252 research outputs found

    A Labelled Analytic Theorem Proving Environment for Categorial Grammar

    Full text link
    We present a system for the investigation of computational properties of categorial grammar parsing based on a labelled analytic tableaux theorem prover. This proof method allows us to take a modular approach, in which the basic grammar can be kept constant, while a range of categorial calculi can be captured by assigning different properties to the labelling algebra. The theorem proving strategy is particularly well suited to the treatment of categorial grammar, because it allows us to distribute the computational cost between the algorithm which deals with the grammatical types and the algebraic checker which constrains the derivation.Comment: 11 pages, LaTeX2e, uses examples.sty and a4wide.st

    Kleene Algebras, Regular Languages and Substructural Logics

    Full text link
    We introduce the two substructural propositional logics KL, KL+, which use disjunction, fusion and a unary, (quasi-)exponential connective. For both we prove strong completeness with respect to the interpretation in Kleene algebras and a variant thereof. We also prove strong completeness for language models, where each logic comes with a different interpretation. We show that for both logics the cut rule is admissible and both have a decidable consequence relation.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Labelled Natural Deduction for Substructural Logics

    No full text
    In this paper a uniform methodology to perform Natural Deduction over the family of linear, relevance and intuitionistic logics is proposed. The methodology follows the Labelled Deductive Systems (LDS) discipline, where the deductive process manipulates declarative units { formulas labelled according to a labelling algebra. In the system de-scribed here, labels are either ground terms or variables of a given labelling language and inference rules manipulate formulas and labels simultaneously, generating (whenever necessary) constraints on the labels used in the rules. A set of natural deduction style inference rules is given, and the notion of a derivation is dened which associates a la-belled natural deduction style \structural derivation " with a set of generated constraints. Algorithmic procedures, based on a technique called resource abduction, are dened to solve the constraints generated within a derivation, and their termination conditions dis-cussed. A natural deduction derivation is correct with respect to a given substructural logic, if, under the condition that the algorithmic procedures terminate, the associated set of constraints is satised with respect to the underlying labelling algebra. This is shown by proving that the natural deduction system is sound and complete with respect to the LKE tableaux system [DG94].

    An Abstract Approach to Consequence Relations

    Full text link
    We generalise the Blok-J\'onsson account of structural consequence relations, later developed by Galatos, Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and J\'onsson admit, in place of sheer formulas, a wider range of syntactic units to be manipulated in deductions (including sequents or equations), these objects are invariably aggregated via set-theoretical union. Our approach is more general in that non-idempotent forms of premiss and conclusion aggregation, including multiset sum and fuzzy set union, are considered. In their abstract form, thus, deductive relations are defined as additional compatible preorderings over certain partially ordered monoids. We investigate these relations using categorical methods, and provide analogues of the main results obtained in the general theory of consequence relations. Then we focus on the driving example of multiset deductive relations, providing variations of the methods of matrix semantics and Hilbert systems in Abstract Algebraic Logic

    Labelled natural deduction for substructural logics

    Get PDF
    In this paper a uniform methodology to perform Natural Deduction over the family of linear, relevance and intuitionistic logics is proposed. The methodology follows the Labelled Deductive Systems (LDS) discipline, where the deductive process manipulates declarative units - formulas labelled according to a labelling algebra. In the system described here, labels are either ground terms or variables of a given labelling language and inference rules manipulate formulas and labels simultaneously, generating (whenever necessary) constraints on the labels used in the rules. A set of natural deduction style inference rules is given, and the notion of a derivation is defined which associates a labelled natural deduction style "structural derivation" with a set of generated constraints. Algorithmic procedures, based on a technique called resource abduction, are defined to solve the constraints generated within a derivation, and their termination conditions discussed. A natural deduction derivation is correct with respect to a given substructural logic, if, under the condition that the algorithmic procedures terminate, the associated set of constraints is satisfied with respect to the underlying labelling algebra. This is shown by proving that the natural deduction system is sound and complete with respect to the LKE tableaux system

    Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic via Nested Sequents

    Get PDF
    We provide a direct method for proving Craig interpolation for a range of modal and intuitionistic logics, including those containing a "converse" modality. We demonstrate this method for classical tense logic, its extensions with path axioms, and for bi-intuitionistic logic. These logics do not have straightforward formalisations in the traditional Gentzen-style sequent calculus, but have all been shown to have cut-free nested sequent calculi. The proof of the interpolation theorem uses these calculi and is purely syntactic, without resorting to embeddings, semantic arguments, or interpreted connectives external to the underlying logical language. A novel feature of our proof includes an orthogonality condition for defining duality between interpolants

    Logics for modelling collective attitudes

    Get PDF
    We introduce a number of logics to reason about collective propositional attitudes that are defined by means of the majority rule. It is well known that majoritarian aggregation is subject to irrationality, as the results in social choice theory and judgment aggregation show. The proposed logics for modelling collective attitudes are based on a substructural propositional logic that allows for circumventing inconsistent outcomes. Individual and collective propositional attitudes, such as beliefs, desires, obligations, are then modelled by means of minimal modalities to ensure a number of basic principles. In this way, a viable consistent modelling of collective attitudes is obtained
    • …
    corecore