7 research outputs found

    Boosting brain connectome classification accuracy in Alzheimer's disease using higher-order singular value decomposition

    Get PDF
    abstract: Alzheimer's disease (AD) is a progressive brain disease. Accurate detection of AD and its prodromal stage, mild cognitive impairment (MCI), are crucial. There is also a growing interest in identifying brain imaging biomarkers that help to automatically differentiate stages of Alzheimer's disease. Here, we focused on brain structural networks computed from diffusion MRI and proposed a new feature extraction and classification framework based on higher order singular value decomposition and sparse logistic regression. In tests on publicly available data from the Alzheimer's Disease Neuroimaging Initiative, our proposed framework showed promise in detecting brain network differences that help in classifying different stages of Alzheimer's disease.View the article as published at http://journal.frontiersin.org/article/10.3389/fnins.2015.00257/ful

    3D tract-specific local and global analysis of white matter integrity in Alzheimer's disease: White Matter Integrity in Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive decline in memory and other aspects of cognitive function. Diffusion‐weighted imaging (DWI) offers a non‐invasive approach to delineate the effects of AD on white matter (WM) integrity. Previous studies calculated either some summary statistics over regions of interest (ROI analysis) or some statistics along mean skeleton lines (Tract Based Spatial Statistic [TBSS]), so they cannot quantify subtle local WM alterations along major tracts. Here, a comprehensive WM analysis framework to map disease effects on 3D tracts both locally and globally, based on a study of 200 subjects: 49 healthy elderly normal controls, 110 with mild cognitive impairment, and 41 AD patients has been presented. 18 major WM tracts were extracted with our automated clustering algorithm—autoMATE (automated Multi‐Atlas Tract Extraction); we then extracted multiple DWI‐derived parameters of WM integrity along the WM tracts across all subjects. A novel statistical functional analysis method—FADTTS (Functional Analysis for Diffusion Tensor Tract Statistics) was applied to quantify degenerative patterns along WM tracts across different stages of AD. Gradually increasing WM alterations were found in all tracts in successive stages of AD. Among all 18 WM tracts, the fornix was most adversely affected. Among all the parameters, mean diffusivity (MD) was the most sensitive to WM alterations in AD. This study provides a systematic workflow to examine WM integrity across automatically computed 3D tracts in AD and may be useful in studying other neurological and psychiatric disorders. Hum Brain Mapp 38:1191–1207, 2017. © 2016 Wiley Periodicals, Inc

    Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease

    Get PDF
    abstract: Alzheimer’s disease (AD) involves a gradual breakdown of brain connectivity, and network analyses offer a promising new approach to track and understand disease progression. Even so, our ability to detect degenerative changes in brain networks depends on the methods used. Here we compared several tractography and feature extraction methods to see which ones gave best diagnostic classification for 202 people with AD, mild cognitive impairment or normal cognition, scanned with 41-gradient diffusion-weighted magnetic resonance imaging as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project. We computed brain networks based on whole brain tractography with nine different methods – four of them tensor-based deterministic (FACT, RK2, SL, and TL), two orientation distribution function (ODF)-based deterministic (FACT, RK2), two ODF-based probabilistic approaches (Hough and PICo), and one “ball-and-stick” approach (Probtrackx). Brain networks derived from different tractography algorithms did not differ in terms of classification performance on ADNI, but performing principal components analysis on networks helped classification in some cases. Small differences may still be detectable in a truly vast cohort, but these experiments help assess the relative advantages of different tractography algorithms, and different post-processing choices, when used for classification.View the article as published at http://journal.frontiersin.org/article/10.3389/fnagi.2015.00048/ful

    Identification of infants at high-risk for autism spectrum disorder using multiparameter multiscale white matter connectivity networks: Identification of Infants at High-Risk for ASD

    Get PDF
    Autism spectrum disorder (ASD) is a wide range of disabilities that cause life-long cognitive impairment and social, communication, and behavioral challenges. Early diagnosis and medical intervention are important for improving the life quality of autistic patients. However, in the current practice, diagnosis often has to be delayed until the behavioral symptoms become evident during childhood. In this study, we demonstrate the feasibility of using machine learning techniques for identifying high-risk ASD infants at as early as six months after birth. This is based on the observation that ASD-induced abnormalities in white matter (WM) tracts and whole-brain connectivity have already started to appear within 24 months after birth. In particular, we propose a novel multikernel support vector machine classification framework by using the connectivity features gathered from WM connectivity networks, which are generated via multiscale regions of interest (ROIs) and multiple diffusion statistics such as fractional anisotropy, mean diffusivity, and average fiber length. Our proposed framework achieves an accuracy of 76% and an area of 0.80 under the receiver operating characteristic curve (AUC), in comparison to the accuracy of 70% and the AUC of 70% provided by the best single-parameter single-scale network. The improvement in accuracy is mainly due to the complementary information provided by multiparameter multiscale networks. In addition, our framework also provides the potential imaging connectomic markers and an objective means for early ASD diagnosis

    Labeling white matter tracts in hardi by fusing multiple tract atlases with applications to genetics

    No full text
    Accurate identification of white matter structures and segmentation of fibers into tracts is important in neuroimaging and has many potential applications. Even so, it is not trivial because whole brain tractography generates hundreds of thousands of streamlines that include many false positive fibers. We developed and tested an automatic tract labeling algorithm to segment anatomically meaningful tracts from diffusion weighted images. Our multi-atlas method incorporates information from multiple hand-labeled fiber tract atlases. In validations, we showed that the method outperformed the standard ROI-based labeling using a deformable, parcellated atlas. Finally, we show a high-throughput application of the method to genetic population studies. We use the sub-voxel diffusion information from fibers in the clustered tracts based on 105-gradient HARDI scans of 86 young normal twins. The whole workflow shows promise for larger population studies in the future
    corecore