBT partitions the domain [vL,vU ] of x. Optimising a GBT function
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reduces to optimising the leaf selection, i.e. finding an optimal interval, opposed to a specific

x value. Aggregating over all GBT split nodes produces a vector of ordered breakpoints vi,j

for each xi variable: vL
i = vi,0 < vi,1 < · · · < vi,mi

< vi,mi+1 = vU
i . Selecting a consecutive pair

of breakpoints for each xi defines an interval where the GBT function is constant. Each point

xi ∈ [vL
i , vU

i ] is either on a breakpoint vi,j or in the interior of an interval. Binary variable yi,j

models whether xi < vi,j for i ∈ [nC ] = {1, . . . , n} and j ∈ [mi] = {1, . . . , mi}. Binary variable

zt,l is 1 if tree t ∈ T evaluates at node l ∈ Lt and 0 otherwise. Denote by Vt the set of split

nodes for tree t. Moreover, let Leftt,s and Rightt,s be the sets of subtree leaf nodes rooted in the

left and right children of split node s, respectively.

MILP Problem (3.3) formulates the GBT (Mǐsić, 2017). Equation (3.3a) minimises the total

value of the active leaves. Equation (3.3b) selects exactly one leaf per tree. Equations (3.3c)

and (3.3d) activates a leaf only if all corresponding splits occur. Equation (3.3e) ensures that

if xi ≤ vi,j−1, then xi ≤ vi,j. Without loss of generality, we drop the zt,l integrality constraint

because any feasible assignment of y specifies one leaf, i.e. a single region in Figure 3.1.

min
∑

t∈T

∑

l∈Lt

Ft,lzt,l (3.3a)

s.t.
∑

l∈Lt

zt,l = 1, ∀t ∈ T , (3.3b)

∑

l∈Leftt,s

zt,l ≤ yi(s),j(s), ∀t ∈ T , s ∈ Vt, (3.3c)

∑

l∈Rightt,s

zt,l ≤ 1− yi(s),j(s), ∀t ∈ T , s ∈ Vt, (3.3d)

yi,j ≤ yi,j+1, ∀i ∈ [nC ], j ∈ [mi − 1], (3.3e)

yi,j ∈ {0, 1}, ∀i ∈ [nC ], j ∈ [mi], (3.3f)

zt,l ≥ 0, ∀t ∈ T , l ∈ Lt. (3.3g)

Equation (3.3g) models the domain of leaf selection variables zt,l as R≥0 opposed to {0, 1}.

We show correctness by considering a feasible assignment ŷ on binary variables y. Let t ∈ T

and let sroot
t ∈ Vt be the root split node of t. If ŷi(sroot

t ),j(sroot
t ) = 0 then Equation (3.3c) sets

zt,l = 0, ∀l ∈ Leftt,sroot
t

, otherwise Equation (3.3d) sets zt,l = 0, ∀l ∈ Rightt,sroot
t

. These two
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cases correspond to following the right and left branch of the tree t root split node, respectively.

Repeating this reasoning for non-root nodes of tree t results in zt,l = 0 ∀l ∈ Lt \ {l
∗} for some

l∗ ∈ Lt. Leaf l∗ corresponds to the leaf that ŷ selects, see the Figure 3.1 recursive partition

interpretation which indicates why a feasible assignment on y always corresponds to a unique

leaf. Since, only zt,l∗ is unassigned, Equation (3.3b) sets zt,l∗ = 1. Hence, the domain of zt,l can

be made continuous. The zt,l have to be non-negative since Equations (3.3c) and (3.3d) only

enforce upper bounds.

3.3.2 Linking Constraints

We complete the mixed-integer representation of Problem (3.1) by linking continuous variables

x with the Problem (3.3) binary variables. Consider feasible assignment ŷ to binary variables y

in Problem (3.3) and let ŷi = (ŷi,1, . . . , ŷi,mi
)⊤. Equation (3.3e) orders ŷi such that any feasible

assignment is a sequence of zeroes followed by a sequence of ones. Let ĵ = max({j ∈ [mi]|ŷi,j =

0}∪{0}), i.e. ĵ is either equal to the index of the last zero in ŷi or equal to zero if no such index

exists (ŷi can be the vector of all ones). Since yi,j = 0 corresponds to xi ≥ vi,j and ŷi begins

with a sequence of zeroes, we have that ŷi corresponds to xi ≥ vi,ĵ. We model the sequential

lower bounding behaviour exhibited by yi with:

xi ≥ vi,0 +
mi∑

j=1

(vi,j − vi,j−1)(1− yi,j).

For y = ŷ, the constraint becomes xi ≥ vi,0 +
∑ĵ

j=1 vi,j − vi,j−1 = vi,ĵ, since consecutive terms

in the sum have elements that cancel. For the particular case of ĵ = 0, we have that xi ≥ vi,0 is

enforced, i.e. the global lower bound on xi. We derive the upper bound on xi that ŷi corresponds

to, i.e. vi,ĵ+1, with a similar argument. This gives Equations (3.4a) and (3.4b) which link the

continuous xi variables, from the original Problem (3.1) definition, to the binary yi,j variables:

xi ≥ vi,0 +
mi∑

j=1

(vi,j − vi,j−1)(1− yi,j), (3.4a)

xi ≤ vi,mi+1 +
mi∑

j=1

(vi,j − vi,j+1)yi,j, (3.4b)
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for all i ∈ [nC ]. We express the linking constraints using non-strict inequalities to avoid

computational issues when optimising with strict inequalities. Combining Equations (3.2)

to (3.4) defines the mixed-integer nonlinear program with convex nonlinearities (convex MINLP)

formulation to Problem (3.1), i.e. Problem (3.5).

min
vL≤x≤vU

cvx(x) +
∑

t∈T

∑

l∈Lt

Ft,lzt,l (3.5a)

s.t.
∑

l∈Lt

zt,l = 1, ∀t ∈ T , (3.5b)

∑

l∈Leftt,s

zt,l ≤ yi(s),j(s), ∀t ∈ T , s ∈ Vt, (3.5c)

∑

l∈Rightt,s

zt,l ≤ 1− yi(s),j(s), ∀t ∈ T , s ∈ Vt, (3.5d)

yi,j ≤ yi,j+1, ∀i ∈ [nC ], j ∈ [mi − 1], (3.5e)

xi ≥ vi,0 +
mi∑

j=1

(vi,j − vi,j−1)(1− yi,j), ∀i ∈ [nC ], (3.5f)

xi ≤ vi,mi+1 +
mi∑

j=1

(vi,j − vi,j+1)yi,j, ∀i ∈ [nC ], (3.5g)

yi,j ∈ {0, 1}, ∀i ∈ [nC ], j ∈ [mi], (3.5h)

zt,l ≥ 0, ∀t ∈ T , l ∈ Lt. (3.5i)

When cvx(x) is linear, Problem (3.5) belongs to the MILP problem class and may be solved by

commercial MILP solvers, e.g. cvx(x) could involve the L1-norm. In general, Problem (3.5) may

be solved using a convex MINLP solver, e.g. Westerlund and Pettersson (1995); Tawarmalani and

Sahinidis (2005); Vigerske (2012); Misener and Floudas (2014); Lundell et al. (2017). Chapter 4

assesses this approach numerically for our tested instances.

Considering the structure of Problem (3.5), we have the majority of the constraints come from

modelling the GBT aspect, i.e. feasibility in Problem (3.5) is more influenced by the heavily

constrained mixed-integer aspect opposed to the convex aspect. Hence, it a solver may still

expend a fair amount of effort in finding integer feasible assignments for the binary yi,j variables.

The constraints of Problem (3.5) extends the Problem (3.3) constraints with Equation (3.4).

Mǐsić (2017) discusses relaxation tightness of Problem (3.3) and shows that it is tighter than an
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alternative formulation. The relaxation of Problem (3.5) also includes Equation (3.4a). We may

rewrite this constraint as

xi ≥ vi,0yi,1 +
mi−1∑

j=1

vi,j(yi,j+1 − yi,j) + vi,mi
(1− yi,mi

), ∀i ∈ [nC ], (3.6)

i.e. Equation (3.6) expands factors in Equation (3.4a) and regroups the elements by common

vi,j’s. By yi,j ∈ [0, 1] and yi,j ≤ yi,j+1, we have that

yi,1 +
mi−1∑

j=1

(yi,j+1 − yi,j) + (1− yi,mi
) = 1, ∀i ∈ [nC ].

Hence, Equation (3.6) corresponds to a convex combination of the lower interval endpoints.

Furthermore, in an integer feasible assignment to yi,j, yi,1 = 1 corresponds to selecting xi ∈

[vi,0, vi,1], (yi,j+1 − yi,j) = 1 corresponds to selecting xi ∈ [vi,j, vi,j+1], and (1 − yi,mi
) = 1

corresponds to selecting xi ∈ [vi,mi
, vi,mi+1], i.e. the disjunctive choice between intervals. As

Equation (3.4a) is a convex combination over the lower limits, the constraint is at least as tight

as a big-M approach, such as:

xi ≥ vi,0, ∀i ∈ [nC ]

xi ≥ vi,j − (vi,j − vi,0)(1− (yi,j+1 − yi,j)), ∀i ∈ [nC ], j ∈ [mi − 1]

xi ≥ vi,mi
− (vi,mi

− vi,0)yi,mi
, ∀i ∈ [nC ].

A similar analysis holds for Equation (3.4b).

3.3.3 Worst Case Analysis

The difficulty of Problem (3.1) is primarily justified by the fact that optimising a GBT-trained

function, i.e. Problem (3.3), is an NP-hard problem (Mǐsić, 2017). This section shows that

the number of continuous variable splits and tree depth affect complete enumeration methods.

These parameters motivate the branching scheme in our branch-and-bound algorithm.

In a GBT ensemble, each continuous variable xi is associated with mi + 1 intervals (splits).
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Picking one interval j ∈ {1, . . . , mi + 1} for each xi sums to a total of
∏n

i=1(mi + 1) distinct

combinations. A GBT-trained function evaluation selects a leaf from each tree. However, not all

leaf combinations are valid evaluations. In a feasible leaf combination where one leaf enforces

xi < v1 and another enforces xi ≥ v2, it must be that v2 < v1. Let d be the maximum tree depth

in T . Then, the number of leaf combinations is upper bounded by 2d|T |. Since the number

of feasibility checks for a single combination is 1
2
|T |(|T | − 1), an upper bound on the total

number of feasibility checks is 2d|T |−1|T |(|T | − 1). This observation implies that the worst case

performance of an exact method improves as the number of trees decreases.



Chapter 4

Mixed-Integer Convex Nonlinear

Optimisation with Gradient-Boosted

Trees Embedded

This chapter designs exact methods computing either globally optimal solutions, or solutions

within a quantified distance from the global optimum for Chapter 3 mixed-integer nonlinear

convex Problem (3.5). The Problem (3.5) objective sums a discrete GBT-trained function and

a continuous convex penalty function. We develop a branch-and-bound method exploiting

both the GBT’s combinatorial structure and the penalty function convexity. Numerical results

substantiate our approach.

This chapter primarily develops our methodology in the context of using GBTs in Problem (3.1),

the discussion is in a GBT context because our our numerical results are also all in the context

of GBTs. However, aspects of our methodology can be generalised to other trained machine-

learning models, e.g. assuming only decision-tree ensemble or simply ensemble structure. We

define an ensemble to be a set of independent functions that all evaluate over x ∈ [L,U ]

and are summed to calculate the value predicted by the ensemble. Sections 4.1.2 and 4.1.3

develop decomposition-based lower bounding strategies, a refinement procedure for improving

the decomposition-based lower bound and a strong branching method. These approaches are still

50
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applicable to Problem (3.1) formulations where the learnt function is an ensemble (opposed to a

GBT ensemble), e.g. the learnt function could be the result of applying boosting (Freund, 1995)

where the weak learner is given by an alternative machine-learning approach. A requirement to

make such a change would be the existence of an oracle that can optimise over the ensemble, e.g.

if the ensemble can be formulated as a MILP, using a MILP solver as the oracle. Section 4.1.3

derives branches from the GBT split nodes and develops a pseudocost intialisation to order the

branches. These aspects and the B&B algorithm is generally applicable to tree ensembles, e.g.

we may use random forests or extremely randomised trees (Breiman, 2001; Geurts et al., 2006)

in place of GBTs in the Problem (3.5) formulation.

Chapter Organisation Section 4.1 describes our branch-and-bound method. Section 4.2

defines the convex penalty term. Section 4.3 presents numerical results.

4.1 Branch-and-Bound Algorithm

This section designs an exact branch-and-bound (B&B) approach. The B&B algorithm exploits

spatial branching that splits on continuous variables (Belotti et al., 2013). Table 4 defines the

symbols in this section.

4.1.1 Overview

B&B Algorithm 5 spatially branches over the [vL,vU ] domain. It selects a variable xi, a point

v and splits interval [vL
i , vU

i ] into intervals [vL
i , v] and [v, vU

i ]. Each interval corresponds to

an independent subproblem and a new B&B node. To avoid redundant branches, all GBT

splits define the B&B branching points. At a given node, denote the reduced node domain by

S = [L,U ]. Algorithm 5 solves Problem (3.1) by relaxing the Equation (3.4) linking constraints

and thereby separating the convex and GBT parts. Using this separation, Algorithm 5 computes

corresponding bounds bcvx,S and bGBT,S,P independently, where the latter bound requires a tree

ensemble partition P initialised at the root node and dynamically refined at each non-root node.
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Algorithm 5 Branch-and-Bound (B&B) Algorithm Overview

1: S = [L,U ]← [vL,vU ]
2: bcvx,S ← ConvexBound(S) ⊲ Lemma 1, Section 4.1.2
3: Proot ← RootNodePartition(N) ⊲ Section 4.1.2
4: bGBT,S,Proot ← GbtBound(S, Proot) ⊲ Lemma 2, Section 4.1.2
5: B ← BranchOrdering() ⊲ Section 4.1.3
6: Q = {S}
7: while Q 6= ∅ do
8: Select S ∈ Q
9: if S is not leaf then

10: S ′ ← S
11: repeat
12: S ′, (xi, v)← StrongBranch(S ′, B) ⊲ Algorithm 7, Section 4.1.3
13: until strong branch not found
14: if S ′ is not leaf then
15: (Sleft, Sright)← Branch(S ′, (xi, v))
16: P : tree ensemble partition of node S
17: P ′ ← PartitionRefinement(P ) ⊲ Algorithm 6, Section 4.1.2
18: bGBT,S′,P ′

← GbtBound(S ′, P ′) ⊲ Lemma 2, Section 4.1.2
19: for Schild ∈ {Sleft, Sright} do
20: if Schild cannot be pruned then ⊲ Section 4.1.2
21: Q← Q ∪ {Schild}
22: end if
23: end for
24: end if
25: end if
26: Q← Q \ {S}
27: end while

Algorithm 5 begins by constructing the root node, computing a global lower bound, and

determining a global ordering of all branches (lines 1–5). A given iteration: (i) extracts a node

S from the unexplored node set Q, (ii) strong branches at S to cheaply identify branches that

tighten the domain resulting in node S ′, (iii) updates the GBT lower bound at S ′, (iv) branches

to obtain the child nodes Sleft and Sright, (v) assesses if each child node Schild ∈ {Sleft, Sright}

may now be pruned and, if not, (vi) adds Schild to the unexplored node set Q (lines 8–25).

The remainder of this section is structured as follows. Section 4.1.2 lower bounds Problem (3.1).

Section 4.1.3 introduces a GBT branch ordering and leverages strong branching for cheap node

pruning. Section 4.1.4 discusses heuristics for computing efficient upper bounds.
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4.1.2 Lower Bounding

Global lower bound

The convex MINLP Problem (3.2) objective function consists of a convex (penalty) part and a

mixed-integer linear (GBT) part. Lemma 1 computes a lower bound on the problem by handling

the convex and GBT parts independently.

Lemma 1. Let S = [L,U ] ⊆ [vL,vU ] be a sub-domain of optimisation Problem (3.2). Denote

by W S the optimal objective value, i.e. the tightest relaxation, over the sub-domain S. Then, it

holds that W S ≥ Ŵ S, where:

Ŵ S =
[

min
x∈S

cvx(x)
]

︸ ︷︷ ︸

bcvx,S

+

[

min
x∈S

∑

t∈T

GBTt(x)

]

︸ ︷︷ ︸

bGBT,S,∗

.

Proof. Proof Let x∗ = arg minx∈S{cvx(x) + GBT(x)} and observe that cvx(x∗) ≥ bcvx,S and

GBT(x∗) ≥ bGBT,S,∗. �

We may compute Ŵ S by removing the Equation (3.4) linking constraints and solving the

mixed-integer model consisting of Equations (3.2) and (3.3). Computationally, the Lemma 1

separation leverages efficient algorithms for the convex part and commercial codes for the MILP

GBT part. Lemma 1 treats the two Problem (3.1) objective terms independently, i.e. Ŵ S

separates the convex part from the GBT part. The Lemma 1 separation, while loose at the

root node, may be leveraged to discard regions that are dominated by one of the objective

terms. This approach resembles exact algorithms for multiobjective optimisation (Fernández

and Tóth, 2009; Niebling and Eichfelder, 2016, 2019). An alternative approach, e.g. in line

with augmented Lagrangian methods for stochastic optimisation (Bertsekas, 2014), would not

separate the convex penalty term as in Lemma 1, but rather tighten the lower bound by keeping

the convex penalty and GBTs integrated together. This would be an interesting alternative, but

would eliminate the possibility of strong branching, i.e. the method proposed in Section 4.1.3.
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GBT Lower Bound

While we may efficiently compute bcvx,S (Boyd and Vandenberghe, 2004), deriving bGBT,S,∗ is

NP-hard (Mǐsić, 2017). With the aim of tractability, we calculate a relaxation of bGBT,S,∗.

Lemma 2 lower bounds Problem (3.3), i.e. the GBT part of Problem (3.2), by partitioning the

GBT ensemble into a collection of smaller ensembles.

Lemma 2. Consider a sub-domain S = [L,U ] ⊆ [vL,vU ] of the optimisation problem. Let

P = {T1, . . . , Tk} be any partition of T , i.e. ∪k
i=1Ti = T and Ti ∩ Tj = ∅ ∀1 ≤ i < j ≤ k. Then,

it holds that bGBT,S,∗ ≥ bGBT,S,P , where:

bGBT,S,P =
∑

T ′∈P



min
x∈S







∑

t∈T ′

GBTt(x)









 .

Proof. When evaluating GBT(x) at a given x, each tree t ∈ T provides its own independent

contribution GBTt(x), i.e. a single leaf. A feasible selection of leaves has to be consistent with

respect to the GBT node splits, i.e. if one leaf splits on xi < v1 and another splits on xi ≥ v2

then v1 > v2. Relaxing this consistency requirement by considering a partition P of T derives

the lower bounds bGBT,S,P for any partition P . �

The tightness of the Lemma 2 GBT lower bound is dependent on the partition P used. For exam-

ple, the partition P1 = {{t} | t ∈ T } corresponds to trivial GBT lower bound
∑

t∈T minl∈Lt
Ft,l,

i.e. summing the minimal leaves in each tree, whereas the partition P2 = {T } is equivalent

to solving Problem (3.3) to optimality, i.e. the tightest possible GBT lower bound. However,

Lemma 2 corresponding to a partition that has subsets containing a large number of trees, e.g.

P2, may be more difficult to solve since the individual MILPs represent large GBTs. Section 4.3

numerically assesses this trade-off of tightness versus runtime. Depending on the partition used,

a Lemma 2 GBT lower bound may be looser or tighter than a continuous (linear programming)

relaxation solution of Problem (3.3). Clearly, a Lemma 2 GBT lower bound corresponding to

P2 is always at least as tight as a continuous relaxation solution. Example 4.1 shows that the

Lemma 2 GBT lower bound can be looser than a Problem (3.3) continuous relaxation lower

bound for some partitions of T .



4.1. Branch-and-Bound Algorithm 55

Example 4.1. We describe a GBT instance whose continuous relaxation lower bound is tighter

than the Lemma 2 GBT lower bound for some partitions of T . Let T = {T1, T2} be a GBT

instance with two trees where all Ft,l, t ∈ T , l ∈ Lt are unique. Let l∗
T1

= arg minl∈LT1
FT1,l.

Then the weight of leaf l ∈ LT1 can be written as FT1,l = FT1,l∗
T1

+ γT1,l where γT1,l ≥ 0. Similarly,

we can define l∗
T2

, and γT2,l that are defined from tree T2. Assume that l∗
T1

and l∗
T2

cannot be

selected together in an integer feasible solution. The objective of Problem (3.3) can be rewritten

as FT1,l∗
T1

+ FT2,l∗
T2

+
∑

t∈T

∑

l∈Lt
γt,lzt,l, since Equation (3.3b) holds. The minimum of this

equivalent objective, subject to Equations (3.3b) and (3.3g), occurs when
∑

t∈T

∑

l∈Lt
γt,lzt,l = 0.

This case only arises when zT1,l∗
T1

= zT2,l∗
T2

= 1, since all leaf weights are unique. But this is

an integer feasible solution that contradicts the assumption that leaves l∗
T1

and l∗
T2

cannot be

selected together. Hence, a feasible assignment to continously relaxed y does not correspond

to zT1,l∗
T1

= zT2,l∗
T2

= 1, since, by assumption, it would contradict with the constraint set given

by Equations (3.3c) to (3.3e). All other (possibly fractional) assignments to zt,l are such that

∑

t∈T

∑

l∈Lt
γt,lzt,l > 0, as all leaf values are unique. Hence, the linear programming relaxation

of this instance yields a tighter bound than that of the Lemma 2 GBT lower bound when using

the partition P = {{T1}, {T2}}.

Root Node Partition B&B Algorithm 5 chooses an initial root node partition Proot with

subsets of size N and calculates the associated Lemma 2 lower bound. Section 4.3 numerically

decides the partition size N for the considered instances. The important factors for a subset

size N are the tree depth, the number of continuous variable splits and their relation with the

number of binary variables.

Non-Root Node Partition Refinement Any non-root B&B node has reduced domain

x ∈ S = [L,U ] ⊂ [vL,vU ]. B&B Algorithm 5 only branches on GBT node splits, so modelling

the reduced domain S in MILP Problem (3.3) is equivalent to setting yi,j = 0 or yi,j = 1 for any

yi,j that corresponds to xi ≤ Li or xi ≥ Ui, respectively. Reducing the box-constrained domain

at the node level equates to reducing the GBT instance size. In particular, we may reduce

the number and height of trees by assigning fixed variable values and cancelling redundant
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constraints similarly to Mǐsić (2017).

Assume that, at some non-root node with domain S, the algorithm is about to update bGBT,S′,P ′

which was calculated at the parent node with domain S ′ ⊃ S. Fixing binary variables yi,j subject

to domain S reduces the worst case enumeration cost of calculating bGBT,S,P ′

. The GBT lower

bound may further improve at S by considering an alternative partition P such that |P | < |P ′|,

i.e. reducing the number of subsets. However, reducing the number of subsets has challenges

because: (i) choosing any partition P does not necessarily guarantee bGBT,S,P ≥ bGBT,S′,P ′

, and

(ii) a full Lemma 2 calculation of bGBT,S,P may still be expensive when considering the cumulative

time across all B&B nodes. Refinability Definition 4.1 addresses the choice of P such that

bGBT,S,P ≥ bGBT,S′,P ′

.

Definition 4.1. Given two partitions P ′ and P ′′ of set T , we say that P ′ refines P ′′ if and

only if ∀T ′ ∈ P ′, ∃T ′′ ∈ P ′′ such that T ′ ⊆ T ′′. This definition of refinement implies a partial

ordering between different partitions of T . We express the refinement relation by �, i.e. P ′ � P ′′

if and only if P ′ refines P ′′.

Example 4.2. Let P = {{1, 2, 3}, {4, 5}}, P ′ = {{1}, {2}, {3}, {4}, {5}} and P ′′ = {{1, 2}, {3, 4, 5}}

be partitions of {1, . . . , 5}. Here P ′ refines P since every subset in P ′ is contained in one of the

P subsets. Similarly P ′ refines P ′′. Partition P does not refine P ′′ nor does P ′′ refine P .

Lemma 3 allows bound tightening by partition refinements. Its proof is similar to Lemma 2.

Lemma 3. Let P and P ′ be two partitions of T . If P ′ � P , then bGBT,P ′

≤ bGBT,P .

In general, for two partitions P and P ′, we do not know a priori which partition results in a

superior GBT lower bound. However, by Lemma 3, P ′ refining P suffices for bGBT,P ≥ bGBT,P ′

.

Therefore, given partition P ′ for the parent node, constructing P for the child node S by unifying

subsets of P ′ will not result in inferior lower bounds.

Algorithm 6 improves bGBT,S′,P ′

at node S by computing a refined partition P . Suppose that

P ′ = {T1, . . . , Tk}. Each GBT ensemble subset T ′ ∈ P ′ corresponds to a smaller subproblem

with nT ′,S leaves (zt,l variables) over the domain S. Initially, Algorithm 6 sorts the subsets of
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Algorithm 6 Non-Root Node Partition Refinement

1: P ′: parent node partition
2: Sort P ′ = {T1, . . . , Tk} so that nT1 ≤ . . . ≤ nTk

3: P ← ∅
4: i = 1
5: while i < ⌊n/2⌋ and the time limit is not exceeded do
6: P ← P ∪ {T2i−1 ∪ T2i}
7: i← i + 1
8: end while
9: P ← P ∪ {Tj ∈ P ′ : j > i}

10: return P

P ′ in non-decreasing order of nT ′,S. Then, it iteratively takes the union of consecutive pairs and

calculates the associated lower bound, i.e. the first calculation is for bGBT,S,{T1∪T2}, the second is

for bGBT,S,{T3∪T4} and so forth. The iterations terminate when all unions have been recalculated,

or at user defined time limit q resulting in two sets of bounds: those that are combined and

recalculated, and those that remain unchanged. Assuming that the final subset that is updated

has index 2l, the new partition of the trees at node S is P = {T1∪T2, . . . , T2l−1∪T2l, T2l+1, . . . , Tk}

with GBT bound bGBT,S,P =
∑l

i=1 bGBT,S,{T2i−1∪T2i} +
∑k

i=2l+1 bGBT,S′,{Ti}. The second sum is a

result of placing time limit q on updating the GBT lower bound. Time limit q maintains a

balance between searching and bounding. Unifying any number of subsets satisfies Lemma 3,

but Algorithm 6 unifies pairs to keep the resulting subproblems manageable. One may speed up

our lower bounding procedure by reducing the height of the GBTs, thus relaxing feasibility, and

converting each partition subset Tk solution into a feasible one for Tk using the Mǐsić (2017)

split generating procedure for fixing violated constraints.

Node Pruning

In the B&B algorithm, each node can access: (i) the current best found feasible objective f ∗, (ii)

a lower bound on the convex penalties bcvx,S, and (iii) a lower bound on the GBT part bGBT,S.

The algorithm prunes node S if:

bcvx,S + bGBT,S > f∗, (4.1)

i.e. if all feasible solutions in S have objective inferior to f ∗.
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Figure 4.1: Example 4.3 node contributions to Equation (4.2) weight calculation. Each split
node contains ‘(xi, v) : w′ where (xi, v) is the split pair and w is the node’s contribution to
(xi, v)’s weight. We calculate w as the proportion of leaves covered relative to the total number
of leaves.

4.1.3 Branching

Branch Ordering

Next branch selection is a critical element of B&B Algorithm 5. Each branch is a GBT split

(xi, v) choice and eliminates a certain number of GBT leaves. Branching with respect to a GBT

split that covers a larger number of leaves may lead to a smaller number of subsequent B&B

iterations by reducing the GBT size.

Selecting an ideal (xi, v) split that most improves the GBT lower bound is challenging as it

may require solving multiple expensive MILPs. So, we heuristically approximate this task by

quantifying splits that occur often among all trees and influence a larger number of leaves in

participating trees. Let r((xi, v), t) and cover(s, t) return the set of nodes in tree t that split on

(xi, v) and the set of leaves that node s ∈ t covers, respectively. We initialise pseudocosts by

weighting the (xi, v) splits as:

weight((xi, v), t) = |Lt|
−1
∑

s∈r((xi,v),t)

| cover(s, t)|, (4.2a)

weight((xi, v), T ) =
∑

t∈T

weight((xi, v), t). (4.2b)

Equation (4.2a) weights (xi, v) as the fraction of leaves covered by nodes splitting on (xi, v) in

tree t. Equation (4.2b) sums all weights calculated by Equation (4.2a) for split (xi, v) in each

tree t ∈ T .



4.1. Branch-and-Bound Algorithm 59

Example 4.3. Figure 4.1 shows the weight given to each node for two trees. The left tree

contains 6 leaves and the right tree contains 7 leaves. Consider split (x2, 7). The left tree

contains two nodes splitting on (x2, 7) one of which covers 4 out of 6 leaves and the other covers

2 out of 6 leaves therefore these nodes contribute 2
3

and 1
3
, respectively, to the weight. Similarly,

the right tree contains a single node splitting on (x2, 7) which covers 4 out of 7 leaves therefore

this node contributes 4
7

to the weight. We obtain the weight for (x2, 7) by summing these values,

i.e. weight((x2, 7), T ) = 2
3

+ 1
3

+ 4
7

= 14
7
.

We note that the Equation (4.2) weight function initialises pseudocosts satisfying the following

properties:

1. for each tree t, weight((xi, v), t) is increasing with | cover((xi, v), t)|,

2. if (xi, v) and (xi′ , v′) cover the same set of leaves then weight((xi, v), s′) = weight((xi, v), s).

Strong Branching

Branch selection is fundamental to any B&B algorithm. Strong branching selects a branch that

enables pruning with low effort computations and achieves a non-negligible speed-up in the

algorithm’s performance (Morrison et al., 2016). Strong branching increases the size of efficiently

solvable large-scale mixed-integer problems and is a major solver component (Klabjan et al.,

2001; Anstreicher et al., 2002; Anstreicher, 2003; Easton et al., 2003; Belotti et al., 2009; Misener

and Floudas, 2013; Kılınç et al., 2014). Here, strong branching leverages the easy-to-solve convex

penalty term for pruning.

At a B&B node S, branching produces two children Sleft and Sright. Strong branching Algorithm 7

considers the branches in their Section 4.1.3 pseudo-cost ordering and assesses each branch by

computing the associated convex bound. Under the strong branching test, one node among

Sleft and Sright inherits the convex bound bcvx,S from the parent, while the other requires a

new computation. Suppose that S ′ ∈ {Sleft, Sright} does not inherit bcvx,S. If bcvx,S′

satisfies the

Equation (4.1) pruning condition without GBT bound improvement, then S ′ is immediately
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Algorithm 7 Strong Branching

1: S: B&B node with bounds bGBT,S and bcvx,S

2: BS = [(xi1 , v1), . . . , (xil
, vl)]: l next branches list w.r.t. Section 4.1.3 pseudo-cost order

3: for (xi, v) ∈ BS do
4: Sleft, Sright: S children by branching on (xi, v)
5: Compute bcvx,Sleft and bcvx,Sright

6: if max{bcvx,Sleft , bcvx,Sright}+ bGBT,S < f∗ then
7: return arg min{bcvx,Sleft , bcvx,Sright}, (xi, v)
8: end if
9: end for

10: return S, (xi1 , v1)

selected as the strong branch and strong branching repeats at the other child node S ′′. Figure 4.2

illustrates strong branching. When Algorithm 5 does not find a strong branch, it performs a

GBT lower bound update and branches on the first item of the branch ordering. Algorithm 5

then adds this node’s children to a set of unexplored nodes and continues with the next B&B

iteration. Strong branching Algorithm 7 may also be viewed as a form of bound contraction.

Bound contraction solves auxiliary problems that aim to tighten variable upper and lower

bounds by utilising the relaxation solutions or feasible solutions (Quesada and Grossmann, 1993;

Maranas and Floudas, 1995; Tawarmalani and Sahinidis, 2002; Karuppiah and Grossmann,

2006; Faria and Bagajewicz, 2012; Castro and Grossmann, 2014). Bound contraction techniques

are used in global optimisation of non-convex MINLP as convex relaxations for non-convex

constraints are often dependent on variable bounds, hence tightening variable bounds can tighten

relaxed constraints as well (Belotti et al., 2009; Castro, 2015). Strong branching Algorithm 7

results in a sequence of branches whose sibling branches are all infeasible. Hence, each strong

branch may be viewed as tightening the domain of the node at which strong branching was

applied, i.e. bound contraction. Also, the strong branches may tighten the MILPs that calculate

the Lemma 2 GBT lower bound, this is similar to the effect that bound contraction has on

convex relaxations of non-convex constraints in global optimisation.

Strong branching allows efficient pruning when the convex objective part is significant. Strong

branching may reduce the computational overhead incurred by GBT bound recalculation when

Algorithm 7 selects multiple strong branches between GBT bound updates. While a single

strong branch assessment is negligible, the cumulative cost of calculating convex bounds for all
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Figure 4.2: Strong branching for selecting the next spatial branch. A strong branch leads to a
node that is immediately pruned, based on a convex bound computation.

branches may be high. Section 4.1.3 orders the branches according to a measure of effectiveness

aiding GBT bounding, so the time spent deriving strong branches with small weighting function

may be better utilised in improving the GBT bound. Opposed to full strong branching, i.e.

assessing all branches, strong branching Algorithm 7 uses a lookahead approach (Achterberg

et al., 2005). Parameterised by a lookahead value l ∈ Z>0, Algorithm 7 investigates the first l

branches. If Algorithm 7 finds a strong branch, Algorithm 5 repeats Algorithm 7, otherwise

the B&B Algorithm 5 updates the GBT bound bGBT,S,P at the current node. Algorithm 7

keeps strong branching checks relatively cheap and maintains a balance between searching and

bounding.

4.1.4 Heuristics

To prune, i.e. satisfy Equation (4.1), consider two heuristic methods generating good feasible

solutions to Problem (3.1): (i) a mixed-integer convex programming (convex MINLP) approach,

and (ii) particle swarm optimisation (PSO) (Eberhart and Kennedy, 1995; Kennedy and

Eberhart, 1995). The mixed-integer approach uses the decomposability of GBT ensembles,

i.e. while convex MINLP solvers provide weak feasible solutions for large-scale instances of

Problem (3.1), they may efficiently solve moderate instances to global optimality (Westerlund

and Pettersson, 1995; Tawarmalani and Sahinidis, 2005; Vigerske, 2012; Misener and Floudas,

2014; Lundell et al., 2017). The PSO approach exploits trade-offs between the convex and

objective GBT parts. Metaheuristics like particle swarm optimisation and simulated annealing

(Kirkpatrick et al., 1983) may produce good heuristic solutions, as a preprocessing step, before



62Chapter 4. Mixed-Integer Convex Nonlinear Optimisation with Gradient-Boosted Trees Embedded

the branch-and-bound algorithm begins. Simpler convex MINLP heuristics may improve upper

bounds at the branch-and-bound node level because of their efficient running times.

Mixed-Integer Convex Programming Heuristic

For a given a subset T ′ ⊆ T of trees, let fT ′(·) be the objective function obtained by ignoring

the trees T \ T ′. Then, minvL≤x≤vU{fT ′(x)} may be significantly more tractable than the

original problem instance when |T ′| << |T |. So, the Algorithm 8 heuristic solves the original

convex MINLP by sequentially solving smaller convex MINLP sub-instances of increasing size. A

sub-instance is restricted to a subset T ′ ⊆ T of GBTs. Let T (k) be the subset of trees when the

k-th heuristic iteration begins. Initially, T (0) = ∅, i.e. fT (0)(·) consists only of the convex part.

Denote by x(k) the sub-instance optimal solution minimising fT (k)(·). Note that x(k) is feasible

for the full instance. Each iteration k chooses a set of N additional trees T next ⊆ T \ T (k) and

constructs T (k+1) = T (k) ∪ T next, i.e. T (k) ⊆ T (k+1). Consider two approaches for picking the

N trees between consecutive iterations: (i) training-aware selection and (ii) best improvement

selection. Termination occurs when the time limit is exceeded and Algorithm 8 returns the best

computed solution.

Algorithm 8 Mixed-integer convex programming heuristic
1: k ← 0
2: T (k) ← ∅
3: while the time limit is not exceeded do
4: x(k) ← arg min

vL≤x≤vU

fT (k)(x)

5: Choose T next from
{

T ′ | T ′ ⊆ T \ T (k), |T ′| = min{N, |T \ T (k)|}
}

6: T (k+1) ← T (k) ∪ T next

7: k ← k + 1
8: end while
9: return arg min

k∈{0,...,k−1}
f
(

x(k)
)

Training-aware selection Let T1, T2, . . . , Tm be the tree generation order during training.

This approach selects the trees T next according to this predefined order. That is, in the k-th

iteration, T (k) = {T1, . . . , TkN} and T next = {TkN+1, . . . , T(k+1)N}. A GBT training algorithm

constructs the trees iteratively, so each new tree reduces the current GBT ensemble error
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with respect to the training data. Thus, we expect that the earliest-generated trees better

approximate the learned function than the latest-generated trees. Specifically, for two subsets

TA, TB ⊆ T with the property that ta < tb for each Tta
∈ TA and Ttb

∈ TB, we expect that

|fTA
(x)− f ∗(x)| ≤ |fTB

(x)− f ∗(x)|, for each vL ≤ x ≤ vU , where f ∗ is the original objective

function, i.e. the optimal approximation. Intuitively, earlier trees place the GBT function within

the correct vicinity, while later trees have a fine tuning role.

Best improvement selection In this approach, the k-th iteration picks the N trees with

the maximum contribution when evaluating at x(k). We select T next ⊆ T \T (k) so that, for each

pair of trees Tt ∈ T
next and Tt′ ∈ T \ (T (k) ∪ T next), it holds that ft(x(k)) ≥ ft′(x(k)). Assuming

that approximation T (k) is poor, then T next contains the trees that refute optimality of x(k) the

most, from the perspective of ft(x(k)) t ∈ T \ T (k).

Particle Swarm Optimisation

For Problem (3.1), we improve the PSO performance by avoiding initial particle positions in

feasible regions strictly dominated by the convex term. We project the initial random points

close to regions where the GBT term is significant compared to the convex term.

4.2 Case Studies

Our case studies consider GBT instances where training data is not evenly distributed over

the [vL,vU ] domain. So, while x ∈ [vL,vU ] is feasible, GBT(x) may be less meaningful for x

far from training data. The Problem (3.1) cvx(x) function, for the case studies, is a penalty

function constructed with principal component analysis (PCA) (Jolliffe, 2002).

PCA characterises a large, high-dimensional input data set D = {d(1), . . . ,d(p)} with a low-

dimensional subspace capturing most of the variability (James et al., 2013). PCA defines a set

of n ordered, orthogonal loading vectors, φi, such that φi captures more variability than φi′ , for
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i < i′. PCA on D defines parameters µ,σ ∈ R
n and Φ = [φ1 . . . φn] ∈ R

n×n, i.e. the sample

mean, sample standard deviation and loading vectors, respectively. Vectors µ and σ standardise

D since PCA is sensitive to scaling. Often, only a few (k < n) leading loading vectors capture

most of the variance in D and Φ
′ = [φ1 . . . φk] may effectively replace Φ. P = Φ

′
Φ

′⊤ defines a

projection matrix to the subspace spanned by {φ1, . . . , φk}. Penalising solutions further from

training data with PCA defined projection matrix P :

cvxλ(x) = λ
∥
∥
∥(I − P ) diag(σ)−1(x− µ)

∥
∥
∥

2

2
(4.3)

where λ > 0 is a penalty parameter, I is the identity matrix and diag(·) is a matrix with the

argument on the diagonal. Larger λ is more conservative with respect to PCA subspace P .

Note in Equation (4.3) that our specific nonlinear convex penalty is a convex quadratic.

The parameter λ in Equation (4.3) scales the distance to the PCA subspace defined by P . If λ

is large then the corresponding Problem (3.1) objective is more influenced by Equation (4.3)

over large regions of the [L,U ] domain. Hence, the GBT function is more relevant, with respect

to optimality, in regions where Equation (4.3) evaluates to a small value. If λ is small then

the [L,U ] domain is less dominated by Equation (4.3) and the corresponding Problem (3.1)

may more closely resemble optimising over the GBT function alone. Parameter λ captures

conservativeness with respect to subspace P because, for large values, solutions that deviate from

subspace P may equate to large increases in the Problem (3.1) objective evaluations regardless

of the contribution from the GBT function. Small λ values give more freedom to deviate from

subspace P , as the Problem (3.1) the contribution of Equation (4.3) is less dominating. In

practice, the effect of λ on a given Problem (3.1) instance may not be known and λ may need to

be tuned. An approach to tuning parameter λ considers a sequence of decreasing values λ(i) and

the corresponding sequence of solutions to Problem (3.1), x(∗,i). The value cvx(x(∗,i))/λ(i), gives

a measure of distance from subspace P . If cvx(x(∗,i+1))/λ(i+1) − cvx(x(∗,i))/λ(i) is increasing

significantly then we have an indicator that the optimal Problem (3.1) solutions are becoming

less conservative. Our Section 4.3 numerical tests assess how λ affects the performance of the

B&B algorithm. Assessing how to tune λ efficiently is an interesting direction of future research.
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Equation (4.3) aims to characterise the region containing the training data with an affine

subspace. Points in the subspace are not penalised and points close to the subspace are

not heavily penalised. However, Equation (4.3) may be qualitatively less effective when the

standardised training data is not evenly distributed within subspace P .

Example 4.4. Consider a data set
{

x(i)
}2m

i=1
, x(i) ∈ R

3 where x
(i)
1 ∼ U(0, 1), ∀ i ∈ [2m],

and x
(i)
2 = x

(i)
3 = 0, x

(m+i)
2 = x

(m+i)
3 = 1, ∀ i ∈ [m]. The 2D subspace containing these

points contains the origin and directions (1, 0, 0)T , (0, 1, 1)T . Equation (4.3) does not penalise

points in this subspace. But the point (0.5, 0.5, 0.5), which is contained in the subspace, is far

from the training data when considering the subspace distribution. Having x
(i)
2 , x

(i)
3 ∼ N(0, ε),

x
(m+i)
2 , x

(m+i)
3 ∼ N(1, ε), ∀ i ∈ [m] and small ε > 0, introduces an error term to the second and

third variables while retaining the same clustered distribution over the subspace.

Clustering, e.g. Example 4.4, may be handled by the Section 4.1 B&B. We could instantiate a

separate instance for each cluster using a penalty that only considers training data in a given

cluster and limit the solve to a reduced box domain. A single problem formulation considering

more complex training data relationships may negatively affect the strong branching aspect of

B&B Algorithm 5.

4.3 Numerical Results

This section compares the Section 4.1 heuristic, lower bounding and branch-and-bound algo-

rithms to black-box solvers. Section 4.3.1 provides information about the system specifications

and the solvers. Sections 4.3.2 and 4.3.3 investigate two GBT instances for engineering applica-

tions, namely: (i) concrete mixture design and (ii) chemical catalysis. Section 4.3.4 discusses

observations from the Sections 4.3.2 and 4.3.3 results. The concrete mixture design instance is

from the UCI machine learning repository (Dheeru and Karra Taniskidou, 2017). The industrial

chemical catalysis instance is provided from BASF. Table 4.1 presents information about these

instances. For both instances, we model closeness to training data using the PCA-based function

cvx(x) defined in Equation (4.3).
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Table 4.1: Instance sizes

Concrete Mixture Design Chemical Catalysis

GBT attributes:
Number of trees 7,750 8,800
Maximum depth 16 16
Number of leaves (zt,l) 131,750 93,200
Number of xi continuous variables 8 42

Convex MINLP (3.2) attributes:
Number of continuous variables (#zt,l + #xi) 131,758 93,242
Number of yi,j binary variables 8,441 2,061
Number of constraints 281,073 183,791

4.3.1 System and Solver Specifications

Experiments are run on an Ubuntu 16.04 HP EliteDesk 800 G1 TWR with 16GB RAM and an

Intel Core i7-4770@3.40GHz CPU. Implementations are in Python 3.5.3 using Pyomo 5.2 (Hart

et al., 2011, 2017) for mixed-integer programming modelling and interfacing with solvers. We

use CPLEX 12.7 and Gurobi 7.5.2 as: (i) black-box solvers for the entire convex MINLP (3.2),

(ii) heuristic components for solving convex MINLP (3.2) instances in the Section 4.1.4 convex

MINLP heuristic, and (iii) branch-and-bound algorithm components for solving MILP (3.3)

instances in the Section 4.1.2 GBT lower bounding procedure. The R package GenSA (Xiang

et al., 2013) runs the simulated annealing (SA) metaheuristic. The Python module PySwarms

(Miranda, 2018) implements the Section 4.1.4 particle swarm optimisation (PSO) metaheuristic.

Note that current versions of CPLEX and Gurobi cannot solve general convex MINLP, so we

would use a more general solver if we had non-quadratic penalty functions. All results report

wall clock times.

This chapter evaluates the (i) objective lower bounding procedure, and (ii) branch-and-bound

algorithm, both of which use CPLEX or Gurobi as a black-box MILP solver. We also apply

CPLEX and Gurobi to: the entire MINLP for evaluating branch-and-bound Algorithm 5 and the

mixed-integer convex programming heuristic. Figures 5-12 append labels -C and -G to indicate

CPLEX and Gurobi, respectively, and use different line types for displaying the results. At

nodes immediately following a GBT bound update, the B&B algorithm assesses solutions from
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solving the convex part of Problem (3.1) as heuristics solutions. We use the default CPLEX 12.7

and Gurobi 7.5.2 tolerances, i.e. relative MIP gap, integrality and barrier convergence tolerances

of 10−4, 10−5 and 10−8, respectively. We use the default SA parameters. We parameterise PSO

with inertia term ω = 0.5, cognitive term c1 = 0.7, social term c2 = 0.3, 500 particles and an

iteration limit of 100. Each particle takes a randomly generated point, x(0) ∈ [vL,vU ], and

its projection, x(p) on P and initialises at x = h · x(0) + (1 − h) · x(p). For our tests, we use

h = 0.15.

4.3.2 Concrete Mixture Design

In concrete mixture design, different ingredient proportions result in different properties of the

concrete, e.g. compressive strength. The relationship between ingredients and properties is

complex, so black-box machine learning is well suited for the function estimation task (Chou

et al., 2011; Erdal, 2013; DeRousseau et al., 2018).

Instance

We maximise concrete compressive strength where GBTs are used for modelling. Since we

maximise concrete compressive strength, negating all leaf weights Ft,l forms an equivalent

GBT instance that fits the Problem (3.1) minimisation formulation. We use the Yeh (1998)

concrete compressive strength dataset from the UCI machine learning repository (Dheeru and

Karra Taniskidou, 2017). This dataset has n = 8 continuous variables. R packages gbm

(Ridgeway, 2017) and caret (Kuhn, 2008) are used for GBT training. Root-mean-square error is

used for model selection. The resulting GBT instance has 7,750 trees with max depth 16. The

PCA based convex penalty has rank(P ) = 4, i.e. we select the first four loading vectors.

Heuristic Solutions

Table 4.2 compares the CPLEX 12.7, Gurobi 7.5.2, SA, and PSO computed solutions for the

entire convex MINLP, under 1 hour time limit. SA performs the best. PSO solution is relatively
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Figure 4.7: Concrete mixture design instance: Global GBT lower bound improvement using the
Section 4.1.2 GBT lower bounding approach for different partition subset sizes.

close to the SA best found solution. CPLEX 12.7 reports poor heuristic solutions because it

encounters out-of-memory errors prior to completing its root node relaxation solve. Gurobi

7.5.2 reports poor heuristic solutions because it does not complete the root node relaxation

solve within an hour. The presolve of both solvers removes at most 43 constraints and 43

variables, hence the root node instance remains close in size to the original instance, i.e. the

instance is still fairly large after presolve. Gurobi 7.5.2 performance can improve given more

time as shown by the 24 hour time limit results in Table 4.3, the solver completes the root

node relaxation solve in this time. Figures 4.3 to 4.6 evaluate the Section 4.1.4 augmenting

convex MINLP heuristic using CPLEX 12.7, Gurobi 7.5.2, and the different tree selection

approaches, i.e. (i) training-aware (TA), (ii) best improvement (BI), and (iii) random selection,

for λ ∈ {1, 10, 100, 1000}, respectively. Figures 4.3 to 4.6 also plot the SA best-found solution. In

general, both TA and BI perform better than random selection. Moreover, TA performs better

than BI. Therefore, there is a benefit in choosing the earlier trees to find good heuristic solutions.

Interestingly, the solution found in the first iteration of the augmenting convex MINLP heuristic,

i.e. by solely minimising the convex part, is lower than -43, while the upper bounds reported by

CPLEX 12.7 and Gurobi 7.5.2 after one hour of execution are greater than -18.

GBT Lower Bounding

Figures 4.7 and 4.8 evaluate the Section 4.1.2 GBT lower bounding approach for different

partition subset sizes. Figure 4.7 illustrates the global GBT lower bound improvement as the

partition subset size increases. Figure 4.8 compares run times with either CPLEX 12.7, or
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CPLEX 12.7 and Gurobi 7.5.2 as MILP subsolvers. We assess the effect of strong branching by

comparing lookahead list sizes l = 1 vs. l = 100. We assess the quality of feasible solutions by

comparing with the Table 4.2 [electronic companion] best found feasible solution. We assess

the pseudocost ordering by comparing with 10 independent tests of random branch orderings

for each strong branch lookahead-subsolver combination. We compare all branch-and-bound

results, which allocate 1 hour for GBT lower bounding at the root node and 1 hour for the B&B

search, to 3 hour black-box runs of CPLEX 12.7 and Gurobi 7.5.2 for the entire convex MINLP.

Figures 4.9 to 4.12 plot the bound improvement for λ ∈ {1, 10, 100, 1000}, respectively. For the

entire convex MINLP, the black-box CPLEX 12.7 bounds are outside the figure axis limits. For

smaller λ, a larger strong branching lookahead value does not noticeably improve the lower

bound, but a larger lookahead does significantly improve the lower bound for large λ, e.g.

λ = 1000. Figures 4.9 to 4.12 depict lower bound improvement. The B&B algorithm lower

bound improves over time, but there is still a non-negligible gap from the best-known feasible

solution after 1 hour. This gap appears to be due to a cluster-like effect caused by the GBTs

(Du and Kearfott, 1994; Wechsung et al., 2014; Kannan and Barton, 2017), where the variable

split points are quite close. In the B&B algorithm, if the current lookahead list contains these

clusters, strong branching is less effective. CPLEX 12.7 results in an out-of-memory error prior

to beginning the branch-and-bound search therefore its lower bounds are relatively poor. Gurobi

7.5.2 returns an incumbent of -85 and a lower bound of -141, after 2 hours, and these do not

improve further in the subsequent hour. The B&B algorithm, at 2 hours, i.e. prior to tree search,

has an incumbent of -91 and a lower bound not less than -133. Given an additional hour for

tree search, the gap reduces further. Table 4.3 compares the B&B algorithm to Gurobi 7.5.2

with 24 hours time limit. The Gurobi heuristics generally outperform the B&B algorithm, but

the B&B algorithm derives better lower bounds. In all cases, ≥ 22% optimality gap remains.

Because regions close to training data have many GBT breakpoints, optimal solutions lie in

highly discretised areas of the feasibility domain.
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Table 4.3: Concrete mixture design instance: Results comparing 24 hour runs of the B&B
algorithm with Gurobi 7.5.2. The B&B algorithm uses a strong branching lookahead value of
100, a root node partition of 70 trees, a non-root lower bounding time limit of 120 seconds, and
CPLEX 12.7 as a subsolver.

BB-C Gurobi 7.5.2
λ UB LB Gap UB LB Gap

1 −80.56 −99.87 24% −85.48 −140.75 64%
10 −74.96 −99.39 33% −85.06 −121.10 42%
100 −73.74 −96.43 31% −77.98 −121.27 55%
1000 −74.86 −90.75 22% −72.29 −121.23 67%

4.3.3 Chemical Catalysis

BASF uses catalysts to improve yield and operating efficiency. But, modelling catalyst effective-

ness is highly nonlinear and varies across different applications. BASF has found GBTs effective

for modelling catalyst behaviour. Capturing the high-dimensional nature of catalysis over the

entire feasible domain requires many experiments, too many to run in practice. Running a fewer

number of experiments necessitates penalising solutions further from where the GBT function is

trained.

Instance

The BASF industrial instance contains n = 42 continuous variables. The convex part of the

instance takes the following form:

cvxλ(x) = λ
∥
∥
∥(I − P ) diag(σ)−1(x− µ)

∥
∥
∥

2

2
+



100−
∑

i∈I%

xi





2

(4.4)

Equation (4.4) differs from Equation (4.3) in its addend which aims to generate solutions where

xi ∈ I
%, i.e. proportions of the chemicals being mixed, sum to 100%. The test instance has

rank(P ) = 2 and |I%| = 37. The GBT part contains 8,800 trees where 4,100 trees have max

depth 16, the remaining trees have max depth 4, the total number of leaves is 93,200 and the

corresponding Problem (3.3) MILP model has 2,061 binary variables (recall that only the yi,j

variables are binary since integrality constraints on zt,l leaf selecting variables can be dropped
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Figure 4.17: Chemical catalysis BASF instance: Global GBT lower bound improvement using
the Section 4.1.2 GBT lower bounding approach for different partition subset sizes.
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Figure 4.18: Chemical catalysis BASF instance: Global GBT lower bounding wall clock time
using the Section 4.1.2 approach for different partition subset sizes. Suffixes -C and -G denote
subsolvers CPLEX 12.7 and Gurobi 7.5.2, respectively.

values of the λ input parameter. We investigate the augmenting convex MINLP heuristic

performance using either CPLEX 12.7, or Gurobi 7.5.2 for solving convex MINLP sub-instances

and each of the: (i) training-aware (TA), (ii) best improvement (BI), and (iii) random selection

strategies. The Figures 4.13 and 4.16 best feasible solution is the one produced by SA. For λ = 1,

TA constructs several heuristic solutions that outperform both the BI and random selection

ones. In this case, since the GBT part dominates the convex part, TA iteratively computes a

better GBT approximation. As λ becomes larger, TA and BI exhibit comparable performance,

with BI finding the best solution for λ = 1000. Random selection also performs well because

the convex part dominates the GBT part.

GBT Lower Bounding

Figures 4.17 and 4.18 evaluate the Section 4.1.2 GBT lower bounding approach for different

partition subset sizes. Figure 4.17 illustrates the global GBT lower bound improvement as the
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partition subset size increases. Figure 4.18 compares run times when using either CPLEX 12.7,

or Gurobi 7.5.2 as subsolvers for each partition subset size. These results resemble Figures 4.7

and 4.8. In particular, (i) the lower bound is improved with larger subset sizes, (ii) there is a

time-consuming modelling overhead for solving many small MILPs for small subset sizes, and

(iii) the running time increases exponentially, though non-monotonically, for larger subset sizes.

We compare the lower bounding approach with solving the entire MILP (3.3) using CPLEX

12.7, or Gurobi 7.5.2 as black-box solvers. Our lower bounding approach exhibits a superior

time-to-lower bound performance: (i) it improves the Gurobi 7.5.2 lower bound with subset size

140 and 4 minutes of execution, and (ii) it improves the CPLEX 12.7 lower bound with subset

size 360 and 8 minutes of execution.

Branch-and-Bound Algorithm

We instantiate the branch-and-bound algorithm with a root node partition of 150 trees, and

non-root lower bounding time limit of 120 seconds. All branch-and-bound tests are run with

CPLEX 12.7 and Gurobi 7.5.2 as subsolvers. We assess the effect of strong branching by

comparing lookahead list sizes l = 1 vs. l = 100. We assess the quality of feasible solutions by

comparing with the Table 4.4 [electronic companion] best found feasible solution. We assess

the pseudocost ordering by comparing with 10 independent tests of random branch orderings

for each strong branch lookahead-subsolver combination. We compare all branch-and-bound

results, which allocate 1 hour for GBT lower bounding at the root node and 1 hour for the B&B

search, to 3 hour black-box runs of CPLEX 12.7 and Gurobi 7.5.2 for the entire convex MINLP.

Figures 4.19 to 4.22 plot the bound improvement for λ ∈ {1, 10, 100, 1000}, respectively. For

the entire convex MINLP, CPLEX 12.7 reports a poor lower bound and does not find a feasible

solution within 3 hours. The B&B algorithm terminates with a tighter lower bound and closes

a larger gap than the black-box solvers, across all tested parameter combinations. The B&B

algorithm performs better for λ = 1000 because the convex part dominates the GBT part

more, making strong branching more effective. Finally, we see that the branch-and-bound

algorithm finds a relatively good heuristic solution at the root node for λ = 1000. As λ becomes
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involving continuous variables x whose entire box domain [L,U ] is feasible. Hence, SA and

PSO are able to make many (valid) function evaluations. However, both SA and PSO are

non-deterministic methods. Mixed-integer-based methods are a deterministic approach. While

SA and PSO function evaluations are always feasible, mixed-integer methods can encounter

infeasibility due to the formulation, since arbitrary assignments on modelling variables y and

z are not necessarily feasible, these infeasibilities can hinder the search. Using mixed-integer

solvers for a fixed length of time may return heuristic solutions. Applying 1 hour timeouts for a

mixed-integer solve on the entire instance shows that the solvers can perform relatively well for

smaller λ values, e.g. λ ∈ {0, 10, 100} in the chemical catalysis instance. Instances where λ is

smaller are less influenced by the convex part of the objective function therefore these instances

are more similar to solving the GBT MILP instance. Hence, MILP techniques may be more

effective in finding heuristic solutions. For larger λ values, using a mixed-integer solver as a

heuristic performs less well. Increased dominance from the convex part of the objective may

hinder the solver when it applies mixed-integer techniques, which are more applicable to the GBT

part of the problem. For our Section 4.1.4 iterative convex MINLP-based heuristics, we see that

our selection strategies generally outperform random selection.Both of the proposed selection

strategies perform comparably. In the case of training-aware selection, each successive iteration

leverages how the GBT function is trained, i.e. consecutive iterations consider a sequence of

GBTs that aim to rectify the errors introduced by the previous trees. The best improvement

selection strategy performs relatively well when considering a larger λ. Since the convex MINLP

heuristic considers larger instances, with respect to number of binary variables and constraints,

successive iterations generally see an increasing trend in solve time.

The Sections 4.3.2 and 4.3.3 GBT lower bounding results show that, for large-scale GBT

instances, selecting an appropriate partition subset size in the decomposition approach results

has a better time-to-lower bound performance than 1 hour black-box MILP solvers. Both

problem instances show that, for larger subset sizes, the running time exponentially increases,

while the lower bound improvement rate exponentially decreases. This is an expected result for

GBT instances with deep trees as deeper tree induce more infeasible combinations of branches.

For shallower GBT instances, individual trees to may interact less with each other, hence the
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decomposition strategy may derive a poorer bound than a black-box MILP solver. For small

subset sizes, the partition-based lower bounding has decreasing running time because of the

overhead from many sequential subproblems.

The Sections 4.3.2 and 4.3.3 B&B results also show common features. Comparing the BB-∗-b-∗

results for b ∈ {Weight, Random} in Figures 4.9 to 4.12 and 4.19 to 4.22 assess the pseudocost

effect. The Equation (4.2) initialisation outperforms random ordering (for matching lookahead

values), showing that the pseudocosts select branches that aid GBT lower bounding. This

pseudocost effect is more pronounced with a lookahead value of 100 since multiple branches are

selected between branch-and-bound iterations. For λ = 1000, a lookahead list size l = 100 closes

more gap than l = 1 (comparing BB-100-∗ to BB-1-∗), as the B&B algorithm accepts more

branches for strong branching. The difference between l = 100 and l = 1 implies that increased

strong branching improves the GBT lower bound earlier and more often. For λ = 1, using

a larger strong branching lookahead size does not have a noticable effect. However, this last

finding does not depreciate strong branching. Since the GBT part dominates the convex aspect

for small λ values, tighter GBT lower bounds might be essential for taking full advantage of

strong branching. Testing the B&B algorithm and Gurobi 7.5.2 with a 24 hour run time shows

that the branch-and-bound algorithm tends to result in superior lower bounds and closes a

larger proportion of the optimality gap whereas Gurobi 7.5.2 produces better heuristic solutions.

Closing any outstanding gap proves difficult as the domains of the remaining unexplored nodes

are highly discretised by the GBTs.



Chapter 5

Using Satisfiability Modulo Theories

Derived Unsatisfiable Cores in

Mathematical Optimisation

Both logic and optimisation has been long recognised as important for automated decision-making

(Jain and Grossmann, 2001; Hooker and Ottoson, 2003; Maravelias and Sung, 2009; Trespalacios

and Grossmann, 2014). Early work on disjunctive programming is motivated by (i) the practical

need to naturally model logical conditions such as dichotomies and implications and (ii) the

theoretical insights gained from novel structural characterisations (Balas, 1979). Contributions

highlighting the importance of both logic and optimisation have diverse applications, e.g. spatial

layout (Sawaya and Grossmann, 2005), modelling contracts in supply chain optimisation (Park

et al., 2006; Rodriguez and Vecchietti, 2009), and manufacturing systems (Fattahi et al., 2014).

Problems that involve both logic and mathematical constraints are solved by enumerating the

logical assignments in a branch-and-bound (B&B) framework (Land and Doig, 1960). B&B

implementations often assume a mathematical programming formulation, consider continuous

relaxations, and use continuous mathematical optimisation methods to derive lower bounds.

Continuous relaxations have the effect of relaxing logical structure, hence lower bounds may

be weaker and detecting infeasible logical assignments may require many branching steps. An

83
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alternative to a continuous relaxation strategy is a logical relaxation strategy as considered by

satisfiability modulo theories (SMT).

SMT modelling differs from mathematical programming modelling by supporting Boolean

variables and connectives. SMT approaches constraint feasibility by relaxing to a propositional

satisfiability logical relaxation, e.g. mathematical inequalities are replaced by fresh Boolean

variables, and reasons feasibility subject to a logical relaxation assignment. SMT solvers derive

unsatisfiable cores, a subset of constraints that explain infeasibility of a model. Unsatisfiable

cores are similar to irreducible infeasible subsystems (IISs) (Chakravarti, 1994) in mathematical

programming. However, as unsatisfiable cores operate over SMT constraints, an equivalent IIS

may be larger in size, e.g. when an SMT constraint requires many mathematical programming

constraints for an equivalent representation.

This chapter investigates how SMT can be utilised for optimisation by studying two-dimensional

bin packing. We propose three algorithms for solving two-dimensional bin packing that break

symmetries. In particular, one of these algorithms is a B&B approach that uses unsatisfiable

cores to guide the branching and break symmetries arising from infeasibilities. Numerical results

show that our B&B approach solves an additional 25% of the tested instances within a 1 hour

timelimit when compared with commercial solvers CPLEX 12.7 and Gurobi 6.0.3.

Section 5.1 develops a branch-and-bound algorithm that solves the two-dimensional bin packing

problem. Section 5.2 suggests how SMT unsatisfiable cores may be utilised as a tool to aid

debugging branch-and-bound algorithms.

5.1 Solving Two-Dimensional Bin Packing with Satisfia-

bility Modulo Theories

Two-dimensional bin packing (2BP) is the problem (Chung et al., 1982):

Given nC rectangular items. What is the minimum number of rectangular bins with
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Table 5.1: Model symbols for the two-dimensional bin packing (2BP) problem.

Name Description

Sets
i, j ∈ [nC ]} Items

Parameters
W , H Width and height of the bins respectively
Wi, Hi Width and height of item i respectively

Variables
Yb Activity of bin b, Boolean
Yib Item i assigned to bin b, Boolean
yb Activity of bin b, Binary
yib Item i assigned to bin b, Binary
xi,1, xi,2 Lower left coordinate of item i
z0 Largest active bin index
zi Bin containing item i
yl

ij Item i left of item j
yb

ij Item i below item j
yp

ij Item i in lower index bin than item j

width W and height H needed to pack all nC items without overlapping or rotating

the items?

This problem has typology class 2BP|O|F (Lodi et al., 1999), i.e. oriented and free cutting.

Being a generalisation of the NP-hard (one-dimensional) bin packing problem, 2BP is also

NP-hard. See Table 5.1 for descriptions of the sets, parameters and variables mentioned in the

formulations.

5.1.1 Models

We formulate two models for 2BP, a logical and a mixed-integer linear programming (MILP)

model.
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Logical Model

In 2BP a core constraint is: two different items in the same bin should not overlap. A logical

formulation naturally captures this if-then relationship as the following model shows.

min
nC∑

b=1

yb (5.1a)

s.t.
nC∨

b=1



Yib ∧
∧

b′ 6=b

¬Yib′



 ∀i ∈ [nC ] (5.1b)

(Yib ∧ Yjb)→







(xi,1 + Wi ≤ xj,1) ∨ (xj,1 + Wj ≤ xi,1)

∨(xi,2 + Hi ≤ xj,2) ∨ (xj,2 + Hj ≤ xi,2)
∀b ∈ [nC ], i, j ∈ [nC ], i < j

(5.1c)

Yib → Yb ∀b ∈ [nC ], i ∈ [nC ] (5.1d)

Yb → (yb = 1) ∀b ∈ [nC ] (5.1e)

¬Yb → (yb = 0) ∀b ∈ [nC ] (5.1f)

0 ≤ xi,1 ≤ W −Wi, 0 ≤ xi,2 ≤ H −Hi ∀i ∈ [nC ] (5.1g)

Yb, Yib ∈ {True, False}, yb ∈ {0, 1} ∀b ∈ [nC ], i ∈ [nC ]. (5.1h)

In Problem (5.1), parameters W and H are the width and height of the bins, respectively, and

Wi and Hi are the width and height of item i ∈ [nC ], respectively. Each bin is modelled as a

coordinate system where the lower left corner of the bin is (0, 0). Continuous variables (xi,1, xi,2)

model the position of the lower left corner of item i ∈ [nC ]. Boolean assignment Yib = True,

i, b ∈ [nC ], represents item i being assigned to bin b. Boolean assignment Yb = True, b ∈ [nC ],

represents that bin b is active. Binary variables yb are 0-1 equivalents of Yb which form the

Problem (5.1) objective. Equation (5.1a) minimises the number of active bins. Equation (5.1b)

fixes each item into a single bin. Equation (5.1c) ensures that any two items in the same bin

do not overlap. Specifically, the constraint states that if items i and j are assigned to bin b,

then item i must be placed either to the [left, right, below, or above] of item j. Equation (5.1d)

states that a bin must be active if it contains items. Equations (5.1e) and (5.1f) transform

Boolean variables to binary variables to form the Equation (5.1a) objective.



5.1. Solving Two-Dimensional Bin Packing with Satisfiability Modulo Theories 87

MILP Model

The MILP formulation (Pisinger and Sigurd, 2007) is:

min z0 (5.2a)

s.t. yl
ij + yl

ji + yb
ij + yb

ji + yp
ij + yp

ji ≥ 1 ∀i, j ∈ [nC ], i < j (5.2b)

xi,1 − xj,1 + Wyl
ij ≤ W −Wi ∀i, j ∈ [nC ] (5.2c)

xi,2 − xj,2 + Hyb
ij ≤ H −Hi ∀i, j ∈ [nC ] (5.2d)

zi − zj + nCyp
ij ≤ nC − 1 ∀i, j ∈ [nC ] (5.2e)

1 ≤ zi ≤ z0 ∀i ∈ [nC ] (5.2f)

zi ≤ i ∀i ∈ [nC ] (5.2g)

0 ≤ xi,1 ≤ W −Wi, 0 ≤ xi,2 ≤ H −Hi ∀i ∈ [nC ] (5.2h)

yl
ij, yb

ij, yp
ij ∈ {0, 1} ∀i, j ∈ [nC ] (5.2i)

zi, z0 ∈ Z ∀i ∈ [nC ] (5.2j)

Similar to Problem (5.1), Problem (5.2) parameters W , H are the width and height of the bins,

and Wi and Hi, are the width and height of item i ∈ [nC ]. Binary assignment yl
ij = 1 (yl

ji = 1)

represents that item i is left (right) of item j. Binary assignment yb
ij = 1 (yb

ji = 1) represents

that item i is below (above) item j. Binary assignment yp
ij = 1 (yp

ji = 1) represents that the bin

index to which item i is assigned is strictly less (greater) than the bin index to which item j

is assigned. Integer variable zi, i ∈ [nC ] identifies which bin contains item i and z0 counts the

number of active bins. Equation (5.2a) minimises the number of active bins. Equation (5.2b)

states that items are in different bins or that they do not overlap. Equations (5.2c) and (5.2d)

are big-M constraints that characterise non-overlapping items. Equation (5.2e) characterises

items being placed in different bins. Equation (5.2f) assigns the maximal active bin to z0 (the

objective ensures that the constraint is active at optimality). Equation (5.2g) is a symmetry

breaking constraint. The Equations (5.2c) to (5.2e) big-M constraints can result in a loose

continuous relaxation and therefore yield looser lower bounds. A natural lower bound on the
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optimal number of bins is the Equation (5.3) lower bound L0 (Martello and Vigo, 1998):

L0 =

⌈∑nC

i=1 Wi ·Hi

W ·H

⌉

, (5.3)

i.e. the total area given by the active bins needs to be at least the total area of the items.

Equation (5.3) is known as the continuous lower bound, we refer to it as L0 to prevent confusion

with the continuous relaxation bound. Example 5.1 shows that the continuous relaxation bound

of Problem (5.2) can be less than L0.

Example 5.1. Consider a 2BP instance with 5 items all having width and height equal to 1

and all bins having width and height equal to 2. The Equation (5.3) bound for this instance is

L0 =
⌈

5
4

⌉

= 2. For this instance, L0 is tight. For the continuous relaxation of Problem (5.2),

consider the assignments yp
ij = 0, yl

ij = 1
4
, yb

ij = 1
4
, for all i, j ∈ {1, . . . , 5} and z0 = zi = 1, for

all i ∈ {1, . . . , 5}. The only remaining unassigned variables are xi,1, xi,2, for all i ∈ {1, . . . , 5}.

Substituting existing variable assignments and parameter values into Equation (5.2c) gives:

xi,1 ≤ xj,1 + 0.5.

Assigning xi,1 = 0, for all i ∈ {1, . . . , 5} satisfies this constraint. Similarly, by symmetry,

xi,2 = xj,2 = 0 for all i ∈ {1, . . . , 5} satisfies Equation (5.2d). This solution is valid for the

continuous relaxation of Problem (5.2) and the objective is less than L0.

Pisinger and Sigurd (2007) propose a set covering model whose continuous relaxation is at least

as tight as the continuous relaxation of Problem (5.2), however the formulation can have an

exponential number of constraints and requires the set of all feasible combinations of items that

pack in a single bin.

As Equations (5.2b) to (5.2e) show, capturing the notion that two items are either placed in

different bins or do not overlap requires several additional binary variables and constraints.

Moreover, modelling that items i and j in the same bin do not overlap requires binary variables

yl
ij, yl

ji, yb
ij and yb

ji, and four constraints of the Equations (5.2c) and (5.2d) form. Constraint

programming may be applied in assessing whether items can be packed in a bin. Martello
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et al. (2007) and Pisinger and Sigurd (2007) utilise constraint programming in decomposition

frameworks for this task. Since constraint programming-based approaches are aware of the

context, e.g. items are two-dimensional, they can make better use of geometric arguments, e.g.

the total area of the items must not exceed the total area of the bin. This work differs from

the work of Martello et al. (2007) and Pisinger and Sigurd (2007) in that it investigates how

SMT may be used to solve 2BP and primarily focusses on how infeasibilities can be leveraged

for branching and eliminating symmetry.

5.1.2 Optimising with Satisfiability Modulo Theories

SMT assesses feasibility of a constraint set S. When S is feasible, an SMT solver provides a

feasible solution, otherwise SMT derives an unsatisfiable core. Section 2.2.1 Algorithm 1 addresses

the Equation (5.1) optimisation problem. For 2BP, Algorithm 1 removes the Equation (5.1a)

optimisation objective which results in the Equations (5.1b) to (5.1h) feasibility problem, let

this feasibility problem be S0. After solving S0 with SMT, calculate U1, the objective function

evaluated at the S0 feasible solution. Define feasibility problem S1 by extending S0 with

additional constraint:
nC∑

b=1

yb < U1,

i.e. bound the objective function. Repeat this process until the SMT solver proves some Si, i > 0,

is infeasible, and thereby conclude that the Si−1 solution is optimal. The Algorithm 1 iterative

approach solves successive feasibility problems to derive a sequence of decreasing objective

values {Ui}. The difference between feasibility problems S0 and Si is that Si has additional

constraints:
nC∑

b=1

yb < Ui′ , ∀i′ ∈ {1, . . . , i}. (5.4)

The Equation (5.1) optimisation problem may alternatively be addressed via SMT with (i)

one of the Section 2.3.5 optimisation frameworks or (ii) a black-box SMT-based optimisation

solver (Bjørner et al., 2015; Sebastiani and Trentin, 2015; Callia D’Iddio and Huth, 2017).

The following discussion uses SMT as a feasibility solver to leverage unsatisfiable cores for cut
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derivation and branching. Our methods are similar to using a logic-based Benders decomposition

(Section 2.3.6) where the master problem is embedded into the algorithm.

Symmetry in Two-Dimensional Bin Packing

We develop methods where an SMT solver assesses two decision problems. The first is the

two-dimensional orthogonal packing problem (Baker et al., 1980):

OPP(I ′, W, H) (5.5)

that questions whether a single bin of width W and height H packs all items in I ′ ⊆ [nC ]. The

constraints of feasibility problem OPP are the consequent of Equation (5.1c) and Equation (5.1g).

As shorthand, we use OPP(I) since all bins are equivalent. The second decision problem is the

2BP decision problem:

D2BP([nC ], k, W, H) (5.6)

that questions whether k or fewer bins each of width W and height H can pack all items in

[nC ]. To form the D2BP feasibility model, we remove the Equation (5.1a) objective from the

Equation (5.1) optimisation model and set:

Yb = False, ∀b ∈ {k + 1, . . . , nC}. (5.7)

Propagating the Equation (5.7) assignments reduces D2BP to variables and constraints that

only involve bins b ∈ {1, . . . , k}. As shorthand, we use D2BP(k) since our algorithms are only

concerned with the number of available bins.

Two-dimensional bin packing exhibits symmetry, e.g. permuting bin indices immediately results

in an identical packing. For an optimal 2BP solution with objective k, the same solution occurs
(

nC

k

)

k! times. Such symmetries hinder optimality proofs (Margot, 2010; Liberti, 2012). One

approach to break this symmetry is by adding additional constraints, e.g. Equation (5.2g).

But additional constraints only handle symmetries at a global level and further symmetries
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arise at a local level when considering OPP. We study symmetry breaking using SMT in 2BP.

Symmetry breaking is often applied in an instance specific manner (Margot, 2003; Ostrowski

et al., 2015; Kouyialis and Misener, 2017; Vo-Thanh et al., 2018). Alternatively, symmetry may

be approached with automated handling strategies (Margot, 2002; Kaibel et al., 2011; Ostrowski

et al., 2011; Kouyialis et al., 2019; Dias and Liberti, 2019).

Descending Strategy Consider an Algorithm 1 implementation that iteratively bounds the

objective with Equation (5.4) constraints. Assume that, in the current iteration, the algorithm

checks for (k − 1) bins or fewer. Constraint (5.4) is problematic because it symmetrically allows

any subset of (k − 1) active bins, i.e. the SMT solver checks D2BP(k-1) once for each subset of

(k − 1) bins. We break the Equation (5.4) symmetry by adding a constraint to deactivate bins,

i.e. Equation (5.7) sets ¬Yb. Iteratively introducing Equation (5.7) is the descending algorithm.

Since bin deactivation becomes part of the algorithm, we remove variables yb (and associated

constraints) from the Equation (5.1) formulation. This algorithm aids satisfiability searches

because the SMT conflict graph from any previous iteration is always valid in later iterations.

An alternative method is equivalent to binary search (Callia D’Iddio and Huth, 2017). Initialise

the algorithm by setting an lower and upper bound on the problem (1 and nC). At each iteration,

activate a number of bins that is halfway between the bounds. Update the lower/upper bound

depending on whether the halfway problem is unsatisfiable/satisfiable. Terminate when the

bounds are equal. We do not use the binary search algorithm because it assesses unsatisfiability,

a costly operation for D2BP and therefore heuristically poor for this particular application.

Ascending Strategy While the descending algorithm progressively builds a conflict graph,

it can struggle to efficiently prove optimality as symmetry occurs when addressing infeasibilities.

For example, if OPP(I’) is unsatisfiable for some subset of items I ′, then having items I ′ in

any bin for a D2BP(k) instance is a symmetry in unsatisfiability checks. The lower bounding

ascending algorithm reduces symmetry in optimality proofs. This algorithm naturally extends

to the branch-and-bound algorithm described in Section 5.1.3.
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At a high level, the ascending and descending algorithms are opposites. The descending algorithm

initially activates all bins and iteratively deactivates bins until the first unsatisfiable result

(optimality proof). The ascending algorithm initially deactivates all but one bin and iteratively

activates one additional bin until the first satisfiable (optimal) result, i.e. it assesses D2BP(k)

for k = 1, . . . , nC (in order) and terminates at the first satisfiable k.

Each unsatisfiable ascending algorithm iteration proves that we need at least one more bin. Also,

each unsatisfiable iteration generates an unsatisfiable core. In the 2BP case, any Equation (5.1c)

constraints in the unsatisfiable core are a conflicting subset of items. Assuming that the kth

iteration has k active bins and the items corresponding to Equation (5.1c) constraints are

{i1, . . . , it}, the unsatisfiable core has the interpretation:

items {i1, . . . , it} cannot be packed into k bins.

In iteration (k + 1), the ascending algorithm derives cuts relating to this set of t items and

thereby prevents symmetric unsatisfiability assessments. The symmetric property is: any set of

items that cannot be packed in the same bin cannot be packed in any bin. Between ascending

algorithm iterations, we run intermediate OPP checks on unsatisfiable core subsets and add:

∨

i∈I′

¬Yib, ∀b ∈ [nC ], (5.8)

for any unsatisfiable result of OPP(I’). The MILP equivalent of Equation (5.8) is:

∑

i,j∈I′

i6=j

pij + pji ≥ 1. (5.9)

Equation (5.8) and (5.9) have the same feasible space, but the Equation (5.9) cut can lose its

logical meaning in an MILP solving strategy with relaxed fractional values. Equation (5.8) will

not combine the I ′ items because Equation (5.8) is a propositional clause that is not relaxed in

the SAT subsolve of an SMT solver.

When deriving the Equation (5.8) cuts, deciding OPP is expensive for each unsatisfiable core

subset since there are exponentially many such subsets. But the many OPP checks may be
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3: UNSAT

5: UNSAT

1: SAT 2 4 6

Figure 5.3: An example branching tree for an instance with optimal objective 3. Each node
contains an item i and a node’s depth, d, corresponds to fixing item i in bin d + 1. Crossed
nodes are pruned. In this instance the first iteration fixed items 3 and 5 in bins 1 and 2. The
second iteration derives unsatisfiable core of unfixed items {1, 2, 4, 6} (the alternative choices
for bin 3) and fixes item 1 in bin 3. The third iteration finds fixing items 3, 5 and 1 separately
is feasible. The remaining nodes are pruned since a feasible solution equal to their depth has
already been found. There are no further branches after pruning, therefore the bottom left
branch gives an optimal solution.

addresses a slightly stricter version of D2BP since there is an item fixed in each bin, i.e. assessing

whether we satisfy 2BP in exactly (d + 1) bins with the corresponding items fixes. Since the

depth of a node corresponds to how many bins are active, the branch-and-bound algorithm does

not search beyond the depth of any feasible node that it has found. The branch-and-bound

algorithm terminates by exhausting each alternative path.

Since the branch-and-bound algorithm extends the ascending algorithm, it still derives Equa-

tion (5.8) cuts in a local setting. Assuming that OPP(I’) is unsatisfiable with j ∈ I ′ and j fixed

in bin b, the associated local cut is:
∨

i∈I′

i6=j

¬Yib. (5.10)

Furthermore, any local cuts, i.e. cuts depending on a fixed item, are promoted to global cuts

by including their corresponding fixed item when the branch-and-bound algorithm investigates

sibling or ancestor branches. So all Equation (5.8) cuts can become global regardless of where

in the tree they are derived.

Fixing items in the branch-and-bound tree reduces the number of symmetric checks on a given

root to leaf path. Adding/promoting Equation (5.8) cuts aids unsatisfiability proofs across the

entire unexplored tree. But assessing alternative branches of a given unsatisfiable core retains

the symmetry of bin permutations, hence sibling branches contain identical solutions. The main

problem is that, if we have explored a particular branch having fixed item i1, then in a sibling
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branch, having the freedom to select any bin for i1 includes paths explored by the first branch

due to bin permutations. Lemma 4 derives push back cuts that remove this symmetry by forcing

explored branch items to be pushed back into earlier bins.

Lemma 4. Assume that the branch-and-bound algorithm is assessing alternatives at some node

of depth b− 1, i.e. each of the first b bins have one fixed item, and that this node is unsatisfiable.

Let this node have unsatisfiable core of unfixed items I ′ = {i1, . . . , im}, m > 1, i.e. we have to

assess each of these items being placed in bin (b + 1). When branching on element ik, k > 1, if

we add the cuts
b∨

b′=1

Yib′ , ∀i ∈ I(k) = {ik′|k′ < k}, (5.11)

then among all branches the best objective will match that of assessing these alternative branches

without adding the Equation (5.11) cuts.

Proof. Define OPTk, k ∈ K = {1, . . . , m} as the optimal objective of branch ik with its

corresponding Equation (5.11) cuts. Assume, for a contradiction, that there exists item ik′,

1 < k′ ≤ m such that without adding its Equation (5.11) cuts, gives optimal objective OPT′

that satisfies:

OPT′ < min
k∈K
{OPTk}. (5.12)

Let f1 map items to bins for the OPT′ solution. We define the set S (items that violate

Equation (5.11)) as:

S = {k | f1(ik) ≥ b + 1, ik ∈ I(k′)}.

Clearly S is non-empty, otherwise OPT′ = OPTk′ ≥ mink∈K{OPTk}. Let kl = min S. We

permute the bins such that item kl is in bin b + 1 with corresponding item to bin map:

f2(i) =







b + 1, if f1(i) = f1(ikl
)

f1(ikl
), if f1(i) = b + 1

f1(i), otherwise.

But f2 is a feasible solution for branch ikl
with its associated Equation (5.11) cuts as kl = min S
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(note that branch i1 does not add any cuts). Since f2 has objective OPT′:

min
k∈K
{OPTk} ≤ OPTkl

≤ OPT′,

contradicting the Equation (5.12) assumption.

Repeatedly applying Lemma 4 in the branch-and-bound algorithm adds a level of independence

between alternative search paths. Equation (5.11) constraints aid unsatisfiability proofs when

branching on later elements of I ′, since there are a larger number of pushed back items.

Furthermore, we automatically remove pushed back items from new branch sets even though

they are unfixed, thus reducing the number of branching decisions. Lemma 5 proves that, when

pushing back item i, we also can push back all items i′ that are identical to i.

Lemma 5. Assume that the branch-and-bound algorithm is assessing alternatives at some node

of depth (b−1), i.e. each of the first b bins have one fixed item, and that this node is unsatisfiable.

Let this node have unsatisfiable core of unfixed items I ′ = {i1, . . . , im}, m > 1, i.e. we have to

assess each of these items being placed in bin (b + 1). Then when we push back item i ∈ I ′

(according to Equation (5.11)) we can also push back all items i′ ∈ I that are identical to i.

Proof. Let item i′ be identical to i such that i′ is not fixed or pushed back (the lemma holds

trivially for these cases). With item i pushed back according to its Equation (5.11) constraints,

pick any feasible solution with i′ placed in bin b′ ≥ b + 1 and let f1 be the associated item to

bin map. Then the following map:

f2(j) =







b + 1, if f1(j) = b′

b′, if f1(j) = b + 1

f1(j), otherwise

permutes bins (b + 1) and b′. But f2 is a feasible solution for the item i branch if we swap

identical items i and i′. Since branch i contains any feasible solution with item i′ in bin b′ ≥ b+1,

we can also push back i′ as well as i.
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Finally, since we only fix a single item per bin, we eliminate mirror and rotational symmetries of

fixed items by limiting their center to the lower left quadrant of their bins with the constraints:

xi,1 ≤
W −Wi

2
, xi,2 ≤

H −Hi

2
. (5.13)

Equation (5.13) cuts involve the continuous variables, so they correspond to the arithmetic

theory solver aspect of an SMT solver. Since SAT solver checks relax the arithmetic theories,

these cuts may be less effective in SMT.

Numerical Results

We solve the MILP and SMT models using CPLEX 12.7 and Gurobi 6.0.3, and Z3 4.5.1

(De Moura and Bjørner, 2008), respectively. The MILP models are in Pyomo (Hart et al., 2011,

2012), and the Z3 implementation is in Python. As Z3 is a feasibility checker, it does not solve

Problem (5.1) as a stand-alone package. Tools that support SMT-based black-box optimisation

include νZ (Bjørner and Phan, 2014), ManyOpt (Callia D’Iddio and Huth, 2017) and MathSAT

(Cimatti et al., 2013). All test cases were run on a HP EliteDesk 800 G1 TWR with 16GB

RAM and an Intel® Core™ i7-4770 @ 3.40Ghz running Ubuntu 16.04.1 LTS. The test set

contains 500 instances grouped into 10 classes. Each class has 10 instances with 20, 40, 60, 80

and 100 items. These instances were originally generated by Berkey and Wang (1987). Martello

and Vigo (1998) and Lodi et al. (1999) describe the differences between classes.

Figure 5.4 is a performance profile comparing time-to-convergence (Dolan and Moré, 2002). We

compare the descending, ascending and branch-and-bound algorithm to CPLEX and Gurobi.

We also add a can solve line for the Pisinger and Sigurd (2007) column generation and constaint

programming results. We use SMT to assess OPP, Pisinger and Sigurd (2007) use a specialised

algorithm for the underlying OPP decision problem, the ‘P&S (2007) solved’ can solve line

in Figure 5.4 gives an indication of the kind of performance improvement achieved by using

more bespoke methods. We compare against the mixed-integer solvers in the subsequent

analysis. The branch-and-bound algorithm outperforms the alternative SMT-based methods
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Figure 5.4: Performance profile for 500 bin packing instances. Among CPLEX, Gurobi and the
SMT-based algorithms, SMT-BB solves almost all tractable problems and solves the largest
proportion of instances first. Each solver has a timelimit of one hour. All solvers are limited to
one thread. P&S (2007) is the number of problems that Pisinger and Sigurd (2007) solve to
optimality.
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Table 5.2: The number of instances (Berkey and Wang, 1987; Martello and Vigo, 1998) solved
to optimality by each solver. Each class has 50 instances. Bold formatting indicates which
algorithm solves the largest number of instances.

Class CPLEX Gurobi SMT-Descending SMT-Ascending SMT-BB

1 10 7 11 22 36
2 10 10 11 11 11
3 11 12 17 33 45
4 11 11 12 11 11
5 13 13 13 32 43
6 11 13 14 14 14
7 7 4 10 11 15
8 5 3 10 10 16
9 47 49 1 36 49
10 12 8 21 26 33

and mixed-integer solvers. The descending algorithm and the mixed-integer solvers perform

similarly. The performance difference between the ascending and branch-and-bound algorithms,

where the branch-and-bound algorithm solves twice as many instances in the hour, quantifies

the effect of 2BP symmetry and how it is better managed by our branch-and-bound algorithm.

Furthermore, the performance difference between the ascending and branch-and-bound algorithm

shows the effectiveness of the push back constraints and symmetry breaking Equation (5.8)

cuts as the branch-and-bound algorithm is able to solve an additional 10% of the instances.

Overall, the methods can solve about half of the instances within the hour. For the branch-

and-bound algorithm, this limitation is due to larger instances requiring deeper searches within

the tree. Deeper searches require larger unsatisfiable cores when proving unsatisfiability and,

for the initial part of the search, there are fewer Equation (5.8) cuts present to aid such proofs.

However, assuming that there has been sufficient exploration, i.e. we have generated push back

constraints and symmetry breaking Equation (5.8) cuts, SMT BB appears to speed up in its

later assessments.

Table 5.2 displays the number of instances optimally solved in each class. The branch-and-bound

algorithm generally outperforms the other solvers, but there is a fair amount of differences among

classes. Generally, the classes where the branch-and-bound algorithm solves more instances

contain larger items, i.e. problems with easy-to-generate unsatisfiability proofs. For classes 2,

4 and 6, where instances contain many small items, all methods exhibit inferior performance.
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Figure 5.5: Performance profile for 500 bin packing instances comparing heuristic times to
optimality. Each solver has a timelimit of one hour. All solvers are limited to one thread.

While the optimal objective is smaller for these instances, for SMT the unsatisfiable cores are

relatively large and therefore take longer to generate. Our algorithms use SMT as a black box

for unsatisfiable core generation, so the branch-and-bound algorithm may not have sufficient

time to explore the tree. The relative quality of the branch-and-bound algorithm shows the

usefulness of an unsatisfiable core in algorithm design.

Figure 5.5 shows a performance profile comparing heuristic performance. The descending

algorithm is a relatively good heuristic. The descending algorithm progressively reduces the

number of available bins, to reduce symmetry, while building a globally applicable conflict graph,

that helps in finding heuristic solutions. The ascending algorithm performs less well as its first

‘heuristic’ solution is an optimal solution, i.e. it has to prove optimality. The branch-and-bound

algorithm’s heuristic performance is also quite good, this suggests that the tree depth should

not be too far from the optimal depth, i.e. the branch-and-bound algorithm does not have to
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search too far.

Discussion

Our SMT-based methods utilise SMT as a black-box for solving the 2BP decision problem and

the orthogonal packing problem. Since the SMT solver is not necessarily aware of 2BP context,

it may perform more enumeration than necessary. Here we discuss approaches address 2BP and

how they differ from our methodology.

Martello and Vigo (1998) develop a B&B method for solving 2BP. The Martello and Vigo (1998)

approach branches over the item to bin assignment, applies heuristics at each node, leverages

2BP lower bounds to assist in assessing infeasibility of the orthogonal packing problem, and

applies a reduction step at the root node that fixes items in the first bin. Our B&B approach

branches over unsatifiable cores of the 2BP decision problem, propagates orthogonal packing

infeasibilities across the tree, and generates push back constraints that reduce symmetries arising

from the algorithm itself. Both the Martello and Vigo (1998) and our B&B algorithm have

elements that could improve each other. In particular, the Martello and Vigo (1998) orthogonal

packing infeasibility assessments could assist the SMT solver since they account for 2BP problem

structure, and applying heuristics at each node of our B&B tree may reduce its overall size.

Furthermore, our infeasibility propagation may be applied to the Martello and Vigo (1998)

algorithm, especially when their algorithm invokes a sub-B&B instance to assess the orthogonal

packing problem.

Lodi et al. (1999) develop a deterministic heuristic and a tabu search metaheuristic (Glover

and Laguna, 1998) that are applicable to the 2BP problem that we study. The Lodi et al.

(1999) metaheuristic approach can generate solutions quickly, systematically attempts to lower

the number of active bins, and performs diversification steps to inspect a variety of item

to bin assignments. Among our tested approaches, the descending algorithm has the best

performance when considering heuristic solutions. Our descending algorithm has the benefit

of being a deterministic global optimisation approach. However, the descending algorithm

may struggle to find good solutions as problems scale, since the SMT solver may encounter
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symmetric infeasibilities that impede the SMT solver from exploring a diverse range of item to

bin assignments.

5.2 Unsatisfiable Core for Cut Generation and Model

Explainers

SMT solvers can derive an unsatisfiable core of a constraint set, i.e. a constraint subset that is

unsatisfiable. This section discusses cut generation and model explainers as two applications of

unsatisfiable cores.

Cut Generation

Logic-based Benders decomposition (LBBD) (Hooker and Ottoson, 2003) is a framework for

solving problems with master-subproblem structure, e.g. a high level assignment and subproblem

assessments resulting from the assignments. In LBBD, the subproblem generates cutting planes

to add to the master problem. These cutting planes can be infeasibility cuts which exclude

infeasible solutions or lower bounding cuts which enforce an objective bound.

In each major iteration, a subproblem can generate a cut incorporating all of its corresponding

assignments, but the resulting cut is often weak because fewer assignments may give an equivalent

cut, i.e. a smaller unsatisfiable core. Hooker (2007) develops an approach generating stronger

cuts by repeating local subproblem assessments and removing subsets that do not change the

underlying result. Hooker (2007) thereby derives a minimal unsatisfiable core, an unsatisfiable

core where removing any constraint makes it satisfiable. SMT does not necessarily calculate

minimal unsatisfiable cores, but the reported cores may be smaller than the entire assignment

set. Smaller cores imply fewer of the expensive local iterations needed to reduce to a minimal

unsatisfiable core.
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Model Explainers

Practical applications of optimisation models and algorithms involve using abstract modelling

software. Consider a scenario where a mathematical model is known to be correct and an instance

is known to be feasible. If a solver or algorithm states infeasibility, then an implementation

needs to be corrected. Here SMT is a useful tool to aid development.

A feasible but incorrect model may be over- or under-constrained. Over-constrained models

may report an sub-optimal objective or infeasible constraints. Reasoning the incorrectness of a

model implementation may be difficult because of various properties, e.g. the instance size or

incorrect application of transformation techniques. Analyzing a concrete instance can be a time

consuming task since it may have a large number of constraints. But an incorrect model still

contains a constraint subset explaining what is wrong, i.e. an unsatisfiable core.

When an incorrect model is over-constrained, it is sufficient to limit our discussion to the

infeasible case since, if the model reports a sub-optimal objective, we are questioning why a

better objective is infeasible. The unsatisfiable core corresponding to the infeasible model may

have many constraints, but we can filter, i.e. eliminate, correct constraints such as variable

bounds. After filtering, the constraint subset may be much smaller than the entire instance

and analysis becomes easier. If we assume further that we know a feasible solution, we can add

constraints fixing variables to this solution. Fixing variables may produce an unsatisfiable core

in terms of the feasible solution that we fed to the model. Fixing a solution is more useful when

the incorrect model reports the wrong optimal objective (here we would need to know a feasible

solution that is better than the reported optimal objective).

Another, more likely case for elusive bugs is when we have an algorithm that adds and removes

constraints, i.e. an issue may only occur for larger instances. Compulsory computational

considerations may be a reason for having such a case, e.g. a given node of a branch-and-bound

algorithm can add and remove constraints to an existing instance, or build a fresh instance.

However, we may prefer the former when considering the computational cost of building a

fresh instance. Figure 5.6 provides a concrete example in the context of the branch-and-bound
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Figure 5.6: An example of a Section 5.1.3 branch-and-bound tree where an incorrect imple-
mentation requires correction. Red nodes are unsatisfiable, green nodes are satisfiable and blue
nodes are reported unsatisfiable nodes that we know a feasible solution for, i.e. an incorrect
conclusion. The error assumed here is that we generate a local cut that item 15 is not in bin
4 at (⋆), however the incorrect implementation fails to remove/promote the local cut before
switching to branch (†) giving the wrong conclusion.

algorithm of Section 5.1.3. The incorrect implementation assumed here is that local cuts are

not removed when switching to branches where they are no longer valid. As Figure 5.6 shows,

we get a reported optimal objective of 5 when we should get 4. After filtering constraints at (†)

in Figure 5.6, e.g. variable bounds and inactive bins, an unsatisifable core consists of only 7

constraints among which are constraints generated by the algorithm. In particular, we have

the constraint item 15 is not in bin 4, the significance of this constraint is that it corresponds

to a local cut generated at (⋆) therefore it is no longer valid telling us that there is an issue

with handling of local cuts. The fact that we can limit our view to just a few constraints makes

this error easier to find. Given just the result ‘infeasible’, finding such an error may require

multiple re-solves with minor source code changes or log file parses, both of these tasks are time

consuming (more so if the only failing instances are large).



Chapter 6

Branching and Infeasibility in Convex

Generalized Disjunctive Programming

The convex generalized disjunctive programming (GDP) framework (Raman and Grossmann,

1994) is an alternative modelling framework to mixed-integer convex programming. Convex

GDP applications include packing problems, layout problems and scheduling (Sawaya and

Grossmann, 2005; Sawaya, 2006; Castro and Grossmann, 2012). Convex GDP also appears

when relaxing a (nonconvex) GDP instance. GDP applications include heat exchanger network

synthesis and reactor network design (Mizutani et al., 2003; Ruiz and Grossmann, 2013).

Convex GDPs can be reformulated to a convex MINLP (Trespalacios and Grossmann, 2014,

2015b). Hence, branch-and-bound (B&B) implementations for convex MINLP can solve convex

GDPs. In the case of convex GDP reformulations, a convex MINLP B&B solver generally

branches on binary variables, i.e. considering the two subproblems that fix y = 0 and y = 1,

respectively. However, enforcing that every feasible solution must choose a single disjunct

in each disjunction, as convex GDP does, motivates a branching approach that partitions

disjunctions. Beaumont (1990) and Lee and Grossmann (2000) design B&B algorithms that

select a disjunction for branching and introduce a new child for each disjunct.

This chapter investigates branching on disjunctions in convex GDP. We study (i) how to choose

which disjunction to branch on, (ii) properties that make for good partitions and (iii) how to

106
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construct branches. Branching in convex GDP may also encounter infeasible subproblems, we

analyse how we may leverage such an infeasibility to prevent a similar infeasibility appearing

elsewhere in the search.

Chapter organisation Section 6.1 gives an overview of the B&B algorithm. Section 6.2

develops disjunction selection and branch construction strategies. Section 6.3 analyses how

infeasibility may be leveraged in convex GDP. Section 6.4 formulates the constrained layout

problem. Section 6.5 performs numerical tests on constrained layout instances.

6.1 Overview

This chapter presents B&B Algorithm 9 for solving convex GDPs. Algorithm 9 uses a hull

reformulation (Grossmann and Lee, 2003) to derive lower bounds. Similar to Beaumont (1990)

and Lee and Grossmann (2000), our B&B algorithm, on lines 21 and 22, branches on a disjunction

from the convex GDP instance. Our approach differs in that we allow the branching strategy to

partition the disjunction into disjoint smaller disjunctions opposed to creating a single child for

each disjunct.

Each node in the B&B tree considers a hull relaxation (Grossmann and Lee, 2003) of the

local convex GDP instance. Hull relaxations form the convex hull of individual disjunctions

using the perspective function (Stubbs and Mehrotra, 1999). Hull relaxations introduce many

additional variables and can encounter numerical difficulties (Grossmann and Lee, 2003; Sawaya

and Grossmann, 2007; Furman et al., 2020). Using Big-M relaxations (Nemhauser and Wolsey,

1988; Trespalacios and Grossmann, 2014) involves less variables and are more numerically stable,

however big-M relaxations generally derive weaker optimality bounds and, therefore, may result

in more enumeration. One remedy for a weak relaxation is to generate cutting planes, e.g.

Vecchietti et al. (2003) or Trespalacios and Grossmann (2016a), at a node level.
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Algorithm 9

1: UB←∞
2: Sroot: Initial relaxation feasible convex GDP instance
3: Select (x̂, ŷ, ν̂) ∈ arg min(x,y,ν)∈RH(Sroot) c

⊤x

4: if ŷ is integer feasible then
5: return (x̂, ŷ)
6: else
7: Q← {(Sroot, (x̂, ŷ, ν̂))}
8: end if
9: while Q 6= ∅ do

10: Select (Ŝ, (x̂, ŷ, ν̂)) ∈ Q
11: k ←SelectDisjunction(Ŝ, (x̂, ŷ, ν̂)) ⊲ Section 6.2.2
12: (S1, . . . , Sm)←PartitionDisjunction(Ŝ, k, (x̂, ŷ, ν̂)) ⊲ Section 6.2.3
13: for S ′ ∈ {S1, . . . , Sm} do
14: if RH(S ′) 6= ∅ then
15: Select (x′,y′,ν′) ∈ arg min(x,y,ν)∈RH(S′) c

⊤x

16: if c⊤x′ < UB then
17: if ȳ is integer feasible then
18: (x∗,y∗, UB)← (x′,y′, c⊤x′)
19: Q← {(S, (x,y,ν)) ∈ Q | c⊤x < UB}
20: else
21: Q← Q ∪ {(S ′, (x′,y′,ν′))}
22: end if
23: end if
24: else
25: PropagateInfeasibility(Q, S ′) ⊲ Section 6.3
26: end if
27: end for
28: Q← Q \

{(

Ŝ, (x̂, ŷ, ν̂)
)}

29: end while
30: if UB <∞ then
31: return (x∗,y∗)
32: else
33: return infeasible
34: end if

Notation We use S to denote B&B nodes. Sroot denotes the root node of the B&B tree. We

also treat S as the feasible domain associated with the B&B node, e.g. (x,Y ) ∈ S. RH(S)

denotes the hull relaxation of S. As for B&B nodes, RH(S) is also treated as a set of feasible

points, e.g. (x,y,ν) ∈ RH(S). S = ∅ and RH(S) = ∅ denote that B&B node S and its hull

relaxation are infeasible, respectively. [n] denotes the set {1, . . . , n}, for n ∈ Z≥1. Table 4

summarises the symbols that this chapter uses.
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6.2 Branching in Convex Generalized Disjunctive Pro-

gramming

Algorithm 9 applies branching to B&B node S on lines 15 and 16. Note that, between lines 14

and 15, an extension to Algorithm 9 could manipulate S further, e.g. by applying basic steps or

generating cutting planes (Vecchietti et al., 2003; Ruiz and Grossmann, 2012; Trespalacios and

Grossmann, 2016a). Branching may still be applied after such manipulations.

This section describes branching strategies that branch on disjunctions. Definition 6.1 non-trivial

convex GDPs ensure that disjunctions are present.

Definition 6.1. A convex GDP instance S is non-trivial if it has at least one disjunction, i.e.

K 6= ∅.

Child Node Construction Algorithm 9 applies the same solution strategy to all nodes of

the search tree. Hence, all constructed subproblems should also be convex GDPs. The convex

GDP Equation (2.15d), and similarly the convex MINLP Equation (2.17c), selection constraints

allow for a branching strategy that splits a disjunction. Definition 6.2 constructs a subproblem

of convex GDP S by reducing a disjunction k ∈ K.

Definition 6.2. Let S be a non-trivial convex GDP instance, k ∈ K, D′
k ⊂ Dk, D′

k 6= ∅. Convex

GDP instance child(S, k, D′
k) is the subproblem constructed from S by reducing disjunction k to

disjuncts indexed by D′
k. Specifically, if |D′

k| > 1, child(S, k, D′
k) replaces the index k instances

of Equations (2.15c) and (2.15d) in S with

∨

i∈D′

k







Yik

rikj(x) ≤ 0, j ∈ [pik]







, (6.1)

∨
i∈D′

k

Yik, (6.2)

otherwise, if |D′
k| = 1, child(S, k, D′

k) replaces the index k instances of Equations (2.15c)
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and (2.15d) in S with

rikj(x) ≤ 0, i ∈ D′
k, j ∈ [pik], (6.3)

where [pik] = {1, . . . , pik}. Furthermore, Yik = False is propagated for all i ∈ Dk \ D′
k in the

instance S Equation (2.15e) propositional constraints. If |D′
k| = 1, i.e. D′

k = {i} for some

i ∈ Dk, then child(S, k, D′
k) also propagates Yik = True.

Let S be a non-trivial convex GDP instance and P = {D1
k, . . . , Dm

k }, m > 1 be a partition

of index set Dk, for some disjunction k ∈ K. Then P constructs subproblems {Si}
m
i=1 where

Si = child(S, k, Di
k). Hence, subproblems S1, . . . , Sm: (i) cover all feasible solutions of S, (ii) are

disjoint, and (iii) all belong to the convex GDP problem class, i.e. partitioning a disjunction’s

disjunct indices forms a branching strategy for convex GDP. This partition-based branch

construction subsumes: (a) branching on a Boolean variable in convex GDP (or binary variables

in a convex MINLP reformulation), e.g. consider the partition P = {{i}, Dk \{i}} for disjunction

k, and (b) the Beaumont (1990) and Lee and Grossmann (2000) wide branching strategy, e.g.

consider the partition {{i} | i ∈ Dk} for disjunction k.

The remainder of this section discusses fractionality (Section 6.2.1), disjunction selection

(Section 6.2.2), branch separation (Section 6.2.3), and branch construction (Section 6.2.4).

6.2.1 Fractionality

Branching in convex GDP requires a fractional disjunction. Solving a convex GDP hull relaxation

includes assignments (x̂, ŷ). Definition 2.5 assesses fractionality using the binary variables

only. However, the convex GDP objective is only dependent on the x̂ assignment. If x̂ is not

contained within a disjunct then we can guarantee that branching can eliminate (infeasible)

assignment x̂ from descendant relaxations. Furthermore, the presence of relaxation regions that

include x̂ prevent the local lower bound from improving. Figure 6.1 shows two cases that adhere

to Definition 2.5. Relaxation solutions of the Figure 6.1b form can necessarily be eliminated

with branching. Definition 6.3 introduces qualitative fractionality which considers fractionality





112 Chapter 6. Branching and Infeasibility in Convex Generalized Disjunctive Programming

Figure 6.1a suggests that, under relaxation solution (x̂, ŷ), if disjunction k is fractional but

not qualitatively fractional then it may be converted to an equivalent solution that assigns

disjunction k, i.e. select the disjunct that contains x̂. Proposition 2 shows this case for convex

GDPs without propositional constraints.

Proposition 2. Let S be a non-trivial convex GDP instance without any Equation (2.17d)

propositional constraints, RH(S) its hull relaxation, and (x̂, ŷ) ∈ proj(x,y) RH(S). If disjunction

k̄ ∈ K is not qualitatively fractional under (x̂, ŷ). Then there exists a (x̂, ȳ) ∈ proj(x,y) RH(S)

where

ȳik =







1, i = ī, k = k̄

0, i 6= ī, k = k̄

ŷik, otherwise

(6.4)

for some ī ∈ Dk̄.

Proof. Since S does not have any Equation (2.17d) propositional constraints, the Equation (2.15a)

objective, Equation (2.15b) global constraints, and all disjunctions k′ ∈ K\{k̄} are independent of

the Boolean variables Yik̄, i ∈ Dk̄. Therefore, disjunction k̄ only affects the other disjunctions and

constraints through continuous variables x. Hence, it suffices to show that some Equation (6.4)

assignment does not exclude x̂ from relaxed disjunction k̄.

Since disjunction k̄ is not qualitatively fractional under (x̂, ŷ) there exists a i′ ∈ Dk̄ such

that ri′k̄j(x̂) ≤ 0 for all j ∈ [pi′k̄]. Claim ī = i′. Let ν̂ be the corresponding assignment on

disaggregated variables ν for the (x̂, ŷ) solution. Consider the assignment

ν̄ik =







x̂, i = ī, k = k̄

0, i 6= ī, k = k̄

ν̂ik, otherwise.

By selection of i′, (ȳ, ν̄) satisfies Equation (2.22a). All Equations (2.22a) and (2.22c) constraints

under (ȳ, ν̄) for i ∈ Dk̄ \ {i
′} reduce to trivial inequalities, i.e. 0 ≤ 0. Finally, Equation (2.22b)

reduces to x = x̂ and the result follows.
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Proposition 2 shows that a non-qualitatively fractional disjunction may be converted to an integer

feasible disjunction without affecting the convex GDP relaxation objective. In the presence of

Equation (2.17d) propositional constraints, Proposition 2 does not necessarily hold. However, if

a disjunction is fractional but not qualitatively fractional under (x̂, ŷ) and Equation (6.4) does

not break any of the Equation (2.17d) relaxed propositional constraints, then the alternative,

less fractional solution constructed in the Proposition 2 proof is still applicable.

6.2.2 Disjunction Selection

Branching variable selection in convex MINLP, i.e. selecting which variable to branch on can

effect the performance of a B&B solver (Morrison et al., 2016). Branching variable selection

strategies include using formulas, setting priorities based on problem specific knowledge, tracking

and updating scores, and solving auxiliary problems (Gupta and Ravindran, 1985; Achterberg

et al., 2005; Klabjan et al., 2001; Gilpin and Sandholm, 2011; Fischetti and Monaci, 2012, 2013).

Indeed, after using a reformulation, these branching variable selection also become applicable to

convex GDP. However, branching on disjunctions motivates disjunction selection, i.e. selecting

which disjunction to branch on. Rado (1963) defines the infeasibility of a⊤x ≤ b as a⊤x− b

and scores linear disjunctions by their disjunct that has the smallest infeasibility. The selection

strategy chooses the disjunction with the largest infeasibility. Beaumont (1990) proposes a

disjunction selection strategy for linear disjunctive programs that considers shadow prices.

If all disjunctions are integer feasible then we have a feasible solution of the convex GDP. Any

disjunction that is fractional under relaxation solution (x̂, ŷ), i.e. Definition 2.5, is a candidate

for branching. We denote these candidates with KF (ŷ) ⊆ K, i.e.

KF (ŷ) = {k ∈ K | disjunction k is fractional under ŷ}.

Table 6.1 summarises the disjunction selection strategies that this section proposes.

Grossmann and Lee (2003) propose selecting the fractional disjunction with the largest binary

assignment. Definition 6.4 refers to this approach as the least fractional selection strategy, since
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Table 6.1: Disjunction selection strategies. KF (ŷ) is the set of disjunctions that are fractional
under ŷ.

Name [Definition] Formula Description

Least fractional
(Grossmann and Lee, 2003)
[Definition 6.4]

arg max
k∈KF (ŷ)

max
i∈Dk

ŷik Scores fractional disjunctions by their
largest binary variable. Chooses disjunc-
tion with the largest score, i.e. closer to
being assigned.

Most fractional
[Definition 6.5]

arg min
k∈KF (ŷ)

max
i∈Dk

ŷik Scores fractional disjunctions by their
largest binary variable. Chooses disjunc-
tion with the smallest score, i.e. further
from being assigned.

Most non-zero
[Definition 6.6]

arg max
k∈KF (ŷ)

{ŷik | yik>0,i∈Dk}|
|Dk| Scores fractional disjunctions by the

proportion of non-zero binary variables.
Chooses disjunction with the largest score,
i.e. largest number of fractional selections.

Centre-shifted most fractional
[Definition 6.7]

arg min
k∈KF (ŷ)

∥
∥
∥ŷk −

1
|Dk|1

∥
∥
∥ Scores fractional disjunctions by their dis-

tance to vector that equally assigns all
disjunct selecting variables. Chooses dis-
junction with the smallest score, i.e. most
undecided disjunction.

it considers a disjunction that is closest to being integer feasible.

Definition 6.4 (Grossmann and Lee (2003)). Let S be a non-trivial convex GDP and ŷ ∈

projy RH(S). Assume that ŷ is fractional for S. Then disjunction k ∈ KF (ŷ) is a least fractional

disjunction if

k ∈ arg max
k′∈KF (ŷ)

max
i∈Dk′

ŷik′ .

Similarly, Definition 6.5 defines a most fractional disjunction, which, like Definition 6.4, scores

each disjunction by its largest binary assignment. However, now the strategy selects a disjunction

with the smallest of these scores. Hence, Definition 6.5 aims to quantify which disjunction is

most undecided in the relaxation solution.

Definition 6.5. Let S be a non-trivial convex GDP and ŷ ∈ projy RH(S). Assume that ŷ is

fractional for S. Then disjunction k ∈ KF (ŷ) is a most fractional disjunction if

k ∈ arg min
k′∈KF (ŷ)

max
i∈Dk′

ŷik′ .
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While the Definition 6.5 most fractional selection strategy tries to selected an undecided disjunc-

tion, it discriminates between disjunctions by only considering the largest binary assignment

in each disjunction. For example, consider two length 4 disjunctions D1 and D2 where the

relaxation assignment on their binary variables are (0.55, 0.45, 0, 0) and (0.6, 0.2, 0.1, 0.1), re-

spectively. Among these two disjunctions, most fractional selection will select D1. However,

D2 has a larger number of partially selected disjuncts. Definition 6.6 provides an alternative

selection strategy that accounts for the assignments on all disjuncts.

Definition 6.6. Let S be a non-trivial convex GDP and ŷ ∈ projy RH(S). Assume that ŷ is

fractional for S. Then disjunction k ∈ KF (ŷ) is a most non-zero disjunction if

k ∈ arg max
k′∈KF (ŷ)

|{ŷik′ | ŷik′ > 0, i ∈ Dk′}|

|Dk′|
.

The Definition 6.6 most non-zero selection strategy naively quantifies fractionality as the

proportion of binary variables that are non-zero in the relaxation solution. However, this

strategy does not account for the magnitude of the binary variables in the relaxation solution.

For example, binary assignments (0.9, 0.03, 0.03, 0.04) seem closer to integer feasibility than

binary assignments (0.4, 0.3, 0.15, 0.15) in a size 4 disjunction. For disjunction k ∈ K, the

most undecided assignment we can have on its binary variables, i.e. the furthest from integer

feasibility, is y† = 1
|Dk|

1, i.e. all disjunct binary variables are equally assigned in the relaxation

solution. Definition 6.7 scores disjunctions by considering the distance of their binary assignment

from y†.

Definition 6.7. Let S be a non-trivial convex GDP and ŷ ∈ projy RH(S). Assume that ŷ is

fractional for S. Then disjunction k ∈ KF (ŷ) is a centre-shifted most fractional disjunction if

k ∈ arg min
k′∈KF (ŷ)

∥
∥
∥
∥
∥
ŷk′ −

1
|Dk′|

1

∥
∥
∥
∥
∥

where ‖·‖ is any norm.
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6.2.3 Separation by Branching

After selecting disjunction k ∈ KF (ŷ), Algorithm 9 constructs subproblems at B&B node S

by considering a partition of Dk. Any non-trivial partition of Dk forms a set of branches by

constructing subproblems according to Definition 6.2. Disjointedness of the subproblem feasible

regions follows since the branches partition the set of valid Boolean assignments, i.e the set

{
(

Y1k, . . . , Y|Dk|k

)⊤
∈ {True, False}|Dk|

∣
∣
∣
∣
∣
∨

i∈Dk

Yik

}

. (6.5)

If ŷik = 0 for some i ∈ Dk, then an arbitrary partition may be redundant, e.g. P = {{i}, Dk\{i}}

includes (x̂, ŷ) in the subproblem hull relaxation associated with the second subset. Constructing

a partition P ′ of Dk such that two distinct subsets in P ′ respectively contain indices i1, i2 ∈ Dk

and ŷi1,k, ŷi2,k > 0 avoids this redundancy. Grossmann and Lee (2003) identify that partitioning

based on fractionality of ŷ alone can hinder improving optimality bounds, since the convex

GDP objective only depends on x̂. Example 6.1 describes such a scenario.

Example 6.1. Consider Figure 6.1b. Let the hull relaxation solution associated with this

disjunction be (x̂, (ŷ1, ŷ2, ŷ3)) with all ŷi > 0. Partition P = {{1, 2}, {3}} clearly excludes (x̂, ŷ),

however the subproblem induced by subset {1, 2} includes a relaxation solution (x̂, (ȳ1, ȳ2, 0)) for

some ȳ1, ȳ2 > 0, i.e. the lower bound found by considering all three disjuncts does not improve

after dividing the disjunction. Furthermore, since the Figure 6.1b disjunction is qualitatively

fractional under the x̂, it is more preferable for a partition to exclude x̂ from the relaxations of

the subproblems it creates.

Definition 6.8 separating partitions avoid the search redundancy that Example 6.1 describes, i.e.

they construct branches whose feasible regions do not include the current relaxation assignment

to continuous variables x.

Definition 6.8. Let S be a non-trivial convex GDP instance and RH(S) be its hull relaxation.

Let (x̂, ŷ) ∈ proj(x,y) RH(S) such that ŷ is fractional for S. Let P be a partition of Dk for some
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disjunction k ∈ KF (ŷ). Partition P is a separating partition induced by disjunction k and x̂ if

∀D ∈ P : x̂ /∈ projx
(

RH(child(S, k, D))
)

.

Proposition 3 shows that branching on separating partitions at B&B node S ensures non-

decreasing local bounds.

Proposition 3. Let S be a non-trivial convex GDP instance and RH(S) be its hull relax-

ation. Let (x̂, ŷ) ∈ proj(x,y) arg min(x,y,ν)∈RH(S) c
⊤x. Assume that ŷ is fractional for S

and let k ∈ KF (ŷ). If P is a separating partition induced by disjunction k and x̂ then

minD∈P min(x,y,ν)∈RH(child(S,k,D)) c
⊤x ≥ cT x̂, where we take min(x,y,ν)∈∅ c

⊤x =∞.

Proof. For all D ∈ P , projx RH(child(S, k, D)) ⊆ projx RH(S), hence if the result does not hold

then we have a contradiction to the definition of x̂.

Applying Proposition 3 requires the existence of a separating partition for (x̂, ŷ) B&B node S.

Proposition 4 shows that qualitative fractionality of disjunction k ∈ K under x̂ is a sufficient

condition for existence of a separating partition induced by k ∈ K and x̂.

Proposition 4. Let S be a non-trivial convex GDP instance, RH(S) its hull relaxation and

x̂ ∈ projx RH(S). If disjunction k ∈ K is qualitatively fractional under x̂ then there exists a

separating partition induced by disjunction k and x̂.

Proof. The partition {{i}}i∈Dk
is a separating partition induced by disjunction k and x̂.

If disjunction k admits a separating partition for x̂ then we may have many candidates. While

separation ensures progress with respect to lower bound improvement, successive branching

on partitions with large cardinalities may have a multiplicative effect on the number of nodes

explored. Definition 6.9 defines minimal separating partitions, a property that results in the

smallest local increase in nodes when branching.
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Definition 6.9. Let S be a non-trivial GDP instance and RH(S) be its hull relaxation. Let

x̂ ∈ projx RH(S). Assume that a separating partition exists and let P be a separating partition

induced by disjunction k ∈ K and x̂. If P has minimal cardinality among all separating

partitions P ′ induced by disjunction k and x̂ then P is a minimal separating partition induced

by disjunction k and x̂.

Deriving a Definition 6.9 minimal separating partition P may require checking many partitions.

Pairwise irreducibility Definition 6.10 supports the construction separating partitions without

checking all possible partitions, Section 6.2.4 explores this idea.

Definition 6.10. Let S be a non-trivial GDP instance and RH(S) be its hull relaxation. Let

x̂ ∈ projx RH(S). Let P be a separating partition induced by disjunction k ∈ K and x̂.

Separating partition P is pairwise irreducible if

∀D′, D′′ ∈ P, D′ 6= D′′ : x̂ ∈ projx RH(child(S, k, D′ ∪D′′)) . (6.6)

Proposition 5 relates Definitions 6.9 and 6.10 by showing that all minimal separating partitions

are pairwise irreducible.

Proposition 5. Let S be a non-trivial convex GDP instance and RH(S) be its hull relaxation.

Let x̂ ∈ projx RH(S). Let P be a separating partition induced by disjunction k ∈ K and x̂. If P

is a minimal separating partition then P is pairwise irreducible.

Proof. We prove the contrapositive. Assume that P is not pairwise irreducible. Hence, there

exists D′, D′′ ∈ P , D′ 6= D′′ such that x̂ /∈ projx
(

RH(child(S, k, D′ ∪D′′))
)

. Then P ′ =

{D′ ∪D′′} ∪ P \ {D′, D′′} is a separating partition and |P ′| < |P |, i.e. P is not minimal.

A pairwise irreducible separating partition may not be minimal, e.g. we may be able to distribute

a subset entirely across the other subsets in the partition. However, pairwise irreducibility

provides a form of local minimality with respect to set union.
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Table 6.2: Branch construction strategies.

Name Definition Description

Greedy Algorithm 10 Greedily builds branches iteratively by adding next dis-
junct to first branch that maintains separation. Builds
an additional branch if none is found.

Semi-Balanced Definition 6.11 Similar strategy to Greedy except the branches are
tested in ascending order of number of disjuncts cur-
rently accepted.

Wide (Beaumont, 1990) Definition 6.12 Constructs a branch for each disjunct.
Semi-wide Definition 6.13 Combines disjuncts that are not selected into a single

branch, uses the Wide strategy for remaining disjuncts.

6.2.4 Constructing Branches

Given hull relaxation solution (x̂, ŷ) of non-trivial convex GDP instance S with ŷ fractional

for S, the B&B algorithm selects fractional disjunction k ∈ K for branching. Section 6.2.3

discusses desirable properties of child node constructing partition P of Dk to ensure progress in

the B&B search. This section discusses how we may construct partition P . We propose two

greedy algorithms that constructs partitions satisfying Definition 6.10 pairwise irreducibility

when disjunction k is qualitatively fractional under x̂. We also propose a naive construction

approach that may create less nodes that the Beaumont (1990) strategy. Table 6.2 summarises

the branch construction strategies.

Separation oracles. The greedy algorithm iteratively tests the following condition derived

from Equation (6.6):

x̂ ∈ projx RH(child(S, k, D′)), (6.7)

where S is the parent (non-trivial convex GDP) instance, k is the selected disjunction and

D′ ⊂ Dk, D′ 6= ∅ is the subset of disjuncts under consideration for the current child. We refer to

Equation (6.7) as the branch separation problem. When assessing the branch separation problem,

we have three cases: (i) RH(child(S, k′, D′)) is infeasible, (ii) RH(child(S, k, D′)) is feasible and

x̂ ∈ RH(child(S, k, D′)), or (iii) RH(child(S, k, D′)) is feasible and x̂ /∈ RH(child(S, k, D′)). We

propose two approaches for distinguishing between these cases. The first approach solves at

most two feasibility problems whereas the second approach solves a single optimisation problem.
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Algorithm 10 Greedy disjunction partitioning
1: S ⊲ Non-trivial convex GDP instance
2: (x̂, ŷ) ∈ proj(x,y) RH(S) ⊲ Hull relaxation solution to separate
3: k ∈ K ⊲ Fractional disjunction (under ŷ) chosen for branching
4: Dj = ∅, j = 1, . . . , |Dk′|
5: for i ∈ {1, . . . , |Dk′|} do

6: j ← min
({

j′
∣
∣
∣ x̂ /∈ projx RH(child(S, k, Dj′

∪ {i})), Dj′

6= ∅
}

∪ {j′ |Dj′

= ∅}
)

7: Dj ← Dj ∪ {i}
8: end for
9: return {Dj |Dj 6= ∅}

The first approach begins by assessing feasibility of RH(child(S, k, D′)) if this constraint set is

infeasible then we have case (i). If RH(child(S, k, D′)) is feasible then we assess feasibility of

x̂ ∈ RH(child(S, k, D′)), e.g. feasibility of the constraint system [x = x̂ ∧RH(child(S, k, D′))],

feasibility and infeasibility of this second problem correspond to cases (ii) and (iii), respectively.

The second approach repurposes the cutting plane separation Problem (2.27) (Stubbs and

Mehrotra, 1999; Vecchietti et al., 2003). Let Ssep denote Problem (2.27) with RH(child(S, k, D′))

in place of R′(S) in Equation (2.27b). Cases (i), (ii), and (iii) correspond to Ssep: being infeasible,

and having optimal objective equalling zero, and having positive optimal objective, respectively.

In the second approach, case (iii) may be identified prior to an optimality proof if the underlying

solution algorithm has a feasible solution and positive objective bound. Since we are separating

against disjunction k, it suffices to consider a constraint set of only disjunction k, i.e. the branch

separation problem becomes:

x̂ ∈ projx RH(Sk′,D′), (6.8)

where Sk,D′ denotes the convex GDP constraints given by Equations (2.15f) and (2.15g) and

restricting Equations (2.15c), (2.15d) and (2.15h) to disjunction k and disjuncts D′. Consid-

ering the smaller Sk,D′ constraint set may construct a significantly smaller hull reformulation.

Furthermore, when the individual disjuncts are all known to be feasible, case (i) need not be

addressed.

Greedy Algorithm. The greedy algorithm described below is parameterised by a separation

oracle that assesses Equation (6.7), Equation (6.8) or some intermediate form, i.e. at the
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very least the separation oracle has to consider the disjunction given by k. In practice, a

mathmatical constraint feasibility checker or a mathematical optimiser can implement this

oracle. Algorithm 10 lists a greedy algorithm for constructing a partition of disjunction k

disjunct index set Dk in convex GDP instance S. Algorithm 10 builds a partition of Dk by

maintaining a list of disjoint subsets (initially all empty). Each disjunct iterates through the

disjoint subsets and the separation oracle tests if the subset combined with the new disjunct is a

separating subset, i.e. Equation (6.7). The test disjunct is added to the first subset that remains

separating under the test disjunct’s inclusion. If no such subset is found, the test disjunct forms

a new singleton subset. The set of all resulting nonempty subsets forms the partition of the

current problem. Algorithm 10 does not have any special handling of infeasibility of a disjunct,

if this is required then a single pass checking a feasibility of the individual disjuncts can be

applied. Proposition 7 shows that applying Algorithm 10 over a disjunction that is qualitatively

fractional under the relaxation solution derives pairwise irreducible partitions. We first prove

Proposition 6 which is used in the Proposition 7 proof.

Proposition 6. Let S be a non-trivial convex GDP instance and RH(S) be its hull relaxation.

Let x̂ ∈ projx RH(S) and disjunction k ∈ K be qualitatively fractional under x̂. Let D ⊂ Dk,

|D| > 1. If x̂ /∈ projx RH(child(S, k, D)) then ∀D′ ⊆ D, D′ 6= ∅ : x̂ /∈ projx RH(child(S, k, D′)).

Proof. We prove the contrapositive. Assume that D′ ⊆ D, D′ 6= ∅ and x̂ ∈ projx RH(child(S, k′, D′)).

Hence, there exists (ŷ, ν̂) such that (x̂, ŷ, ν̂) ∈ RH(child(S, k′, D′)). Assigning (ȳ, ν̄) to

ȳik′ =







0, i /∈ D′, k′ = k

ŷik′ , otherwise,

, ν̄ik′ =







0, i /∈ D′, k′ = k

ν̂ik′ , otherwise,

satisfies (x̂, ȳ, ν̄) ∈ RH(child(S, k, D)), i.e. x̂ ∈ projx RH(child(S, k, D)).

Proposition 7. Let S be a non-trivial convex GDP instance and RH(S) be its hull relaxation.

Let (x̂, ŷ) ∈ proj(x,y) arg min(x,y,ν)∈RH(S) c
⊤x. If disjunction k ∈ K is qualitatively fractional

under x̂ then Algorithm 10 parameterised by S, (x̂, ŷ) and k returns a pairwise irreducible

separating partition induced by k and x̂.
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Proof. Let P denote the set that Algorithm 10 returns. Clearly, P must be a partition of Dk.

By construction, every D ∈ P such that |D| > 1 satisfies x̂ /∈ projx RH(child(S, k, D)). For

the remaining (singleton) subsets, i.e. D ∈ P such that |D| = 1, x̂ /∈ projx RH(child(S, k, D))

follows from qualitative fractionality of k under x̂. Hence, P is a separating partition.

We now show pairwise irreducibility. Assume, for a contradiction, that P is not pairwise

irreducible. Hence, there exists Dj1 , and Dj2 , j1 6= j2 such that x̂ /∈ projx RH(child(S, k, Dj1 ∪

Dj2)). Without loss of generality, we assume that j1 < j2. Choose the lexicographically minimal

such (j1, j2). Let imin
2 = min Dj2 and Dj1

∗ = {i ∈ Dj1 | i < imin
2 }. We have that Dj1

∗ 6= ∅,

since j1 < j2, and Dj2 , in Algorithm 10, is initialised by imin
2 , hence there must be i ∈ Dj1

satisfying i < imin
2 . By Proposition 6, x̂ /∈ RH(child(S, k, Dj1

∗ ∪ {i
min
2 })). By choice of j1 and j2,

Algorithm 10 must also encounter this test and therefore imin
2 ∈ Dj1 . But this contradicts P

being a partition of Dk.

When disjunction k is not qualitatively fractional under x̂, Algorithm 10 returns a partition

P of Dk such that (i) there exists P ′ ⊆ P containing only singleton sets and ∀D ∈ P ′ : x̂ ∈

projx RH(child(S, k, D)) and (ii) ∀D ∈ P \ P ′ : x̂ /∈ projx RH(child(S, k, D)).

Greedy Algorithm 10 places disjuncts into the first subset that retains separability. This

approach could lead earlier subsets being more populated than the later subsets. Hence, the

child nodes associated with larger subsets in the partition may construct larger hull relaxations.

To encourage a partition that contains subsets that closer to equal in size, we propose adapting

Algorithm 10 on line 6 to test against subsets {Dj |Dj 6= ∅} in ascending order of their size.

Making this change does not affect pairwise irreducibility of the resulting partition. We call this

alternative the Definition 6.11 semi-balanced greedy branch construction strategy.

Definition 6.11. The semi-balanced greedy branch construction strategy refers to the algorithm

given by adapting line 6 of Algorithm 10 to consider the nonempty subsets in increasing size

order.

An alternative to a greedy approach is to branch entirely on the selected disjunction k (Beaumont,

1990), i.e. P = {{i} | i ∈ Dk}, we call this approach the Definition 6.12 wide branch construction
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strategy.

Definition 6.12 (Beaumont (1990)). Let k ∈ KF (ŷ) be the disjunction selected for branching.

The wide branch construction strategy creates partition P = {{i} | i ∈ Dk} of disjunction k to

form subproblems.

A wide branch construction strategy may construct many child nodes. The Definition 6.13

semi-wide branching strategy differs from the wide branching strategy by collecting disjuncts

that are not selected, i.e. ŷik = 0 for non-selected disjunct (i, k), into the same subset. As a

heuristic, the semi-wide branching strategy groups disjuncts that do not improve the relaxation

objective (otherwise they would be partially selected) and therefore the subset containing the

non-selected disjuncts may increase the local lower bound in the branch that they form. Note

that the semi-wide strategy does not necessarily form a separating partition.

Definition 6.13. Let k ∈ KF (ŷ) be the disjunction selected for branching. The semi-wide

branch construction strategy creates partition P = {{i} | yik > 0, i ∈ Dk} ∪ {{i ∈ Dk | yik = 0}}

of disjunction k to form subproblems.

6.3 Leveraging Infeasibility in Convex Generalized Dis-

junctive Programming

Any constraint set that admits no solutions is an infeasible system of constraints. Such a

constraint set may also be referred to as a conflicting constraint set. Conflict-driven clause-

learning (CDCL) is a topic that is widely applied in propositional satifiability (Marques-Silva and

Sakallah, 1996; Zhang et al., 2001; Marques-Silva et al., 2009). When CDCL solver encounters

a local infeasibility, it derives additional propositional constraints that prevent the DPLL

search algorithm (Davis and Putnam, 1960; Davis et al., 1962) from encountering the same

infeasibility again. Achterberg (2007a) adapts these propositional satisfiability-based techniques

for mixed-integer programming.
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disjunctions considers a subset of disjuncts.

Definition 6.14. Let S be a non-trivial convex GDP instance without any propositional con-

straints. Let D = {(k, D′
k) | k ∈ K ′} where K ′ ⊆ K and D′

k ⊆ Dk. If D 6= ∅ for all (k, D) ∈ D

then we call D a subcombination of S. The following convex GDP constraint set is the subproblem

of S induced by subcombination D.

gj(x) ≤ 0, j ∈ [p]

rikj(x) ≤ 0, (k, D′
k) ∈ D, |D′

k| = 1, i ∈ D′
k, j ∈ [pik]

∨

i∈D′

k







Yik

rikj(x) ≤ 0, j ∈ [pik]







, D′
k ∈ D, |D′

k| > 1,

∨
i∈D′

k

Yik, (k, D′
k) ∈ D, |D′

k| > 1

xL ≤ x ≤ xU ,

x ∈ R
n

Yik ∈ {True, False}, (k, D′
k) ∈ D, |D′

k| > 1, i ∈ D′
k.

We use SD to denote the subproblem of S induced by subcombination D.

Subcombinations treat disjuncts as atomic units. We will use this property to generate conflict

clauses (no-good cuts) over the Boolean (binary) variables attached to disjuncts (Silva and

Sakallah, 1996; Balas and Jeroslow, 1972; Stallman and Sussman, 1977; Achterberg, 2007a).

6.3.1 Conflicts in Convex Generalized Disjunctive Programming

This section discusses how (partial) assignments that cause a convex GDP to become infeasible

may be analysed and propagated as a conflict clause. We note that both branching and applying

basic steps can cause a convex GDP to become infeasible. In the case of basic steps, an infeasible

combination of disjuncts may be detected without the entire convex GDP instance becoming

infeasible (Sawaya and Grossmann, 2012; Ruiz and Grossmann, 2012). Algorithm 9 does not
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consider the application of basic steps, hence conflicts only occur under branching and are

detected when the problem becomes infeasible.

Proposition 8 states how conflicting combinations of disjuncts can be extracted from a conflicting

set of disjunctions and global constraints, i.e. an infeasible convex GDP.

Proposition 8. Let S be a non-trivial convex GDP instance without any propositional con-

straints. Let D be a subcombination of S. Let zip(k, D) = {(k, {i})|i ∈ D}. If SD = ∅ then for

all I ∈
∏

(k,D)∈D
zip(k, D), SI = ∅.

Proof. We prove the contrapositive. Assume that there exists x̂ ∈ SI′ for some I ′ ∈
∏

(k,D)∈D
zip(k, D)

(SI′ does not have Boolean variables by construction). Then we construct the assignment Ŷ in

SD as:

Ŷik =







True, (k, {i}) ∈ I ′

False, otherwise.

We have that (x̂, Ŷ ) ∈ SD.

The conflicting combinations of disjuncts that Proposition 8 derives are converted into conflict

clauses using Proposition 9. We first state Definition 6.15 which introduces the disjunct

selecting property for subcombinations. Disjunct selecting subcombinations are those where

each disjunction in the subcombination is reduced to a single disjunct, i.e. the problem induced

by a disjunct selecting subcombination is continuous.

Definition 6.15. Let S be a convex GDP instance without any propositional constraints.

Subcombination D of S is disjunct selecting if for all (k, D) ∈ D : |D| = 1.

Proposition 9 derives conflict clauses from infeasible disjunct selecting subcombinations of S.

We note that conflict clauses of the Proposition 9 type are well-known (Silva and Sakallah,

1996; Achterberg, 2007a) and can be derived with automated tools such as SMT (Bjørner and

De Moura, 2011; de Moura and Jovanović, 2013), we provide a proof here in the convex GDP

context for completeness.
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Proposition 9 (Silva and Sakallah (1996); Achterberg (2007a)). Let S be a non-trivial convex

GDP instance without any propositional constraints. Let D be a disjunct selecting subcombination

of S. If SD is infeasible, then
∨

(k,{i})∈D

¬Yik (6.9)

is valid for S.

Proof. We prove the contrapositive. If Equation (6.9) is not valid then it excludes some feasible

solution (x̂, Ŷ ) ∈ S. Hence, gj(x̂) ≤ 0, j ∈ [p] and x̂ ∈ [xL,xU ]. Since Ŷ satisfies the negation

of Equation (6.9), i.e. Ŷik = True, for all (k, {i}) ∈ D, rikj(x̂) ≤ 0, for all (k, {i}) ∈ D, j ∈ [pik].

Hence, x̂ ∈ SD.

Proposition 9 shows that the problem S constraint set may be extended by Equation (6.9)

without affecting feasibility. Let Sroot denote the root node constraint set in the B&B tree. Every

B&B node is associated with a subcombination of Sroot, i.e. for each B&B node S there exists

a subcombination D of Sroot such that S = Sroot
D . If RH(Sroot

D ) = ∅, i.e. the local relaxation is

infeasible, then Propositions 8 and 9 motivate propagating this infeasibility. However, applying

Propositions 8 and 9 under subcombination D only covers descendant nodes of Sroot
D . Since

Sroot
D and all descendant nodes are discarded from the search, this particular propagation has no

effect. If, however, we can find D′ ⊂ D, D′ 6= ∅ such that Sroot
D′ = ∅, then applying Propositions 8

and 9 under subcombination D′ may affect unexplored nodes. Section 6.3.2 analyses how an

irreducible infeasible subsystem (IIS) deriving solver may be leveraged for deriving such a D′.

6.3.2 Hull Relaxation Irreducible Infeasible Subsystems in Convex

Generalized Disjunctive Programming

B&B Algorithm 9 encounters infeasibility when solving hull relaxations at a given B&B node.

Convex MINLP solvers may derive irreducible infeasible subsystems (IISs) (Chakravarti, 1994).

An IIS is a subset of constraints from a mathematical program such that (i) the constraint

set is infeasible and (ii) removal of any constraint causes the system to become feasible.
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IISs applications include motion planning, classification, and treatment planning (Lagriffoul

and Andres, 2016; Chinneck, 2019). An infeasible problem instance may have multiple IISs.

Permuting the constraint set of an infeasible instance can result in the derivation of alternative

IISs, e.g. using a greedy approach as suggested by Hooker (2007). The B&B algorithm only

performs infeasibility analysis on a single IIS in a given infeasible node. If an additional IIS

exists within the current node, it may be handled later in the search if it causes a further

infeasibility. Example 6.3 motivates how we utilise an IIS from an infeasible hull relaxation

result.

Example 6.3. Consider the Figure 6.2 non-trivial convex GDP constraint system. Assume

that the current B&B node follows the root-to-node path: [select left circle, select top

oblong, select right square] and let the subcombination of Sroot associated with this node be

D. The hull relaxation is infeasible at this node. Clearly, any infeasible hull relaxation subset of

constraints that are associated with the top oblong can be removed without affecting infeasibility.

Hence, no IIS will include any constraints associated with the top oblong. We can conclude that

this IIS is also associated with some D′ ⊂ D.

Definition 6.16 characterises well-formed non-trivial convex GDPs, these are convex GDPs whose

global constraints are feasible and each individual disjunct is feasible. If the global constraints

are infeasible in convex GDP problem S, then RH(S) is infeasible. We can check feasibility of

the individual disjuncts by assessing feasibility of the each disjunct separately. Hence, local

infeasibilities in well-formed convex GDPs without propositional constraints always involve

constraints from at least one disjunct.

Definition 6.16. Let S be a non-trivial convex GDP instance. Let S̄ be S without any

propositional constraints. Let S∗ denote S without its global constraints. If for all k ∈ K,

i ∈ Dk, S̄∗
(k,{i}) 6= ∅ and S̄∅ 6= ∅ then we call S well-formed.

Proposition 11 states necessary and sufficient conditions for a subcombination to remain infeasible

with respect to a given infeasible well-formed convex GDP instance without propositional

constraints S and an associated IIS associated with its RH(S) constraint set. We first prove
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Proposition 10 which shows that the hull relaxation of a single disjunction is infeasible if and

only if its disjuncts are all infeasible. Proposition 10 is required for the Proposition 11 proof.

Proposition 10. Let S be a non-trivial convex GDP instance without any propositional con-

straints and D = {(k, D′
k)} be a subcombination for S for some k ∈ K, and D′

k ⊆ Dk.

RH(S∗
D) = ∅ if and only if for all i ∈ D′

k, S∗
{(k,{i})} = ∅.

Proof. For both cases, we show the contrapositive. Let (x̂, ŷ, ν̂) ∈ RH(S∗
D) then by Equa-

tion (2.17c) there exists i′ ∈ D′
k with ŷi′k > 0. This implies that ν̂i′k/ŷi′k ∈ S∗

{(k,{i′})}, i.e. the

if direction. For the only-if direction, let i′ ∈ D′
k be such that there exists x̂ ∈ S∗

{(k,{i})}, then

(x̂, ŷ, ν̂) ∈ RH(S∗
D) where

ŷik =







1, i = i′

0, otherwise,

ν̂ik =







x̂, i = i′

0, otherwise.

For Propositions 11 and 12 let disagg(RH(S), k) denote the disjunction k ∈ K instance of

Equation (2.22b) in the RH(S) constraint set.

Proposition 11. Let S be a non-trivial well-formed convex GDP instance without any proposi-

tional constraints. Let RH(S) be infeasible and I be an IIS of the RH(S) constraint set. Let

R = {k ∈ K | disagg(RH(S), k) ∈ I} and D = {(k, Dk) | k ∈ R}. Let D′ be a subcombination

of S. Then I is contained in the RH(SD′) constraint set if and only if D ⊆ D′.

Proof. We begin with the if case. Assume D ⊆ D′. We have that all constraints in RH(SD) are

contained in RH(SD′), since the latter extends the former. Hence, showing that I is contained

in the RH(SD) constraint set suffices for the result to hold. Let R′ ⊆ K \ R be such that

k′ ∈ R′ if I contains at least one disjunction k′ constraint associated with Equations (2.17c),

(2.22a), (2.22c), or (2.24). Assume that I is not contained in the RH(SD) constraint set.

Hence, R′ 6= ∅. We partition I into (i) Ig which contains all global or variable bounding

constraints from the RH(S) constraint set that are also contained in I and (ii) Ik, for each
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k ∈ R ∪R′ which contain all constraints associated with disjunction k that are also contained

in I. We will now consider the following cases: (1) |R′| > 1, (2) |R′| = 1 and Ig ∪
⋃

k∈R Ik 6= ∅

and (3) |R′| = 1 and Ig ∪
⋃

k∈R Ik = ∅. Assume case (1) and consider the sets Ik, for

k ∈ R′. Since disagg(RH(S), k) /∈ Ik for all k ∈ R′, no two constraints in Ik1 and Ik2 , for

k1, k2 ∈ R
′, k1 6= k2 have any variables in common, i.e. the constraints in these sets cannot affect

feasibility/infeasibility of each other. Similarly, the constraints in Ik for all k ∈ R′ cannot affect

feasibility/infeasibility of the system given by Ig ∪
⋃

k∈R Ik. We conclude that I \ Ik′ remains

infeasible for some k′ ∈ R′, i.e. a contradiction to irreducibility of I. A similar argument to

case (1) shows that case (2) also contradicts irreducibility of I. We now assume case (3). By

Proposition 10, this case contradicts S being well-formed. Since cases (1) to (3) all lead to a

contradiction, we conclude that R′ = ∅ which contradicts our initial assumption. Hence, we

have that I is contained in the RH(SD) constraint set.

We show the only-if case by proving the contrapositive. Assume that D 6⊆ D′. Hence, (k′, Dk′) ∈

D and (k′, Dk′) /∈ D′ for some k′ ∈ R. Then the RH(SD′) constraint set does not include

disagg(RH(S), k′), whereas disagg(RH(S), k′) ∈ I. We conclude that I is not contained in the

RH(SD′) constraint set.

Proposition 12 derives a subcombination that maintains infeasibility for well-fromed convex

GDP S, where S is a node of the B&B Algorithm 9 search tree. In particular, Proposition 12

shows that presence of a disjunction’s Equation (2.22b) disaggregation sum constraint in the

IIS is sufficient for identifying whether the disjunction participates in the infeasibility.

Proposition 12. Let Sroot be a non-trivial well-formed convex GDP instance without any

propositional constraints and D′ a subcombination of Sroot. Assume that Sroot is the root

node instance of B&B Algorithm 9 and D′ the subcombination associated with some B&B

node. If RH(Sroot

D′ ) = ∅ then Sroot

D = ∅, where I is an IIS contained in the RH(Sroot

D′ ) con-

straint set, R1 = {k ∈ K | (k, D′
k) ∈ D′, |D′

k| = 1, rikj ∈ I, for some j ∈ [pik]}, R2 = {k ∈

K | disagg(RH(S), k) ∈ I, (k, D′
k) ∈ D′, |D′

k| > 1} and D = {(k, D′
k) ∈ D′ | k ∈ R1 ∪R2}.

Proof. We consider the cases: (1) R1 = ∅, (2) R1 6= ∅ and R2 = ∅, and (3) R1 6= ∅ and R2 6= ∅.
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We begin with case (1). Assume that (non-relaxed) Sroot
D 6= ∅. Hence, there exists (x̂, Ŷ ) ∈ Sroot

D .

Let

ŷik =







1, Ŷik = True

0, otherwise,

ν̂ik =







x̂, Ŷik = True

0, otherwise.

Clearly, (x̂, ŷ, ν̂) ∈ RH(Sroot
D ). By Proposition 11, I is contained in the RH(Sroot

D ) constraint set.

Since, RH(Sroot
D ) is feasible, I must be feasible. We have a contradiction to I being an IIS. We

now show case (2). We have that if I has constraints associated with some disjunction k such

that (k, D′
k) ∈ D′, |D′

k| > 1 other than disagg(RH(Sroot
D′ ), k), then I is not irreducible. Hence,

by construction Sroot
D is a trivial convex GDP and therefore I must be a subset of the Sroot

D

constraint set, i.e. Sroot
D = ∅. We now show case (3). We have that the disjunctions associated

with R1 construct additional global constraints in Sroot
D . Consider the global constraints and

the additional constraints given by R1 in Sroot
D . This constraint set is feasible or infeasible. If

this constraint set is infeasible then the result clearly follows. If this constraint set is feasible

then Sroot
D is well-formed and a similar argument to case (1) holds.

Combining Propositions 8, 9 and 12 derives conflict clauses from hull reformulations of convex

GDPs. We include an Equation (6.9) conflict clause into a hull reformulation by converting it

to a no-good cut (Balas and Jeroslow, 1972; Stallman and Sussman, 1977; Achterberg, 2007a):

∑

(k,{i})∈D

yik ≤ |D| − 1, (6.10)

where D is a disjunct selecting subcombination as defined by Proposition 9.

Propositions 8, 9 and 12 assume a convex GDP instance that does not have any propositional

constraints. While the initial instance, i.e. Sroot, may not contain propositional constraints,

applying Proposition 9 introduces propositional constraints to any applicable descendant node.

We note that the Proposition 12 result still holds if the hull relaxation IIS does not contain any

propositional constraints or any Equation (6.10) no-good cuts.
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6.4 Constrained Layout Problem

This section formulates the constrained layout problem for our Section 6.5 numerical results.

The constrained layout problem (CLay) is (Sawaya, 2006):

Let nc circles have centres (c1,j, c2,j) and radius rj, j ∈ [nc]. Given nr rectangular

items and costs Fi1,i2 ≥ 0 associated with each pair i1, i2 ∈ [nr], i1 < i2. Find a

placement for the rectangles such that each rectangle is contained inside a circle, no

two distinct rectangles overlap and the sum of Fi1,i2-weighted L1-distances between

the centres of rectangles i1, i2 is minimised.

6.4.1 Convex Generalized Disjunctive Programming Formulation

There are two types of disjunctions in CLay. The first type enforces that a distinct pair of

rectangles do not overlap, or equivalently that they are place above/below one another or

left/right of each other. The second type enforce that a particular rectangle is contained within

the boundary of some circle j ∈ [nc]. Table 6.3 list the CLay model parameters and variables.

To aid readability, we state the convex GDP constraint associated with the first type of

disjunction below separately (split on multiple lines):







Y r
i1,i2,1

x1,i1 + Wi1

2
≤ x1,i2 −

Wi2

2






∨







Y r
i1,i2,2

x1,i2 + Wi2

2
≤ x1,i1 −

Wi1

2







∨







Y r
i1,i2,3

x2,i1 + Hi1

2
≤ x2,i2 −

Hi2

2






∨







Y r
i1,i2,4

x2,i2 + Hi2

2
≤ x2,i1 −

Hi1

2







(6.11)

A CLay convex GDP formulation is (Sawaya, 2006):

min
∑

i1,i2∈[nr]
i1<i2

Fi1,i2

(

d
i1,i2
1 + d

i1,i2
2

)

(6.12a)

subject to d1,i1,i2 ≥ x1,i1 − x1,i2 , ∀i1, i2 ∈ [nr], i1 < i2 (6.12b)
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Table 6.3: Model symbols for the constrained layout (CLay) problem.

Name Description

Sets
i ∈ [nr]} Rectangle indices

j ∈ [nc]} Circle indices
Parameters

Fi1,i2 Objective cost on L1-distance between the centres of rectangle i1 and i2

Wi, Hi Width and height of rectangle i respectively

c1,j, c2,j Coordinates of circle j centre

rj Radius of circle j

Variables
x1,i, x2,i Coordinates of rectange i centre
d1,i1,i2 , d2,i1,i2 Auxiliary variables for representing L1-distance
Y r

i1,i2,j Disjunct selection variable enforcing that rectangle i1 is
{left of, right of, below, above} i2 for j ∈ {1, 2, 3, 4}, respectively

Y c
i,j Disjunct selection variable assigning rectangle i to circle j

d1,i1,i2 ≥ x1,i2 − x1,i1 , ∀i1, i2 ∈ [nr], i1 < i2 (6.12c)

d2,i1,i2 ≥ x2,i1 − x2,i2 , ∀i1, i2 ∈ [nr], i1 < i2 (6.12d)

d2,i1,i2 ≥ x2,i2 − x2,i1 , ∀i1, i2 ∈ [nr], i1 < i2 (6.12e)

Equation (6.11), ∀i1, i2 ∈ [nr], i1 < i2 (6.12f)

∨
j∈{1,2,3,4}

Y r
i1,i2,j , ∀i1, i2 ∈ [nr], i1 < i2 (6.12g)

∨

j∈[nc]

















Y c
i,j

(

x1,i −
Wi

2 − c1,j

)2
+
(

x2,i + Hi

2 − c2,j

)2
≤ r2

j
(

x1,i −
Wi

2 − c1,j

)2
+
(

x2,i −
Hi

2 − c2,j

)2
≤ r2

j
(

x1,i + Wi

2 − c1,j

)2
+
(

x2,i + Hi

2 − c2,j

)2
≤ r2

j
(

x1,i + Wi

2 + c1,j

)2
+
(

x2,i −
Hi

2 − c2,j

)2
≤ r2

j

















, ∀i ∈ [nr] (6.12h)

∨
j∈[nc]

Y c
i,j , ∀i ∈ [nr] (6.12i)

xL
1,i ≤ x1,i ≤ xU

1,i, xL
2,i ≤ x2,i ≤ xU

2,i, ∀i ∈ [nr] (6.12j)

d1,i1,i2 , d2,i1,i2 ∈ R, ∀i1, i2 ∈ [nr], i1 < i2 (6.12k)

x1,i, x2,i ∈ R, ∀i ∈ [nr] (6.12l)

Y r
i1,i2,1, Y r

i1,i2,2, Y r
i1,i2,3, Y r

i1,i2,4 ∈ {True, False}, ∀i1, i2 ∈ [nr], i1 < i2 (6.12m)
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Y c
i,j ∈ {True, False}, ∀i ∈ [nr], j ∈ [nc]. (6.12n)

Parameters Wi, Hi are the width and height of rectangle i ∈ [nr], respectively. Variables (x1,i, x2,i)

are the coordinates of the centre of rectangle i ∈ [nr]. Equation (6.12a) minimises the total sum

of weighted L1-distances between the centres of rectangles, auxiliary variables d1,i1,i2 , d2,i1,i2 are

used to model the L1-distance. Equations (6.12b) to (6.12e) model the L1-distances (note that

correctness follows from the fact that the objective minimises). Equations (6.12f) and (6.12g)

ensure that no distinct pairs of rectangles overlap. Equations (6.12h) and (6.12i) ensure that

each rectangle is contained in a circle. Equations (6.12j) to (6.12n) are variable bounds and

domains.

Basic Stepped Model

Algorithm 9 branches on the disjunctions and propagates infeasibility proofs. Hence, Algorithm 9

only affects the objective bound through these two operations. In CLay, the objective only

depends on the Equation (6.12l) auxiliary variables. These variables only interact with the

objective. The branching and infeasibility propagation interacts indirectly with the objective.
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A basic step between Equations (6.12b) to (6.12f) for a particular i1, i2 ∈ [nr], i1 < i2 constructs:























Y r
i1,i2,1

x1,i1 + Wi1

2
≤ x1,i2 −

Wi2

2

d1,i1,i2 ≥ x1,i1 − x1,i2

d1,i1,i2 ≥ x1,i2 − x1,i1
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(6.13)

The Equation (6.13) disjunction interacts directly with the objective via the Equation (6.12l)

auxiliary variables. Furthermore, Equation (6.13) does not grow with respect to the number of

disjuncts. Hence, replacing Equations (6.12b) to (6.12f) with Equation (6.13) in Problem (6.12)

does not cause the relaxation to grow too much (the corresponding hull relaxation does grow

due to additional constraints and disagregated variables). We consider the equivalent CLay

problem:

min
∑

i1,i2∈[nr]
i1<i2

Fi1,i2

(

di1,i2
1 + di1,i2

2

)

subject to Equations (6.12g)to (6.12n)and (6.13)

(6.14)

for an instance that contains disjunctions that share variables with the objective.
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6.4.2 Second-order Cone-Based Representation for the Hull Refor-

mulation of the Constrained Layout Problem

B&B Algorithm 9 utilises hull relaxations. A hull relaxation of Problem (6.12) relaxes mathemat-

ical constraints in the disjunctions with the perspective transformation, i.e. the mathematical

constraints in Equations (6.11) and (6.12h). When the pre-transformed constraints are nonlinear,

a direct application of the perspective transformation results in functions that can result in

divisions-by-zero when evaluated. The Equation (6.12h) disjunctions contain nonlinear convex

constraints. In particular, these constraints are squared Euclidean norms. Hull relaxations of

these constraints are SOCP-representable (Ben-Tal and Nemirovski, 2001).

Below we derive the SOCP-representation for the first nonlinear constraint within the Equa-

tion (6.12h) disjunction. This SOCP-representability is well known (Ben-Tal and Nemirovski,

2001; Günlük and Linderoth, 2012), we show it here for completeness. Appendix A pro-

vides complete reformulations for Problem (6.12). The consider the constraint taken from the

Equation (6.12h) disjunction:

(

x1,i −
Wi

2
− c1,j

)2

+
(

x2,i +
Hi

2
− c2,j

)2

≤ r2
j

for some i ∈ [nr], j ∈ [nc]. The hull relaxation of Equation (6.12h) introduces variables ν1,i,j, ν2,i,j

that as disaggregated variables for x1,i and x2,j , repectively, and yc
i,j ∈ [0, 1] in place of Y c

i,j. The

hull relaxation applies the perspective transformation to Section 6.4.2 deriving (Grossmann and

Lee, 2003):

yc
i,j





(

ν1,i,j

yc
i,j

−
Wi

2
− c1,j

)2

+

(

ν2,i,j

yc
i,j

+
Hi

2
− c2,j

)2


 ≤ r2
j yc

i,j (6.15)



6.5. Numerical Results 137

For the case yc
i,j > 0, we have that:

Equation (6.15) ⇐⇒
1

yc
i,j





(
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Wiy

c
i,j

2
− c1,jy

c
i,j

)2

+

(
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Hiy

c
i,j

2
− c2,jy

c
i,j

)2


 ≤ r2
j yc
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i.e. we have an SOCP constraint. Evaluating Equation (6.16) at yi,j = 0 gives 0 ≤ 0, since

ν1,i,j = ν2,i,j = 0 by Equation (2.22c). Hence, the Equations (2.22c) and (6.16) constraint set

is equivalent to the Equations (2.22c) and (6.15) constraint set (under the Equation (2.23)

definition of the perspective transformation). Furthermore, Equation (6.16) does not encounter

a division-by-zero at yi,j = 0.

6.5 Numerical Results

This section compares the effect of applying the Section 6.2 disjunction selection and greedy

algorithm, and the Section 6.3 infeasibility propagation strategies to the constrained layout

(CLay) Problems (6.12) and (6.14).

6.5.1 System and Solver Specifications

Experiments are run on an Ubuntu 18.04 HP EliteDesk 800 G3 TWR with 16GB RAM and

an Intel Core i7-7700K@4.20GHz CPU. Implementations are in Python 3.6.10 using Pyomo

5.6.8 (Hart et al., 2011, 2017) for GDP modelling. We use Gurobi 8.1.1 for: (i) solving CLay

hull relaxation in SOCP-form and (ii) deriving irreducible infeasible subsystems in infeasible

relaxation instances. Alternative solvers capable of solving the CLay SOCP hull relaxation

include CPLEX 12.9 and MOSEK 9.2.

For disjunction selection, our B&B Algorithm 9 implementation breaks ties by selecting the



138 Chapter 6. Branching and Infeasibility in Convex Generalized Disjunctive Programming

first disjunction, e.g. under a Definition 6.4 least fractional selection strategy, if disjunction 2

and disjunction 3 both satisfy Definition 6.4 then disjunction 2 is chosen. For Algorithm 10,

our B&B implementation assesses separation using Equation (6.8), i.e. we assess separation by

only considering the selected disjunction. Finally, for infeasibility propagation, i.e. line 25 of

Algorithm 9, our implementation employs laziness. For example, if an Equation (6.9) conflict

clause applies to an unexplored node it is added to a local stack of conflict clauses. The conflict

clauses in the stack are applied when the node is explored.

6.5.2 Constrained Layout Problem Results

We test our Algorithm 9 implementation with the CLay instances found on MINLPLib2 (Bussieck

et al., 2003). The instances are named ‘CLay0m0n’ where m is the number of circles and n

is the number of rectangles. Figures 6.3 to 6.6 parameterise the B&B algorithm with pairs of

the Table 6.1 disjunction selection and Table 6.2 branch construction strategies. Since the hull

relaxation contains SOCP constraints, Gurobi 8.1.1 uses an interior point algorithm. We derive

bounds on all variables involved in disjunctions and filter any disjuncts that are infeasible alone

to ensure that the our hull relaxations satisfy constraint qualification conditions (Slater, 1959;

Hijazi and Liberti, 2016). This filteration removes one rectangle-circle assignment from each of

the clay03∗ instances.

Using the Problem (6.12) Formulation

Figures 6.3 and 6.4 plot the number of Algorithm 9 B&B nodes explored when solving the CLay

instances formulated using the Problem (6.12) formulation. All of these figures show a noticable

variance with respect to the disjunction selection strategy, i.e. which disjunction to branch on.

For most of the instances, a least fractional disjunction selection strategy explores the least

amount of nodes. However, for the larger instances a most non-zero or centre-shifted most

fractional strategy, e.g. CLay0205 and CLay0305, becomes competitive. The most fractional

disjunction selection strategy does not appear to perform well overall. In particular, the most



6.5. Numerical Results 139

fractional disjunction selection strategy does not appear to outperform a centre-shifted most

fractional approach. This result is expected since both of these strategies aim to quantify when a

disjunction is furthest from integrality, however only the centre-shifted most fractional selection

strategy considers the role of the Equation (2.17c) constraint in the relaxation.

We assess branch construction with two variants of greedy Algorithm 9 and two variants

of wide branching. Overall the wide branching strategies tend explore less nodes. For the

CLay02∗instances there does not appear to a clear difference between these approaches. For the

CLay03∗instances complete wide branching shows the best performance. Among the greedy

algorithms, we do not see a significant difference between the two proposed approaches.

We see that infeasibility propagation has a significant effect on the number of nodes explored.

CLay0304 shows that infeasibility propagation can reduce the number of explored nodes by an

order of magnitude. The effect of infeasibility propagation is more modest for the remaining

instances, but still generally has a noticable effect in reducing the number of explored nodes.

Using the Problem (6.14) Formulation

We consider the Problem (6.14) to analyse whether having the disjunctions share variables

with the objective function affects the performance of Algorithm 9. Figures 6.5 and 6.6 plot

the results of solving the CLay instances with Algorithm 9. With respect to the disjunction

selection strategies, we see that centre-shifted most fractional performs well with most non-zero

also having comparable performance for the larger instances. Most fractional selection performs

poorly in general.

Between the branch construction strategies, we establish similar conclusions to that of Figures 6.3

and 6.4, i.e. the wide branch and semi-wide construction approaches tend to perform well. In

particular, wide branching performs the best. For the greedy algorithms, we see that the

semi-balanced approach does appear to perform well after infeasibility propagation, e.g. for the

CLay03∗ instances.

The results of infeasibility propagation in the Problem (6.14) instance generally sees a relatively
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significant drop in the number of nodes explored.

Observations

Our numerical results, i.e. Figures 6.3 to 6.6, test three aspects of the B&B algorithm: (i)

disjunction selection strategy, (ii) branch construction strategy, and (iii) infeasibility propagation.

For the tested instances, we see that nodes explored is most influenced by the disjunction selection

strategy and infeasibility propagation. For disjunction selection strategies, centre-shifted most

fractional disjunction selection is the most effective strategy overall, however least fractional

selection performs well for smaller Problem (6.12) instances. Since, centre-shifted most fractional

disjunction selection outperforms the remaining disjunction strategies for the Problem (6.14)

instances, it may be an effective in a B&B algorithm that applies basic steps at a node level.

Infeasibility propagation is effective as it allows additional subproblems be tightened which can

improve bounds and it can enable pruning without having to explore other nodes that contain

similar infeasibilities.

Generally, the wide branch construction outperforms the other branch construction strategies

in terms of nodes explored. Wide branch construction is effective as relaxation bounds may

increase significantly since a disjunct is selected in each child hence pruning may happen sooner.

In the greedy branch construction strategies, since a child nodes does not necessarily reduce a

disjuction to single disjunct, the corresponding relaxation bounds may not increase quickly and

therefore more branching may be required, i.e. additional explored nodes. Such drastic shifts

relaxation bounds can happen for CLay, since the objective sums Manhattan distances between

rectangle centres, i.e. if circles are far from one another then assigning rectangles to different

circles can cause the relaxation bound to increase significantly, whereas if a rectangle still has

a disjunctive choice between two circles it can still be placed at (integer infeasible) location

between the circles in the relaxation.











Chapter 7

Conclusion

7.1 Contributions

7.1.1 Mixed-Integer Convex Nonlinear Optimisation with Gradient-

Boosted Trees Embedded

This chapter addresses the large-scale, industrially-relevant Chapter 3 gradient-boosted tree

model by directly exploiting: (i) advanced mixed-integer programming technology with strong

optimisation formulations, (ii) GBT tree structure with priority towards searching on commonly-

occurring variable splits, and (iii) convex penalty terms with enabling fewer mixed-integer

optimisation updates. The general form of the optimisation problem appears whenever we wish

to optimise a pre-trained gradient-boosted tree with convex terms in the objective, e.g. penalties.

It would have been alternatively possible to train and then optimise a smooth and continuous

machine learning model, but applications with legacy code may start with a GBT. Our numerical

results test against concrete mixture design and chemical catalysis, two applications where the

global solution to an optimisation problem is often particularly useful. Our methods not only

generate good feasible solutions to the optimisation problem, but they also converge towards

proving the exact solution.
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We note that functions obtained from limited, known evaluations with machine learning are

approximate by default and may deviate from the ground truth, thus, resulting in false optima.

The final solution error depends on the training data distribution, noise, and machine learning

model complexity. The performance of our PCA-based approach is deteriorated when dealing

with clustered data. In this case, regions within the PCA subspace might be far from the training

observations. A remedy to this weakness is data analysis, e.g. clustering (Hastie et al., 2009).

However, such an approach may introduce additional computational overhead. An alternative

direction is using proximity measures (Liaw and Wiener, 2002; Mǐsić, 2017).

Finally, we acknowledge other approaches for decision-making with optimisation problems

whose input is specified by machine learning models. Donti et al. (2017) consider end-to-end

task-based learning where probabilistic models are trained to be subsequently used within

stochastic programming tasks. Elmachtoub and Grigas (2017) develop a framework for training

predictive models with a specific loss function so that the resulting optimisation problem has

desirable convexity properties and is statistically consistent. Wilder et al. (2019) propose a

two-stage approach for integrating machine learning predictions with combinatorial optimisation

problem decisions. The main difference with our work is that we are more focused on the

optimisation side.

7.1.2 Using Satisfiability Modulo Theories Derived Unsatisfiable Cores

in Mathematical Optimisation

This chapter suggests uses for satisfiability modulo theories (SMT) derived unsatisfiable cores in

an optimisation context. The application under study in this chapter is the two-dimensional bin

packing problem (2BP). We design three algorithms for solving 2BP, two of which are iterative

methods that, respectively, tighten or loosen a single instance, and the third algorithm is a B&B

strategy. All of these algorithms partially break an inherent symmetric structure present in

2BP. The B&B algorithm utilises the SMT unsatisfiable cores to: (i) form branching decisions

and (ii) generate no-good cuts. Branching on an unsatisfiable core introduces symmetries in the

search, we propose additional cuts that separate these symmetries. The no-good cuts derived
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directly from the unsatisfiable core break symmetries that occur in infeasibilities. Our numerical

tests show that our black-box use of SMT can outperform state-of-the-art mixed-integer linear

programming solvers. The chapter discusses using an SMT unsatisfiable cores for cut generation

and as a model checker.

7.1.3 Branching and Infeasibility Propagation in Convex General-

ized Disjunctive Programming

This chapter designs a B&B algorithm for the convex generalized disjunctive programming

(GDP) framework. The contributions of the B&B algorithm include (i) selection strategies for

branching on a disjunction, (ii) a greedy algorithm for branch construction, and (iii) infeasibility

propagation results for generating no-good cuts. For branching disjunction selection, we propose

the most fractional, most non-zero and centre-shifted most fractional strategy. Intuitively, all

of these strategies attempt to quantify how undecided, with respect to selecting a disjunct, a

relaxation solution is. We study branching by repurposing the use case of the convex GDP

cutting plane generating separation problem (Stubbs and Mehrotra, 1999; Vecchietti et al., 2003)

to deciding separation among branches, i.e. a branch set that removes the current infeasible-

for-GDP relaxation solution. We define minimal separation as a favourable property of in a

set of branches and pairwise irreducibility as a heuristic for minimal separation. We show

that if a relaxation solution is qualitatively fractional then we can guarantee separation. We

design greedy Algorithm 10 that can construct pair irreducible partitions given a qualitatively

fractional solution. Furthermore, we suggest a naive branch construction strategy that may

generate less local nodes than the Beaumont (1990) wide branching strategy. Our analysis of

infeasibility in convex GDP studies leveraging hull relaxation irreducible infeasible subsystems.

We show that for a well-formed convex GDP without any propositional constraints, a sufficient

requirement for presence of a disjunction in a hull relaxation irreducible infeasible set is given

by presence of its disaggregation sum constraint. We numerically evaluate our strategies on the

constrained layout problem. For the tested instances, our results show that, with respect to

nodes explored, the centre-shifted most fractional disjunction selection strategy performs well
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for the larger tested instances, that infeasibility propagation in convex GDP can drastically

reduced the number of nodes explored. For the branch construction strategies, wide branching

performs the best.

7.2 Future Work

7.2.1 An Online Satisfiability Modulo Theories Approach for a Gen-

eralisation of Bin Packing

Firstly, a direct improvement that retains the black-box use case of SMT in the Chapter 5 B&B

algorithm is embedding heuristics into the B&B tree. Simple heuristics may be necessary for

larger applications, since deriving larger unsatisfiable cores is more time consuming.

This thesis focuses on utilising SMT as a black-box tool that may guide an algorithm, we now

discuss development of an online SMT approach. The black-box approach leads to a duplication

of effort in the proposed algorithm, since the SMT solver deriving an unsatisfiable core followed

by the algorithm recovering the no-good cuts can be carried out together. Furthermore, an

SMT solver would benefit from symmetry breaking internally for the decision version of 2BP

when deriving unsatisfiable cores. An interesting feature of the Chapter 5 B&B algorithm is

that all aspects of the algorithm except for the Equation (5.13) cuts apply to a generalisation of

bin packing. This generalisation is the problem:

Let I = [nC ] index a set of items and C : 2I → B. Find a partition P of I such that

∀S ∈ P : C(S) and P has minimal cardinality.

For 2BP, C = OPP, the orthogonal packing problem (Baker et al., 1980). This generalisation

motivates two developments: (1) a generic SMT-based B&B algorithm that carries out the

same symmetry breaking search strategy and no-good cuts but assumes nothing about C, and

(2) theory solvers that assess the condition C in question. For example, the linear rational

arithmetic theory employed in Chapter 5 is more general than 2BP requires.
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7.2.2 Initialisation Selection Strategy for the Chapter 4 Branch-and-

Bound Parameters

The Chapter 4 decomposition-based GBT lower bounding methodology is parameterised by an

initial partition. This thesis selects the initial partition by grouping, in training order, fixed sized

subsets where the size is selected by conducting numerical tests offline. An alternative choice of

this partition may provide better initial bounds, this motivates the research question: how may

we select the initial partition for the decomposition-based GBT lower bounding approach? The

trade-off that has to be accounted for is time-to-bound time vs tightness-of-bound. Time-to-

bound may be heuristically guided by the subset size. Tightness-of-bound may be related to how

interactive trees in a given subset are with each other, i.e. do they split on the same variables?

A scoring approach similar to the pseudocost initialisation may provide a good quantification of

interactivity.

7.2.3 Basic Step Selection in Convex Generalized Disjunctive Pro-

gramming

This thesis proposes strategies for B&B branching in convex GDP. However, effective bounding

is also an important aspect of B&B. For convex GDP algorithms, basic steps support effective

bounding. Ruiz and Grossmann (2010) propose rules for selection of basic steps that tighten a

GDP formulation. Papageorgiou and Trespalacios (2018) also investigate basic step selection

by leveraging a Lagrangian decomposition to quantify the expected bound improvement of

a basic step and develop pseudo basic steps that intersect disjuctions within the Lagrangian

decomposition. In addition to the Ruiz and Grossmann (2010) rules, we consider two goals for

basic step selection: (1) infeasibility induction and (2) bound tightening. Infeasibility induction

aims to combine disjunctions and global constraints that cause several immediate infeasible

disjuncts in the resulting disjunction, i.e. problem growth does not hit the worst case. Bound

tightening attempts to select basic steps that a cause a direct improvement in the lower bound.

The Papageorgiou and Trespalacios (2018) quantification of expected bound improvement of
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a basic step is in line with the second goal. An important consideration for both of these

goals is interaction, i.e. how many variables do the selected disjunctions have in common and

do their constraints oppose each other? For bound tightening, we have to quantify the effect

of a basic step on the objective variables, i.e. do interacting constraints affect the objective

variables significantly? These considerations motivate modelling a convex GDP as a graph

where each global constraint, disjunction and the objective is a unique vertex. Two vertices

share an edge if and only if their corresponding modelling structures share variables. Let the

distance between the objective vertex and a non-objective vertex be the length of a shortest

path from the objective vertex to the non-objective vertex. An interesting research question is:

can we model a convex GDP as graph to guide basic step selection?

7.2.4 Using Alternative Relaxation Strategies in the Convex Gen-

eralized Disjunctive Programming Branch-and-Bound Algo-

rithm

Hull reformulations are generally much larger than big-M reformulations. Also, the presence of

the perspective function may cause numerical difficulties in practice. Using big-M reformulations

may be more resistant to these issues, however the cost is relaxation tightness (Vecchietti et al.,

2003). Furthermore, since relaxation solutions can be outside of the hull reformulation feasible

region, a branch-and-cut framework may be more appropriate (Ceria et al., 1998; Stubbs and

Mehrotra, 1999). For a branch-and-cut approach, Algorithm 10 can also provide valid cutting

planes when the branch separation problem is solved to optimality.
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Kılınç, M., Linderoth, J., Luedtke, J., and Miller, A. (2014). Strong-branching inequalities for

convex mixed integer nonlinear programs. Computational Optimization and Applications,

59(3):639–665.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing.

Science, 220(4598):671–680.

Kirst, P., Rigterink, F., and Stein, O. (2017). Global optimization of disjunctive programs.

Journal of Global Optimization, 69(2):283–307.

Klabjan, D., Johnson, E. L., Nemhauser, G. L., Gelman, E., and Ramaswamy, S. (2001). Solving

large airline crew scheduling problems: Random pairing generation and strong branching.

Computational Optimization and Applications, 20(1):73–91.

Klee, V. and Minty, G. (1972). How good is the simplex algorithm? In Inequalities. Academic

Press.

Konno, H. and Wijayanayake, A. (2001). Portfolio optimization problem under concave transac-

tion costs and minimal transaction unit constraints. Mathematical Programming, 89(2):233–

250.

Kouyialis, G. and Misener, R. (2017). Detecting symmetry in designing heat exchanger networks.

In Proceedings of the International Conference of Foundations of Computer-Aided Process

Operations-FOCAPO/CPC.



BIBLIOGRAPHY 165

Kouyialis, G., Wang, X., and Misener, R. (2019). Symmetry detection for quadratic optimization

using binary layered graphs. Processes, 7(11):838.

Kronqvist, J., Bernal, D. E., Lundell, A., and Grossmann, I. E. (2019). A review and comparison

of solvers for convex MINLP. Optimization and Engineering, 20(2):397–455.

Kronqvist, J., Lundell, A., and Westerlund, T. (2016). The extended supporting hyperplane

algorithm for convex mixed-integer nonlinear programming. Journal of Global Optimization,

64(2):249–272.

Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical

Software, 28(5):1–26.

Kulkarni, R. and Bhave, P. (1985). Integer programming formulations of vehicle routing

problems. European Journal of Operational Research, 20(1):58–67.

Lagriffoul, F. and Andres, B. (2016). Combining task and motion planning: A culprit detection

problem. The International Journal of Robotics Research, 35(8):890–927.

Land, A. H. and Doig, A. G. (1960). An automatic method for solving discrete programming

problems. Econometrica, 28(1):497–520.

Lee, S. and Grossmann, I. E. (2000). New algorithms for nonlinear generalized disjunctive

programming. Computers & Chemical Engineering, 24(9-10):2125–2141.

Lee, S. and Grossmann, I. E. (2001). A global optimization algorithm for nonconvex generalized

disjunctive programming and applications to process systems. Computers & Chemical

Engineering, 25(11):1675–1697.

Letsios, D., Baltean-Lugojan, R., Ceccon, F., Mistry, M., Wiebe, J., and Misener, R. (2020). Ap-

proximation algorithms for process systems engineering. Computers & Chemical Engineering,

132:106599.

Lhomme, O. (2003). An efficient filtering algorithm for disjunction of constraints. In Rossi,

F., editor, Principles and Practice of Constraint Programming – CP 2003, pages 904–908.

Springer Berlin Heidelberg.



166 BIBLIOGRAPHY

Li, H. and Womer, K. (2008). Scheduling projects with multi-skilled personnel by a hybrid

MILP/CP Benders decomposition algorithm. Journal of Scheduling, 12(3):281–298.

Liaw, A. and Wiener, M. (2002). Classification and regression by randomForest. R News, pages

18–22.

Liberti, L. (2012). Symmetry in mathematical programming. In Lee, J. and Leyffer, S., editors,

Mixed Integer Nonlinear Programming, pages 263–283. Springer New York.

Liberti, Leo (2019). Undecidability and hardness in mixed-integer nonlinear programming.

RAIRO-Oper. Res., 53(1):81–109.

Liu, W. B. and Floudas, C. A. (1993). A remark on the GOP algorithm for global optimization.

Journal of Global Optimization, 3(4):519–521.

Lodi, A., Martello, S., and Vigo, D. (1999). Heuristic and metaheuristic approaches for a class

of two-dimensional bin packing problems. INFORMS Journal on Computing, 11(4):345–357.

Lombardi, M. and Milano, M. (2018). Boosting combinatorial problem modeling with machine

learning. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial

Intelligence, IJCAI-18, pages 5472–5478.

Lombardi, M., Milano, M., and Bartolini, A. (2017). Empirical decision model learning. Artificial

Intelligence, 244:343–367. Combining Constraint Solving with Mining and Learning.

Lundell, A., Kronqvist, J., and Westerlund, T. (2017). SHOT – a global solver for convex

MINLP in Wolfram Mathematica. In EspuÃśa, A., Graells, M., and Puigjaner, L., editors,

27th European Symposium on Computer Aided Process Engineering, volume 40 of Computer

Aided Chemical Engineering, pages 2137–2142. Elsevier.

Malik, S. and Zhang, L. (2009). Boolean satisfiability from theoretical hardness to practical

success. Communications of the ACM, 52(8):76–82.

Manolios, P. and Papavasileiou, V. (2013). Computer Aided Verification: 25th International

Conference, CAV 2013, chapter ILP Modulo Theories, pages 662–677. Springer Berlin

Heidelberg.



BIBLIOGRAPHY 167

Maranas, C. D. and Floudas, C. A. (1992). A global optimization approach for LennardâĂŘJones

microclusters. The Journal of Chemical Physics, 97(10):7667–7678.

Maranas, C. D. and Floudas, C. A. (1995). Finding all solutions of nonlinearly constrained

systems of equations. Journal of Global Optimization, 7(2):143–182.

Maravelias, C. T. (2006). A decomposition framework for the scheduling of single- and multi-stage

processes. Computers & Chemical Engineering, 30(3):407–420.

Maravelias, C. T. and Grossmann, I. E. (2004). A hybrid MILP/CP decomposition approach

for the continuous time scheduling of multipurpose batch plants. Computers & Chemical

Engineering, 28(10):1921–1949.

Maravelias, C. T. and Sung, C. (2009). Integration of production planning and scheduling:

Overview, challenges and opportunities. Computers & Chemical Engineering, 33(12):1919–

1930.

Margot, F. (2002). Pruning by isomorphism in branch-and-cut. Mathematical Programming,

94(1):71–90.

Margot, F. (2003). Small covering designs by branch-and-cut. Mathematical Programming,

94(2):207–220.

Margot, F. (2010). Symmetry in Integer Linear Programming, pages 647–686. Springer Berlin

Heidelberg.

Marques-Silva, J., Lynce, I., and Malik, S. (2009). Conflict-driven clause learning SAT solvers,

pages 131–153. Number 1 in Frontiers in Artificial Intelligence and Applications. IOS Press,

Netherlands, 1 edition.

Marques-Silva, J. P. and Sakallah, K. A. (1996). GRASP — a new search algorithm for

satisfiability. In Proceedings of the 1996 IEEE/ACM International Conference on Computer-

aided Design, ICCAD ’96, pages 220–227, Washington, DC, USA. IEEE Computer Society.



168 BIBLIOGRAPHY

Martello, S., Pisinger, D., Vigo, D., Boef, E. D., and Korst, J. (2007). Algorithm 864: General

and robot-packable variants of the three-dimensional bin packing problem. ACM Transactions

on Mathematical Software, 33(1):7–es.

Martello, S. and Vigo, D. (1998). Exact solution of the two-dimensional finite bin packing

problem. Management Science, 44(3):388–399.

McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex programs:

Part I — convex underestimating problems. Mathematical Programming, 10(1):147–175.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).

Equation of state calculations by fast computing machines. The Journal of Chemical Physics,

21(6):1087–1092.

Miranda, L. J. V. (2018). PySwarms: A research toolkit for Particle Swarm Optimization in

Python. The Journal of Open Source Software, 3.

Misener, R. and Floudas, C. A. (2010). Piecewise-linear approximations of multidimensional

functions. Journal of Optimization Theory and Applications, 145(1):120–147.

Misener, R. and Floudas, C. A. (2013). GloMIQO: Global Mixed-Integer Quadratic Optimizer.

Journal of Global Optimization, 57(1):3–50.

Misener, R. and Floudas, C. A. (2014). ANTIGONE: Algorithms for continuous / integer global

optimization of nonlinear equations. Journal of Global Optimization, 59(2):503–526.

Misener, R., Gounaris, C. E., and Floudas, C. A. (2009). Global optimization of gas lifting

operations: A comparative study of piecewise linear formulations. Industrial & Engineering

Chemistry Research, 48(13):6098–6104.

Mistry, M., Callia D’Iddio, A., Huth, M., and Misener, R. (2018a). Satisfiability modulo theories

for process systems engineering. Computers & Chemical Engineering, 113:98–114.

Mistry, M., Letsios, D., Krennrich, G., Lee, R. M., and Misener, R. (2018b). Mixed-

integer convex nonlinear optimization with gradient-boosted trees embedded. arXiv e-prints.

arXiv:1803.00952.



BIBLIOGRAPHY 169

Mistry, M. and Misener, R. (2016). Optimising heat exchanger network synthesis using convexity

properties of the logarithmic mean temperature difference. Computers & Chemical Engineering,

94:1–17.
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Komorowski, J. and Raś, Z. W., editors, Methodologies for Intelligent Systems, pages 350–361.

Springer Berlin Heidelberg.



BIBLIOGRAPHY 171

Puget, J.-F. (2002). Symmetry breaking revisited. In Van Hentenryck, P., editor, Principles and

Practice of Constraint Programming - CP 2002, pages 446–461. Springer Berlin Heidelberg.

Puget, J.-F. (2005a). Breaking symmetries in all different problems. In Proceedings of the 19th

International Joint Conference on Artificial Intelligence, pages 272âĂŞ–277, San Francisco,

USA. Morgan Kaufmann Publishers Inc.

Puget, J.-F. (2005b). Symmetry breaking revisited. Constraints, 10(1):23–46.

Quesada, I. and Grossmann, I. E. (1993). Global optimization algorithm for heat exchanger

networks. Industrial & Engineering Chemistry Research, 32(3):487–499.

Rado, F. (1963). Linear programming with logic conditions. Communicarile Academiei Republicil

Populare Romine, 13:1039–1041.

Raman, R. and Grossmann, I. E. (1994). Modelling and computational techniques for logic

based integer programming. Computers & Chemical Engineering, 18(7):563–578.

Ridgeway, G. (2017). Package ‘gbm’.

Rockafellar, R. T. (1970). Convex Analsis. Princeton University Press.

Rodriguez, M. A. and Vecchietti, A. (2009). Logical and generalized disjunctive programming

for supplier and contract selection under provision uncertainty. Industrial & Engineering

Chemistry Research, 48(11):5506–5521.

Rossi, F., Van Beek, P., and Walsh, T. (2006). Handbook of constraint programming. Elsevier.

Rostami, M. and Bagherpour, M. (2017). A Lagrangian relaxation algorithm for facility location

of resource-constrained decentralized multi-project scheduling problems. Operations Research.

Ruiz, J. P. and Grossmann, I. E. (2010). Strengthening of lower bounds in the global optimization

of bilinear and concave generalized disjunctive programs. Computers & Chemical Engineering,

34(6):914–930.



172 BIBLIOGRAPHY

Ruiz, J. P. and Grossmann, I. E. (2012). A hierarchy of relaxations for nonlinear convex

generalized disjunctive programming. European Journal of Operational Research, 218(1):38–

47.

Ruiz, J. P. and Grossmann, I. E. (2013). Using convex nonlinear relaxations in the global opti-

mization of nonconvex generalized disjunctive programs. Computers & Chemical Engineering,

49:70–84.

Ryoo, H. S. and Sahinidis, N. V. (1996). A branch-and-reduce approach to global optimization.

Journal of Global Optimization, 8(2):107–138.

Sahinidis, N. V. (1996). BARON: general purpose global optimization software package. Journal

of Global Optimization, 8(2):201–205.

Sawaya, N. (2006). Reformulations, relaxations and cutting planes for generalized disjunctive

programming. PhD thesis, Carnegie Mellon University.

Sawaya, N. and Grossmann, I. (2012). A hierarchy of relaxations for linear generalized disjunctive

programming. European Journal of Operational Research, 216(1):70–82.

Sawaya, N. W. and Grossmann, I. E. (2005). A cutting plane method for solving linear generalized

disjunctive programming problems. Computers & Chemical Engineering, 29(9):1891–1913.

Sawaya, N. W. and Grossmann, I. E. (2007). Computational implementation of non-linear

convex hull reformulation. Computers & Chemical Engineering, 31(7):856–866.

Schulte, C. and Stuckey, P. J. (2004). Speeding up constraint propagation. In Wallace, M., editor,

Principles and Practice of Constraint Programming – CP 2004, pages 619–633. Springer Berlin

Heidelberg.

Schulte, C. and Stuckey, P. J. (2008). Efficient constraint propagation engines. ACM Trans.

Program. Lang. Syst., 31(1).

Schweidtmann, A. M. and Mitsos, A. (2019). Deterministic global optimization with artificial

neural networks embedded. Journal of Optimization Theory and Applications, 180(3):925–948.



BIBLIOGRAPHY 173

Sebastiani, R. (2007). Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean

Modeling and Computation, 3:141–224.

Sebastiani, R. and Tomasi, S. (2015). Optimization modulo theories with linear rational costs.

ACM Transactions on Computational Logic, 16(2):1–43.

Sebastiani, R. and Trentin, P. (2015). Computer Aided Verification: 27th International Confer-

ence, CAV 2015, chapter OptiMathSAT: A Tool for Optimization Modulo Theories, pages

447–454. Springer International Publishing.

Sharma, S., Knudsen, B. R., and Grimstad, B. (2016). Towards an objective feasibility pump

for convex MINLPs. Computational Optimization and Applications, 63(3):737–753.

Shostak, R. E. (1979). A practical decision procedure for arithmetic with function symbols.

Journal of the ACM, 26(2):351–360.

Shostak, R. E. (1982). 6th Conference on Automated Deduction: New York, USA, chap-

ter Deciding combinations of theories, pages 209–222. Springer Berlin Heidelberg, Berlin,

Heidelberg.

Silva, J. P. M. and Sakallah, K. A. (1996). Grasp: a new search algorithm for satisfiability. In

IEEE/ACM International Conference on Computer-aided Design, ICCAD ’96, pages 220–227,

Washington, DC, USA. IEEE Computer Society.

Singer, A. B., Taylor, J. W., Barton, P. I., and Green, W. H. (2006). Global dynamic optimization

for parameter estimation in chemical kinetics. The Journal of Physical Chemistry A, 110(3):971–

976.

Sitek, P. (2014). A hybrid CP/MP approach to supply chain modelling, optimization and

analysis. In Computer Science and Information Systems (FedCSIS), pages 1345–1352.

Slater, M. (1959). Lagrange multipliers revisited. Cowles Foundation Discussion Papers 80,

Cowles Foundation for Research in Economics, Yale University.

Smith, E. M. and Pantelides, C. C. (1997). Global optimisation of nonconvex MINLPs. Computers

& Chemical Engineering, 21:S791–S796. Supplement to Computers and Chemical Engineering.



174 BIBLIOGRAPHY

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical Bayesian optimization of machine

learning algorithms. In Advances in Neural Information Processing Systems 25, pages 2951–

2959. Curran Associates, Inc.

Sra, S., Nowozin, S., and Wright, S. J. (2012). Optimization for Machine Learning. MIT Press.

Stallman, R. M. and Sussman, G. J. (1977). Forward reasoning and dependency-directed

backtracking in a system for computer-aided circuit analysis. Artificial Intelligence, 9(2):135–

196.

Stubbs, R. A. and Mehrotra, S. (1999). A branch-and-cut method for 0-1 mixed convex

programming. Mathematical Programming, 86(3):515–532.

Tanaka, S. and Araki, M. (2008). A branch-and-bound algorithm with Lagrangian relaxation to

minimize total tardiness on identical parallel machines. Internation Journal of Production

Economics, 113(1):446–458.

Tawarmalani, M. and Sahinidis, N. (2002). Convexification and Global Optimization in Contin-

uous and Mixed-Integer Nonlinear Programming. Springer, US.

Tawarmalani, M. and Sahinidis, N. V. (2005). A polyhedral branch-and-cut approach to global

optimization. Mathematical Programming, 103:225–249.

Thorsteinsson, E. S. (2001). Branch-and-check: A hybrid framework integrating mixed integer

programming and constraint logic programming. Principles and Practice of Constraint

Programming - CP 2001, 2239:16–30.

Trespalacios, F. and Grossmann, I. E. (2014). Review of mixed-integer nonlinear and generalized

disjunctive programming methods. Chemie Ingenieur Technik, 86(7).

Trespalacios, F. and Grossmann, I. E. (2015a). Algorithmic approach for improved mixed-integer

reformulations of convex generalized disjunctive programs. INFORMS Journal on Computing,

27(1):59–74.

Trespalacios, F. and Grossmann, I. E. (2015b). Improved big-M reformulation for generalized

disjunctive programs. Computers & Chemical Engineering, 76:98–103.



BIBLIOGRAPHY 175

Trespalacios, F. and Grossmann, I. E. (2016a). Cutting plane algorithm for convex generalized

disjunctive programs. INFORMS Journal on Computing, 28(2):209–222.

Trespalacios, F. and Grossmann, I. E. (2016b). Lagrangean relaxation of the hull-reformulation of

linear generalized disjunctive programs and its use in disjunctive branch and bound. European

Journal of Operational Research, 253(2):314–327.

Tsang, E. (1993). Foundations of Constraint Satisfaction. Academic Press, London, UK.

Tseitin, G. S. (1983). On the Complexity of Derivation in Propositional Calculus, pages 466–483.

Springer Berlin Heidelberg.

Türkay, M. and Grossmann, I. E. (1996). Logic-based MINLP algorithms for the optimal

synthesis of process networks. Computers & Chemical Engineering, 20(8):959–978.

van Beek, P. (2006). Chapter 4 - backtracking search algorithms. In Rossi, F., van Beek, P.,

and Walsh, T., editors, Handbook of Constraint Programming, volume 2 of Foundations of

Artificial Intelligence, pages 85–134. Elsevier.

Van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming. MIT Press, Cam-

bridge, MA, USA.

Van Hentenryck, P., Saraswat, V., and Deville, Y. (1998). Design, implementation, and evaluation

of the constraint language cc(fd). The Journal of Logic Programming, 37(1):139–164.

Vanderbeck, F. (2011). Branching in branch-and-price: a generic scheme. Mathematical

Programming, 130(2):249–294.

Vaswani, N., Bouwmans, T., Javed, S., and Narayanamurthy, P. (2018). Robust subspace

learning: Robust pca, robust subspace tracking, and robust subspace recovery. IEEE Signal

Processing Magazine, 35(4):32–55.

Vecchietti, A., Lee, S., and Grossmann, I. E. (2003). Modeling of discrete/continuous optimization

problems: Characterization and formulation of disjunctions and their relaxations. Computers

& Chemical Engineering, 27(3):433–448.



176 BIBLIOGRAPHY

Verwer, S., Zhang, Y., and Ye, Q. C. (2017). Auction optimization using regression trees and

linear models as integer programs. Artificial Intelligence, 244:368–395. Combining Constraint

Solving with Mining and Learning.

Vielma, J. P., Ahmed, S., and Nemhauser, G. (2010). Mixed-integer models for nonseparable

piecewise-linear optimization: Unifying framework and extensions. Operations Research,

58(2):303–315.

Vielma, J. P., Dunning, I., Huchette, J., and Lubin, M. (2017). Extended formulations in mixed

integer conic quadratic programming. Mathematical Programming Computation, 9(3):369–418.

Vigerske, S. (2012). Decomposition in Multistage Stochastic Programming and a Constraint

Integer Programming Approach to Mixed-Integer Nonlinear Programming. PhD in Mathematics,

Humboldt-University Berlin.

Vo-Thanh, N., Jans, R., Schoen, E. D., and Goos, P. (2018). Symmetry breaking in mixed

integer linear programming formulations for blocking two-level orthogonal experimental

designs. Computers & Operations Research, 97:96–110.

Wallace, R. J. and Freuder, E. C. (1992). Ordering heuristics for arc consistency algorithms. In

Proceedings of the Ninth Canadian Conference on Artificial Intelligence, pages 163–169.

Wechsung, A., Schaber, S. D., and Barton, P. I. (2014). The cluster problem revisited. Journal

of Global Optimization, 58(3):429–438.

Westerlund, T. and Pettersson, F. (1995). An extended cutting plane method for solving convex

MINLP problems. Computers & Chemical Engineering, 19:131–136.

Wilder, B., Dilkina, B., and Tambe, M. (2019). Melding the data-decisions pipeline: Decision-

focused learning for combinatorial optimization. In The Thirty-Third AAAI Conference on

Artificial Intelligence, pages 1658–1666.

Williams, H. P. (1990). Model building in mathematical programming. Wiley.



BIBLIOGRAPHY 177
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Appendix A

Hull reformulation of Constrained

Layout Convex Generalized Disjunctive

Programming Formulation

We state the hull reformulation of the constrained layout convex GDP Problem 6.12 (Sawaya,

2006).

min
∑

i1,i2∈[nr]
i1<i2

Fi1,i2

(

di1,i2
1 + di1,i2

2

)

subject to d1,i1,i2 ≥ x1,i1 − x1,i2 , ∀i1, i2 ∈ [nr], i1 < i2

d1,i1,i2 ≥ x1,i2 − x1,i1 , ∀i1, i2 ∈ [nr], i1 < i2

d2,i1,i2 ≥ x2,i1 − x2,i2 , ∀i1, i2 ∈ [nr], i1 < i2

d2,i1,i2 ≥ x2,i2 − x2,i1 , ∀i1, i2 ∈ [nr], i1 < i2

ν1,i1,i2,i1,1 +
Wi1

2
yr

i1,i2,1 ≤ ν1,i1,i2,i2,1 +
Wi2

2
yr

i1,i2,1, ∀i1, i2 ∈ [nr], i1 < i2

ν1,i1,i2,i2,2 +
Wi2

2
yr

i1,i2,2 ≤ ν1,i1,i2,i1,2 +
Wi1

2
yr

i1,i2,2, ∀i1, i2 ∈ [nr], i1 < i2

ν2,i1,i2,i1,3 +
Hi1

2
yr

i1,i2,3 ≤ ν2,i1,i2,i2,3 +
Hi2

2
yr

i1,i2,3, ∀i1, i2 ∈ [nr], i1 < i2

ν2,i1,i2,i2,4 +
Hi2

2
yr

i1,i2,4 ≤ ν2,i1,i2,i1,4 +
Hi1

2
yr

i1,i2,4, ∀i1, i2 ∈ [nr], i1 < i2
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∑

j∈{1,2,3,4}

yr
i1,i2,j = 1, ∀i1, i2 ∈ [nr], i1 < i2

x1,i1 =
∑

j∈{1,2,3,4}

ν1,i1,i2,i1,j, ∀i1, i2 ∈ [nr], i1 < i2

x1,i2 =
∑

j∈{1,2,3,4}

ν1,i1,i2,i2,j, ∀i1, i2 ∈ [nr], i1 < i2

x2,i1 =
∑

j∈{1,2,3,4}

ν2,i1,i2,i1,j, ∀i1, i2 ∈ [nr], i1 < i2

x2,i2 =
∑

j∈{1,2,3,4}

ν2,i1,i2,i2,j, ∀i1, i2 ∈ [nr], i1 < i2

xL
1,i1

yr
i1,i2,j ≤ ν1,i1,i2,i1,j ≤ xU

1,i1
yr

i1,i2,j, ∀i1, i2 ∈ [nr], i1 < i2, j ∈ [4]

xL
1,i2

yr
i1,i2,j ≤ ν1,i1,i2,i2,j ≤ xU

1,i2
yr

i1,i2,j, ∀i1, i2 ∈ [nr], i1 < i2, j ∈ [4]

xL
2,i1

yr
i1,i2,j ≤ ν2,i1,i2,i1,j ≤ xU

2,i1
yr

i1,i2,j, ∀i1, i2 ∈ [nr], i1 < i2, j ∈ [4]

xL
2,i2

yr
i1,i2,j ≤ ν2,i1,i2,i2,j ≤ xU

2,i2
yr

i1,i2,j, ∀i1, i2 ∈ [nr], i1 < i2, j ∈ [4]

yc
i,j

(

ν1,i,j −
Wi

2
− c1,j

)2

+ yc
i,j

(

ν2,i,j −
Hi

2
− c2,j

)2

≤ r2
j yc

i,j, ∀, i ∈ [nr], j ∈ [nc]

yc
i,j

(

ν1,i,j −
Wi

2
− c1,j

)2

+ yc
i,j

(

ν2,i,j +
Hi

2
− c2,j

)2

≤ r2
j yc

i,j, ∀, i ∈ [nr], j ∈ [nc]

yc
i,j

(

ν1,i,j +
Wi

2
− c1,j

)2

+ yc
i,j

(

ν2,i,j −
Hi

2
− c2,j

)2

≤ r2
j yc

i,j, ∀, i ∈ [nr], j ∈ [nc]

yc
i,j

(

ν1,i,j +
Wi

2
− c1,j

)2

+ yc
i,j

(

ν2,i,j +
Hi

2
− c2,j

)2

≤ r2
j yc

i,j, ∀, i ∈ [nr], j ∈ [nc]

x1,i =
∑

j∈[nc]

ν1,i,j, ∀i ∈ [nr]

x2,i =
∑

j∈[nc]

ν2,i,j, ∀i ∈ [nr]

xL
1,iy

c
i,j ≤ ν1,i,j ≤ xU

1,iy
c
i,j, ∀i ∈ [nr], j ∈ [nc]

xL
2,iy

c
i,j ≤ ν2,i,j ≤ xU

2,iy
c
i,j, ∀i ∈ [nr], j ∈ [nc]

∑

j∈[nc]

yc
i,j = 1, ∀i ∈ [nr]

xL
1,i ≤ x1,i ≤ xU

1,i, xL
2,i ≤ x2,i ≤ xU

2,i, ∀i ∈ [nr]

d1,i1,i2 , d2,i1,i2 ∈ R, ∀i1, i2 ∈ [nr], i1 < i2

x1,i, x2,i ∈ R, ∀i ∈ [nr]

yr
i1,i2,1, yr

i1,i2,2, yr
i1,i2,3, yr

i1,i2,4 ∈ {0, 1}, ∀i1, i2 ∈ [nr], i1 < i2
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ν1,i1,i2,i1,j, ν1,i1,i2,i2,j, ν2,i1,i2,i1,j, ν2,i1,i2,i2,j ∈ R, ∀i1, i2 ∈ [nr], i1 < i2, j ∈ [4]

ν1,i,j, ν2,i,j ∈ R, ∀i ∈ [nr], j ∈ [nc].


