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Abstract: Autism spectrum disorder (ASD) is a wide range of disabilities that cause life-long cognitive
impairment and social, communication, and behavioral challenges. Early diagnosis and medical inter-
vention are important for improving the life quality of autistic patients. However, in the current prac-
tice, diagnosis often has to be delayed until the behavioral symptoms become evident during
childhood. In this study, we demonstrate the feasibility of using machine learning techniques for iden-
tifying high-risk ASD infants at as early as six months after birth. This is based on the observation that
ASD-induced abnormalities in white matter (WM) tracts and whole-brain connectivity have already
started to appear within 24 months after birth. In particular, we propose a novel multikernel support
vector machine classification framework by using the connectivity features gathered from WM connec-
tivity networks, which are generated via multiscale regions of interest (ROIs) and multiple diffusion
statistics such as fractional anisotropy, mean diffusivity, and average fiber length. Our proposed frame-
work achieves an accuracy of 76% and an area of 0.80 under the receiver operating characteristic curve
(AUC), in comparison to the accuracy of 70% and the AUC of 70% provided by the best single-
parameter single-scale network. The improvement in accuracy is mainly due to the complementary
information provided by multiparameter multiscale networks. In addition, our framework also pro-
vides the potential imaging connectomic markers and an objective means for early ASD diagnosis.
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INTRODUCTION

Autism spectrum disorder (ASD) is a group of develop-
mental disabilities that can cause difficulties in cognitive
wellness, social communication, and social interaction.
About 1 percent of world population is affected by ASD. It
is usually first diagnosed in childhood. In the US, 1 out of 68
children has ASD. Prevalence of ASD in children in the US
has increased by 120% since 2000. Now ASD becomes one of
the fastest-growing developmental disabilities, which results
in approximately annual $250 billion healthcare expenses in
the US [Centers for Disease Control and Prevention, 2014].

Although symptom severity differs among individuals,
the common characteristics of ASD include: (1) repetitive
body movements or behaviors, (2) difficulty in using or
understanding language, and (3) trouble in making friends
and interacting with people [Gillberg, 1993; Wing, 1997].
Unfortunately, there is no single medical test that can
accurately diagnose ASD. The diagnosis is mostly con-
firmed by the specially trained physicians based on an
individual’s abnormal behaviors compared with other chil-
dren of the same age [Lord and Jones, 2012]. In most
cases, ASD is a life-long disorder. Early diagnosis and
treatment are therefore tremendously important for
improving the life quality of patients and their families, as
well as for reducing the financial burden borne by the
society. Although evidence suggests that a number of risk
behavioral markers can be observed at as early as 12
months after birth [Landa et al., 2007; Ozonoff et al., 2010;
Zwaigenbaum et al., 2005], little is known prior to this,
especially in the first 6 months of life.

ASD has long been thought of as a disorder with dis-
rupted brain connectivity patterns [Shi et al., 2013], first
disclosed by functional magnetic resonance imaging
(fMRI) [Belmonte et al., 2004; Di Martino et al., 2011]. In
the last decades, diffusion-weighted MRI (DWI) [Basser
et al., 1994] has emerged as a powerful noninvasive neuro-
imaging technique for providing biologically and clinically
relevant information on white matter (WM) integrity and
connectivity that is not available from other imaging
modalities. It has been increasingly used to study connec-
tivity of WM pathways in a variety of psychiatric or neu-
rological disorders such as Alzheimer’s disease [Jin et al.,
2015], bipolar disorder [Torgerson et al., 2013], schizophre-
nia [Lee et al., 2013], traumatic brain injury [Dennis et al.,
2015a,c], or even genetics [Jin et al., 2012, 2013, 2014]. For
ASD, various studies have shown widespread abnormal-
ities in many WM tracts [Alexander et al., 2007; Barnea-
Goraly et al., 2010; Cheon et al., 2011]. Specifically, Wolf
et al. [2012] suggested that the aberrant development of
WM tracts was ahead of the manifestation of ASD symp-
toms in the first year of life. For example, the failure of
flexibly orienting gaze and visual attention to the most
salient or biologically relevant information in the environ-
ment implied abnormal functional specialization of poste-
rior cortical circuits in 7-month-old ASD infants [Elison
et al., 2013].

The term connectome, that is, a comprehensive map of neu-
ral connections in the brain, was first introduced in 2005 [Hag-
mann, 2005; Sporns et al., 2005]. DWI can be used to map
structural connectome of the human brain and has been used
to study normal subjects [Klein et al., 2007; Tomassini et al.,
2007], neurological diseases such as Alzheimer’s disease
[Daianu et al., 2013, 2015; Li et al., 2013; Zhu et al., 2013, 2014],
and neuropsychiatric diseases such as schizophrenia [Shi et al.,
2012a; van den Heuvel et al., 2010]. Using the DWI data of ASD
infants acquired at the 24th month, Lewis et al. [2014] reported
both local and global network deficits in the regions of tempo-
ral, parietal, occipital, as well as frontal lobes. Those results are
in line with the findings in a number of studies involving
infants and older children affected by ASD [Courchesne et al.,
2005; Elsabbagh et al., 2013]. Since abnormalities are spread
over different brain regions, a network-based approach for
early identification of ASD infants seems reasonable.

Machine learning and pattern recognition technologies
have been widely used to aid the diagnosis of neurodisor-
ders, such as Alzheimer’s disease [Davatzikos et al., 2008;
Guo et al., 2014; Zhang et al., 2011; Zhu et al., 2014], schizo-
phrenia [Ardekani et al., 2011; Calhoun et al., 2008], and Par-
kinson’s disease [Haller et al., 2012; Pan et al., 2012]. In
particular, different imaging modalities have been used for
ASD diagnosis, including anatomical MRI [Wee et al., 2014],
resting-state fMRI [Price et al., 2014], electroencephalogram
and magnetoencephalography [Duffy and Als, 2012; Tsiaras
et al., 2011], and DWI [Ingalhalikar et al., 2012]. However, the
subjects involved in these studies were at least 2 years old
with a typical age range of 7–10 years, during which ASD has
progressed considerably. It is desirable to identify infants
with ASD at a much earlier stage, preferably even before the
first trace of symptomatic behaviors. However, identifying
ASD infants is challenging and not well studied, because of
the difficulty in infant image acquisition and the lack of
obvious symptoms at this stage.

In this study, we propose a novel multichannel machine
learning based classification framework to identify infants
at high-risk for ASD when they are as young as 6 months
old. Infants with autistic siblings are considered as high-
risk. High-risk infants were reported up to 20 times higher
probability to develop ASD than low-risk infants [Constan-
tino et al., 2010; Lauritsen et al., 2005; Ritvo et al., 1989;
Spencer et al., 2011] since they presumably carry some of
the genes associated with ASD [Abrahams and Geschwind,
2008; Bailey et al., 1995]. Investigating them could help
understand the mechanism of the ASD and prevent or mit-
igate the full onset of ASD through effective treatment if
necessary. The major contribution of this work is as fol-
lows: First, we develop a new brain parcellation strategy to
partition a publicly available atlas “infant AAL” (Auto-
matic Anatomical Labeling) [Shi et al., 2011] into anatomi-
cal meaningful regions of interest (ROIs) of various sizes;
Second, unlike Ingalhalikar et al. [2012], we propose to use
the features from multiscale whole-brain WM connectivity
networks, instead of the conventional region-based
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features, to identify high-risk ASD infants; Finally, we use
an effective two-stage feature selection scheme and a multi-
kernel support vector machine (SVM) classifier that can
incorporate the complementary information from multiple
sources to improve the classification accuracy.

METHODS

Overview

This study involved infants who were at genetic risk for
ASD (since their older siblings have ASD). For comparison,
age-matched low-risk ASD infants (no first-degree relatives
with ASD) were also included in this study. The study is
aimed to distinguish high-risk from low-risk 6-month-old
infants. Since WM abnormalities seem to be one of the first
signs that appears in ASD infants, we employ features
derived from the whole-brain connectivity networks that
are constructed from pairwise connections between ROIs.
More specifically, we start with a publicly available infant
AAL atlas and parcellate its 90 cerebral ROIs into 203 and
403 sub-ROIs with our proposed parcellation algorithm,
respectively. By using these ROIs, the connectivity networks
of each subject are constructed using whole-brain tractogra-
phy. Specifically, the WM networks of three different scales
are constructed based on the average values of the DWI-
derived parameters such as fractional anisotropy (FA),
mean diffusivity (MD), and fiber length, all computed over
the WM tracts connecting a pair of ROIs. Those values are
considered features. Due to the large number of ROIs, the

number of features is also large. For example, for the con-
nectivity network at the 403-ROI scale, the maximum num-
ber of the possible features can be 81,003. Hence, a feature
selection step, combining t-test and the Least Absolute
Shrinkage and Selection Operator (LASSO) logistic regres-
sion [Tibshirani, 1996], is necessary to remove irrelevant or
redundant features. Finally, the selected relevant features
are fed into a multikernel SVM classifier for classification.
The diagram of the complete workflow for our proposed
method is shown in Figure 1.

Subjects and Image Acquisition

The participants in this study were chosen from the Lab
Study 19 of National Database for Autism Research (NDAR),
an on-going quadro-site study of brain and behavioral devel-
opment in infants funded by the National Institute of Health
(NIH). The study sites included Children’s Hospital of Phila-
delphia, University of North Carolina at Chapel Hill (UNC-
CH), University of Washington, and Washington University
in St. Louis. The infants of interest were considered carrying
high familial risk for ASD if at least one of their older siblings
had ASD. The neuroimaging data were first collected at the 6-
month visit stage. Parents or legal guardians signed on the
informed consent forms. In the meantime, the infants were
considered to have low familial risk if they had no first-degree
relatives with ASD. They were also enrolled for comparison.
All the subjects were screened to exclude other medical condi-
tions that could affect the study. Institutional review boards at
all sites approved the study. 40 high-risk infants (29 males

Figure 1.

The proposed classification framework based on multiparameter multiscale WM connectivity net-

works. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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and 11 females) and 40 low-risk infants (27 males and 13
females) were used in this study.

All the MRI images were scanned using a 3T Siemens Tim
Trio scanner at each site. The scans were acquired during the
natural sleeping of infants. Three types of MRI images were
acquired: (a) T1-weighted (T1w) images with a 3D MPRAGE
sequence (voxel dimensions: 1.0 3 1.0 3 1.0 mm3; image
dimensions: 160 3 224 3 256, TE 5 3.16 ms, TR 5 2400 ms); (b)
T2-weighted (T2w) images with a 3D FSE sequence (voxel
dimensions: 1.0 3 1.0 3 1.0 mm3; image dimensions: 160 3

256 3 256, TE 5 499 ms, TR 5 3200 ms); (c) Diffusion-
weighted images with 3D EPI sequence (voxel dimensions:
2.0 3 2.0 3 2.0 mm3; image dimensions: 96 3 96 3 75, TE 5 102
ms, TR 5 12,800 ms). The diffusion-weighted images consisted
of one b0 volume with no diffusion sensitization, and 25 vol-
umes with a dynamic range of diffusion gradient b from 0 to
1000 s/mm2.

Image Preprocessing

T1w and T2w images were first skull-stripped using an
open source Skull Stripping Toolkit [Shi et al., 2012b].
DWI images were skull-stripped using Brain Extraction
Tool (BET) from FSL (http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/) [Smith, 2002]. The skull-stripped T1w and T2w
images then underwent field bias correction using nonuni-
form intensity normalization (N3) algorithm [Sled et al.,
1998]. The DWI images were corrected for eddy-current
induced distortion using FSL. The diffusion gradient tables
were adjusted accordingly. FA and MD images were then
extracted from the DWI data after diffusion tensor fitting.

Multiscale ROI Parcellation

The AAL atlas [Tzourio-Mazoyer et al., 2002] is a widely
used high-resolution T1w brain parcellation based on a
single adult subject, where the main sulci were used as
landmarks to parcellate the entire brain into 90 ROIs (cere-
bellum excluded) based on anatomical definitions. How-
ever, directly applying adult atlas into infant brains may
compromise its performance due to their large anatomical
variations. Instead, we used a publicly available 1-year-old

infant brain atlas [Shi et al., 2011], which adapted the orig-
inal AAL atlas to infant space and has been proven effec-
tive in infant normalization and parcellation tasks. To
promote the characterization of brain connectivity at dif-
ferent scales, we propose a novel strategy to further par-
cellate the infant AAL atlas into smaller sub-ROIs.

Similar to [Hagmann et al., 2008], we created normalized
sub-ROIs by controlling them to have a similar size. Given a
user-specified size a, we first initialized a group of sub-ROIs
by dividing the entire volume of the infant AAL template into
cubes of size a3. Then, for each sub-ROI, its center was calcu-
lated by taking the mean coordinates of all the voxels
involved. If the resulting sub-ROI was too small, for example,
if it was near the boundary of the original ROI and had less
than 30% of the standard size, we would attach it to a neigh-
boring bigger divided region located in the same ROI whose
center was the closest. The new center of the combined region
was accordingly recalculated. After doing this for each of the
90 original ROIs, we had a series of center points inside each
original ROI. Finally, we performed Voronoi partition [Auren-
hammer, 1991], that is, for each original ROI, we assigned
each voxel inside it a sub-ROI index based on its shortest dis-
tance to one of those sub-ROI centers. The steps described
above are summarized in Algorithm 1. In our case, 203 and
403 ROIs were obtained when the target ROI size was chosen

Figure 2.

The 3D views of ROIs of three different scales - 90 ROIs, 203 ROIs, and 403 ROIs, respectively (from

left to right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.

com.]

Algorithm 1 Multiscale ROI Parcellation

Set cube size a and load the original infant AAL ROIs.
Divide the entire volume (including the background) evenly into
cubes of size a3.
for ROI i 5 1:90 //compute the center of each new sub-ROI

if any interior volume is at least 0.3*a3, e.g., Vcube> 0.3*a3,
calculate the center of the cube.

else Find a neighboring cube whose center is the closest to its
center and combine the two regions.
Recompute the new center of the combined region.

end if
end for
for ROI i 5 1:90 //assign new sub-ROIs

Perform Voronoi partition based on the new centers inside each
ROI i.

end for
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at around 20 and 16 mm, respectively. Figure 2 provides the
3D views of the ROIs in three different scales.

Multiscale Connectivity Networks

Features derived from structural connectivity networks
provide rich information for identifying ASD subjects due
to its comprehensive characterization of connections
between brain regions. Furthermore, a multiscale set of con-
nectivity networks may provide a range of complementary
coarse-to-fine information for the multilevel analysis of
brain connections. A connectivity network can be described
mathematically as a graph consisting of (1) a collection of
nodes, representing the ROIs and (2) a set of edges between
nodes, describing the connections between ROI pairs.

To transfer the ROIs to the DWI space of each subject for
construction of the connectivity networks, we performed the
following steps. First, the infant AAL template was nonli-
nearly registered to the T1w image of the subject. Then, to fur-
ther align the infant AAL template to the space of the DWI
data, the T1w image was linearly aligned to the T2w image
and the T2w image was nonlinearly registered (considering
EPI distortion) to the MD image, since a T2w image had the
similar contrast as an MD image. Here, we used the T1w and
T2w images as the intermediate targets to transfer the AAL
ROIs to the DWI space of the subject smoothly. It actually
achieved the better accuracy than directly registering the T1w

AAL template to the FA image of the subject, since both inter-
modality and inter-subject made the latter process much more
difficult. The deformation fields estimated in these series of
registration were concatenated and then used to warp the
atlas ROIs to the individual DWI space. All the registration
steps were performed using ANTs [Avants et al., 2008].

Whole-brain tractography was performed using an image
resolution enhanced deterministic streamline tractography
with peaks detected from the WM orientation distribution
functions [Yap and Shen, 2012]. This tractography algorithm
allowed for a closer investigation of fiber structures and
more accurate assessment of brain connectivity [Yap et al.,
2014]. Seed points were chosen as voxels with FA> 0.3. To
eliminate excess false positives, the maximum turning angle
was set to 458, and tracking was stopped when FA< 0.15.
The final tractography of all subjects was checked manually
to ensure the anatomical correctness.

Two ROIs were considered anatomically connected if
there were common fibers traversing them. Three different
metrics, that is, FA, MD, and fiber length, were used to indi-
cate the connection strength. For each pair of ROIs, connec-
tion strengths were computed based on the values of these
metrics spatially averaged over the fibers connecting these
ROIs. To exclude noisy connections, any node pairs that had
<4 average fiber connections across the entire population of
subjects were considered unconnected [Zalesky et al., 2011].
By using ROIs of three different scales, we constructed three

Figure 3.

The 3D views of connectivity networks of three different scales,

thresholded by mean FA 5 0.4 (considered as strong connection),

from a randomly selected pair of low-risk and high-risk ASD sub-

jects. At each scale, each sphere represents the center of an ROI

and its size indicates the normalized volume of the ROI. The colors

of the sub-ROIs in (b–c) and (e–f) correspond to those of the

original ROIs in (a) and (d), respectively. The thickness of edges

represents the mean value of FA averaged over the fibers connect-

ing two respective ROIs. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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sets of multiscale connectivity networks (nine in total) for
each subject. Figure 3 shows the FA connectivity networks
of three different scales for a pair of low-risk and high-risk
ASD subjects from our dataset. We notice that when the
scale becomes finer, the connections between the coarse
ROIs in Figure 3a,d are spread into more detailed connec-
tions between the embedded sub-ROIs in Figure 3b,c,e,f.
Notice that the multiscale networks of a low-risk subject
(Figure 3a–c) contain stronger connections (i.e., more and
thicker edges) than those of a high-risk subject (Figure 3d–f).

Feature Selection

We considered each element of a connectivity network as a
feature. Since the connectivity network was symmetric, we
only took the elements from its lower triangular part (since
the diagonal values were always set zero). There are several
reasons why feature selection is necessary: First, the number
of features increases with the square of the number of ROIs,
from thousands in a 90-ROI network to tens of thousands in a
403-ROI network, and many of these features may be irrele-
vant to the classification task. Second, feature selection is
needed in order to improve generalization performance.
Finally, reducing the number of features will reduce the com-
putation time significantly. Here, we first normalized the fea-
tures by their z-scores, and then performed a two-stage
feature selection procedure to select the optimal subset of fea-
tures that would both improve the accuracy and ease the com-
putation burden.

Specifically, we first performed a t-test and then followed
by the LASSO logistic regression [Tibshirani, 1996]. A t-test
was conducted between the high-risk and the low-risk
groups for each feature. Only the features whose P-values
were below an empirical threshold were selected for LASSO
logistic regression. Here, the t-tests acted as a feature rank-
ing technique to select an initial set of most relevant features
based on their individual discriminative powers [Fan et al.,
2007], which also greatly eased the computation cost for the
following steps. By considering the correlation among fea-
tures, the LASSO logistic regression model further opti-
mized the selection. The LASSO logistic regression is a
commonly used feature selection algorithm that can select a
parsimonious set of features from a large collection of possi-
ble candidates to improve the classification accuracy. It only
keeps the most discriminative features while discarding the
redundant ones. Mathematically, the LASSO logistic regres-
sion model can be described as follows:

Let X5

xT
1

�

xT
M

2
4

3
5 2 RM3N, A5

a1

�

aN

2
4

3
5 2 RN31, and Y5

y1

�

yM

2
4

3
5 2 RM31.

Here xi 2 RN31 is the feature vector of the i-th subject. ai is

the feature regression coefficient for the i-th feature. yi is the

label for the i-th subject (i.e., 11 for high-risk and 21 for

low-risk). M is the total number of subjects and N is the

total number of features. The LASSO logistic regression

aims to solve A by minimizing the following cost function:

minA
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i51 jaij is
the ‘1 norm of A, andjjAjj225

PN
i51 a2

i is the squared ‘2 norm.

Here, k is the L1 norm regularization parameter that controls
the model sparsity. The larger the value of k, the sparser the
model. Meanwhile, q is the regularization parameter for the
squared ‘2 norm that helps to achieve numerical stability
and increase predictive performance. We performed the
LASSO logistic regression on each individual network sepa-
rately and retain features with nonzero coefficients in X.

Multikernel Classification

Kernel methods such as SVM have been proven to be
efficient for classification problems [Scholkopf and Smola,
2001]. It has been demonstrated that multikernel SVM is
able to utilize the complementary information from multi-
ple representations for achieving higher accuracy than
single-kernel SVM [Liu et al., 2014; Liu et al., 2015; Wee
et al., 2014; Zhang et al., 2011; Zhu et al., 2015a,b]. Here,
we used it to incorporate the selected features from all
nine networks for classification.

A multikernel SVM classification framework is described as

below. Let x
j
i; yi

� �
; i51; . . . ;M; j51; . . . ;K

n o
be the set of

training data, where x
j
i 2 Rnj31 represents the feature vector

of the i-th subject for network j and yi 2 1 (high-risk) or 21

(low-risk) is the label. M is the number of training subjects,
and K is the number of networks (i.e., K59 in our study). The
primal formulation of multikernel SVM is given as:

minPj;b;ni
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where bj, Pj; and /j denote the weight, the normal vector of

the classification hyperplane, and the kernel-induced map-
ping function for the j-th network, respectively. b denotes

the bias term, ni denotes the slack variable (for misclassifica-
tion), and C is a parameter that controls the degree of mis-

classification. Given a test feature vector 5 xj; j51; . . . ;K
� �

,

the predicted label ŷ is

ŷ5sign
XK

j51
bj PT

j /j xj
� �

1b
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(3)

Here, we applied an open-source software package
SimpleMKL [Rakotomamonjy et al., 2008] that can decide
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the weights simultaneously during the optimization of the
cost function.

Implementation and Evaluation

The classification performance was evaluated on a nested
5-fold cross validation. The 80 subjects were randomly
divided into 5 folds. Each fold was comprised of 8 high-risk
infants and 8 low-risk infants, respectively. Each fold was
alternatively used as a testing fold, and the rest of the four
folds were used as the training set.

For each network, during each of the five training sessions,
a t-test was to select the features whose p-values< 0.001.
Those features were fed into the LASSO logistic regression.
In machine learning, feature ranking and selection can use a
performance evaluation metric computed directly from the
data and not based on the direct feedback from the classifier
[Guyon et al., 2006]. In other words, we used the predicted
results directly from the logistic regression to make feature
selection without the classifier involved. The 64 subjects in
the training set were divided into 5 folds again and an inner
loop of 5-fold cross validation was performed. The binarized
results of the regression (the result 5 1 if positive and 21 oth-
erwise) were compared to the ground truth. The set of
parameters k and q in Eq. (1) with the best average accuracy
over the inner 5-fold cross validation were used to select the
features for the corresponding testing fold.

The selected features were then fed into the SimpleMKL
package with the Gaussian radial basic function (RBF) as

the kernel. Note that another inner 5-fold cross validation
was performed on the training set to find the optimal
parameter C in Eq. (2) and the test fold was classified with
that determined C.

The statistics we used to evaluate our classification algo-
rithm performance are accuracy (ACC), sensitivity (SEN),
specificity (SPE), positive predictive value (PPV), negative
predictive value (NPV), and the area under the receiver
operating characteristic curve (AUC). Letting TP, TN, FP,
and FN denote, respectively, true positive, true negative,
false positive, and false negative, the ACC, SEN, SPE,
PPV, and NPV are defined as

ACC5
TP1TN

TP1TN1FP1FN

SEN5
TP

TP1FN

SPE5
TN

TN1FP

PPV5
TP

TP1FP

NPV5
TN

TN1FN

To avoid the biased result due to the fold selection, the
entire process was repeated 10 times, each with different
partitions of subjects. The average statistics of the 10 repe-
titions were finally reported.

Figure 4.

The mean statistics of the 6-month-old infant ASD classification

(high-risk vs. low-risk) with the 90-ROI (blue), 203-ROI (cyan), 403-

ROI (green) network, respectively, and the integration (yellow) of

all the three networks using mean FA. The error bars stand for the

standard deviations of the measures after 10 repetitions. The multi-

scale networks outperform any single-scale network in all statistics.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 5.

The mean statistics of the 6-month-old infant ASD classification

(high-risk vs. low-risk) with the 90-ROI (blue), 203-ROI (cyan), 403-

ROI (green) network, respectively, and the integration (orange) of all

the three networks using mean MD. The error bars stand for the

standard deviations of the measures after 10 repetitions. The multi-

scale networks outperform any single-scale network in all statistics.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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RESULTS

Multiscale Connectivity Networks

To evaluate the benefits of using multiscale connectivity
networks on the ASD classification, we compared its per-
formance with single-scale networks. Figures 4–6 compare
the classification performance of the single-scale networks
with that of the multiscale networks (using all three scales)
for FA (Multi-FA), MD (Multi-MD), and fiber length (Mul-
tilength). Note that the results of the single-scale network
were obtained by applying the single RBF kernel SVM on
the selected features, while the results of the multiscale net-
works were obtained using multikernel SVM. The error bars
denote the standard deviations obtained from 10 repetitions.
Not surprisingly, the multiscale networks outperformed

any single-scale network for each imaging parameter. In
particular, the accuracies of Multi-FA, Multi-MD, and Multi-
length were 73.1, 73.1, and 73.6%, respectively. They
achieved relative gains of 5.4, 4.5, and 4.6%, respectively,
compared to the best single-scale networks (the 403-ROI net-
works). The AUCs were 0.789, 0.784, and 0.786 for Multi-FA,
Multi-MD, and Multilength, respectively. They had the
most significant improvement among all the statistics, by
relative gains of 14, 12, and 12% against the best single net-
works (the 403-ROI networks) for FA, MD, and fiber length,
respectively. We also noticed that the standard deviations of
all statistics were smaller in the multiscale networks, espe-
cially for AUC, suggesting a more stable performance. To
test whether the improvement was statistically significant,
we also conducted pair-wise t-tests between the accuracy
results of both the single-scale and the multiscale networks
over the 50-fold tests in our experiment, with the results
shown in Table I. The fact that all p-values< 0.05 implied
that the improvements using the multiscale network
approach were indeed statistically significant.

Multiparameter Multiscale Connectivity

Networks

In this section, we demonstrate that our proposed method
using all the 9 networks (multiscale networks with FA, MD,
and fiber length) achieved the best result for our classification

Figure 6.

The mean statistics of the 6-month-old infant ASD classification

(high-risk vs. low-risk) with the 90-ROI (blue), 203-ROI (cyan),

403-ROI (green) network, respectively, and the integration (dark

red) of all the three networks using mean fiber length. The

error bars stand for the standard deviations of the measures

after 10 repetitions. The multiscale networks outperform any

single-scale network in all statistics. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]

TABLE I. The p-values of the t-tests on the mean

accuracies with the single-scale networks versus the multi-

scale networks using FA, MD, and fiber length

Method 403 ROIs 203 ROIs 90 ROIs

Multi-FA 0.016 <0.001 <0.001
Multi-MD 0.003 0.002 0.019
Multilength 0.040 <0.001 0.005

The t-tests were the pair-wise t-tests on the classification results
from the total 50 testing folds, that is, over 10 iterations of 5-fold
cross validation.

Figure 7.

The mean statistics of the 6-month-old infant ASD classification

(high-risk vs. low-risk) with the single-parameter multiscale net-

work framework using FA (yellow), MD (orange), and fiber

length (dark red), vs. our method with multiparameter multi-

scale networks (red). The error bars stand for the standard

deviations of the measures after 10 repetitions. It can be seen

that our multiparameter multiscale networks outperform each

of the single-parameter networks in all statistics. [Color figure

can be viewed in the online issue, which is available at wileyonli-

nelibrary.com.]
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task. Figure 7 shows the comparison of the classification per-
formance of the multiparameter multiscale network frame-
work (Multi-Multi) and the results of single-parameter
multiscale networks (i.e., Multi-FA in Figure 4, Multi-MD in
Figure 5, and Multilength in Figure 6). The accuracy of Multi-
Multi (75.6%) had an improvement of 2.5, 2.5, and 2% against
that of Multi-FA, Multi-MD, and Multilength, respectively.
Other statistical measures, sensitivity (72%), specificity
(79.3%), PPV (78.7%), NPV (75.5%), and AUC (80.3%), were
also the best. We further conducted pair-wise t-tests on the
accuracy results of Multi-Multi against Multi-FA, Multi-MD,
and Multilength over the 50 testing folds conducted in our
classification protocol. The results are shown in Table II. The
fact that all the p-values< 0.05 further indicated the statisti-
cally significant improvements using the proposed multi-
parameter multiscale network framework. The processing
time of the classification (5-fold cross validations with 10 iter-
ations) with our proposed method was 7 min in the Matlab
environment on an iMac equipped with a 3.4 GHz Intel Core
i7 CPU and 16 GB RAM. The same task with a single-scale
network took 2 min. The computing time was tripled, but we
think that it was still manageable and worthy spending, con-
sidering the much improved performance by our method.

Feature Selection

To evaluate the effect of feature selection on the final clas-
sification results, we further conducted the classifications
with and without feature selection. Table III proves that the
feature selection greatly improved the performance of classi-
fication. With feature selection, the accuracy was improved

by 16% (i.e., a relative 27% increase), the AUC by 21% (i.e., a
relative 33% increase), and the sensitivity by 26% (i.e., a rela-
tive 57% increase). The standard deviations of all the meas-
ures were also smaller, which indicated a more stable
performance in each fold with feature selection.

We also investigated how different regression models
could affect the classification results. Table IV compares
the performance of logistic regression with the commonly
used linear regression. Logistic LASSO regression yielded
better classification with accuracy, sensitivity, and specific-
ity gains of 4.5, 4, and 5%, respectively.

Choice of Classifier

We chose the RBF kernel for SVM since it usually performs
better than a linear kernel. Table V compares the performance
between these two kernels with our dataset. Better perform-
ance was seen in all the measures when the RBF kernel was
used. In particular, the accuracy with RBF kernel was 0.76,
while the accuracy with linear kernel was only 0.70. The rela-
tive improvement was 8%. Specificity and PPV had the most
relative increase, that is, by 14 and 11%, respectively.

Table VI compares the performance of the single kernel
and the multikernel SVM. The single kernel SVM classifica-
tion was implemented by concatenating all the features from
the nine networks into a long feature vector and feeding it
into the RBF-kernel SVM classifier. Again, all statistics were
improved by using a multikernel SVM (SimpleMKL in our
case). The accuracy jumped from 0.72 to 0.76, a relative 6%
increment. The increments of AUC, specificity, and PPV were
among the largest, which were 12, 11, and 10%, respectively.

TABLE II. The p-values of the t-tests on the mean

accuracies between the multiparameter multiscale

networks (multi-multi) and the single-parameter multi-

scale networks (multi-FA, multi-MD, and multilength)

Method Multi-FA Multi-MD Multilength

Multi-multi 0.004 0.012 0.006

The t-tests were the pair-wise t-tests on the classification results
from the total 50 testing folds, that is, over 10 iterations of 5-fold
cross validation.

TABLE III. Comparison of the classification performance

with and without feature selection

Mean (standard
deviation)

No feature
selection

Feature
selection

ACC 0.591 (0.036) 0.756 (0.020)
SEN 0.460 (0.064) 0.720 (0.028)
SPE 0.723 (0.065) 0.793 (0.033)
PPV 0.656 (0.076) 0.787 (0.036)
NPV 0.577 (0.057) 0.755 (0.028)
AUC 0.591 (0.036) 0.803 (0.016)

TABLE IV. Comparison of the classification performance

between linear and logistic regression

Mean (standard
deviation) Linear regression Logistic regression

ACC 0.711 (0.027) 0.756 (0.020)
SEN 0.680 (0.045) 0.720 (0.028)
SPE 0.743 (0.033) 0.793 (0.033)
PPV 0.734 (0.038) 0.787 (0.036)
NPV 0.715 (0.033) 0.755 (0.028)
AUC 0.783 (0.026) 0.803 (0.016)

TABLE V. Comparison of the classification performance

between linear and RBF kernels

Mean (standard deviation) Linear RBF

ACC 0.703 (0.032) 0.756 (0.020)
SEN 0.708 (0.051) 0.720 (0.028)
SPE 0.698 (0.045) 0.793 (0.033)
PPV 0.709 (0.029) 0.787 (0.036)
NPV 0.723 (0.051) 0.755 (0.028)
AUC 0.781 (0.031) 0.803 (0.016)
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Multiparameter Multiscale vs. Multiparameter

Selected-Scale

For each parameter (FA, MD, and length), we also picked
the network with the best performance (highest accuracy)
in multiscale networks. The 403-ROI networks performed
the best for each parameter. We combined these three 403-
ROI networks to form the new multiparameter networks.
They were fed into the same multikernel SVM classifier
and the performance was compared with our proposed
algorithm. The results are shown in Table VII. Our pro-
posed method achieved a better accuracy by almost 4%.

Number of Networks

We have shown that using multiscale networks constructed
from different scales of the infant AAL ROI improved the
accuracy of classification. The 403-ROI networks were better
networks than both the 203-ROI networks and the original 90-
ROI networks, in terms of classification performance. Here, we
further partitioned the infant AAL atlas into 604 ROIs in the
same way as described in the “multiscale ROI Parcellation”
section to examine whether adding the networks constructed
from those ROIs would further improve the classification
result. Table VIII shows the classification results using the
single-parameter (FA, MD, and length) networks constructed
from these 604 ROIs. Despite the finer ROIs, the performance
actually deteriorated. For instance, the accuracies of the 604-

ROI networks were 67.6, 65.6, and 66.4%, for FA, MD, and
length, respectively, while those of the 403-ROI networks were
69.3, 70.0, and 70.3%, respectively. We further integrated the
three 604-ROI networks into our multiparameter multiscale
network framework. With a total of 12 networks, the mean
accuracy went down from 75.6 to 70%.

Choice of Parameters

Fiber count is another popular measure in WM connec-
tivity analysis [Jahanshad et al., 2011; Zhan et al.,
2013a,b,c]. We also investigated how good fiber count
acted as a feature in our infant ASD classification. The
fiber count connectivity network refers to the matrix con-
sisting of the relative fiber count connecting pairwise ROIs
(normalized by the total number of fibers in the whole-
brain tractography). We performed classification with the
90-ROI, 203-ROI, and 403-ROI fiber count networks,
respectively. The results are shown in Table XI. The mean
accuracies from those fiber count networks were much
lower than those built on other parameters we used in the
proposed algorithm (FA, MD, and length). Therefore, we
did not include fiber count in our classification model.

Most Discriminative Connections

We summed the counts of each connection selected by
our proposed method for each network scale (90, 203, and
403 ROIs) over the 50 folds. The counts for FA, MD, and
fiber length were combined at each level. We ranked the

TABLE VI. Comparison of the classification

performance between the single kernel SVM and the

multikernel SVM

Mean (standard
deviation) Single kernel SVM Multikernel SVM

ACC 0.715 (0.019) 0.756 (0.020)
SEN 0.715 (0.038) 0.720 (0.028)
SPE 0.715 (0.021) 0.793 (0.033)
PPV 0.715 (0.020) 0.787 (0.036)
NPV 0.736 (0.031) 0.755 (0.028)
AUC 0.715 (0.019) 0.803 (0.016)

TABLE VII. Comparison of the classification performance

between the multiparameter selected-scale networks (i.e.,

the three best single networks using FA, MD, and length)

and our proposed multiparameter multiscale networks

Mean (standard
deviation)

Multiparameter
selected-scale

Multiparameter
multiscale

ACC 0.719 (0.033) 0.756 (0.020)
SEN 0.700 (0.048) 0.720 (0.028)
SPE 0.740 (0.066) 0.793 (0.033)
PPV 0.745 (0.041) 0.787 (0.036)
NPV 0.722 (0.030) 0.755 (0.028)
AUC 0.792 (0.027) 0.803 (0.016)

TABLE VIII. Classification performance of the 604-ROI

network for each parameter (FA, MD, and length)

Mean (standard
deviation) 604 ROIs - FA 604 ROIs - MD 604 ROIs - Length

ACC 0.676 (0.039) 0.656 (0.030) 0.664 (0.038)
SEN 0.638 (0.041) 0.610 (0.070) 0.655 (0.048)
SPE 0.715 (0.064) 0.703 (0.076) 0.673 (0.077)
PPV 0.704 (0.063) 0.684 (0.055) 0.680 (0.052)
NPV 0.676 (0.036) 0.656 (0.036) 0.676 (0.040)
AUC 0.676 (0.039) 0.656 (0.030) 0.664 (0.038)

TABLE XI. Classification performance of the normalized

fiber count networks in three different scales

Mean (standard
deviation) 403 ROIs 203 ROIs 90 ROIs

ACC 0.586 (0.027) 0.531 (0.046) 0.586 (0.055)
SEN 0.583 (0.065) 0.560 (0.062) 0.628 (0.103)
SPE 0.590 (0.068) 0.503 (0.081) 0.545 (0.078)
PPV 0.595 (0.046) 0.536 (0.056) 0.588 (0.055)
NPV 0.603 (0.028) 0.538 (0.048) 0.627 (0.081)
AUC 0.586 (0.030) 0.531 (0.046) 0.586 (0.055)
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connections by the counts of selection. For the purpose of
visualization, Figure 8a–c illustrates the top 20 most dis-
criminative representations of connectogram, a circular
representation tool called Circos (www.cpan.org/ports)
[Krzywinski et al., 2009], for the 90-ROI, 203-ROI, and 403-
ROI networks, respectively. Note that for the 90-ROI net-
works, the connections between the original ROIs were
reported. While, in the 203-ROI and 403-ROI networks, the
connections in the original 90 ROIs that contained those

selected connections between sub-ROIs were reported for
comparison. The connections in the same hemisphere were
represented in red while inter-hemisphere in black. Thick-
ness of each line reflected its selection frequency, that is, the
thicker the line, the higher the frequency. A total of 65% con-
nections (13 pairs) overlapped between the 90-ROI scale and
the 203-ROI scale, 20% (4 pairs) between the 90-ROI scale
and the 403-ROI scale, and 15% (3 pairs) between the 203-
ROI scale and the 403-ROI scale. 10% connections (2 pairs)

TABLE X. The ROIs used in Figure 8

Index (odd -> left, even -> right) Region

Abbreviation

Left Right

1, 2 Precentral gyrus PreCG.L PreCG.R
3, 4 Superior frontal gyrus (dorsal) SFGdor.L SFGdor.R
5, 6 Orbitofrontal cortex (superior) ORBsupb.L ORBsupb.R
7, 8 Middle frontal gyrus MFG.L MFG.R
9, 10 Orbitofrontal cortex (middle) ORBmid.L ORBmid.R
11, 12 Inferior frontal gyrus (opercular) IFGoperc.L IFGoperc.R
13, 14 Inferior frontal gyrus (triangular) IFGtriang.L IFGtriang.R
15, 16 Orbitofrontal cortex (inferior) ORBinf.L ORBinf.R
17, 18 Rolandic operculum ROL.L ROL.R
19, 20 Supplementary motor area SMA.L SMA.R
21, 22 Olfactory OLF.L OLF.R
23, 24 Superior frontal gyrus (media) SFGmed.L SFGmed.R
25, 26 Orbitofrontal cortex (medial) ORBmed.L ORBmed.R
27, 28 Rectus gyrus REC.L REC.R
29, 30 Insula INS.L INS.R
31, 32 Anterior cingulate gyrus ACG.L ACG.R
33, 34 Middle cingulate gyrus MCG.L MCG.R
35, 36 Posterior cingulate gyrus PCG.L PCG.R
37, 38 Hippocampus HIP.L HIP.R
39, 40 ParaHippocampal gyrus PHG.L PHG.R
41, 42 Amygdala AMYG.L AMYG.R
43, 44 Calcarine CAL.L CAL.R
45, 46 Cuneus CUN.L CUN.R
47, 48 Lingual gyrus LING.L LING.R
49, 50 Superior occipital gyrus SOG.L SOG.R
51, 52 Middle occipital gyrus MOG.L MOG.R
53, 54 Inferior occipital gyrus IOG.L IOG.R
55, 56 Fusiform gyrus FFG.L FFG.R
57,58 Postcentral gyrus PoCG.L PoCG.R
59, 60 Superior parietal gyrus SPG.L SPG.R
61, 62 Inferior parietal lobule IPL.L IPL.R
63, 64 Supramarginal gyrus SMG.L SMG.R
65, 66 Angular gyrus ANG.L ANG.R
67, 68 Precuneus PCUN.L PCUN.R
69, 70 Paracentral lobule PCL.L PCL.R
71, 72 Caudate CAU.L CAU.R
73, 74 Putamen PUT.L PUT.R
75, 76 Pallidum PAL.L PAL.R
77, 78 Thalamus THA.L THA.R
79, 80 Heshl gyrus HES.L HES.R
81, 82 Superior temporal gyrus STG.L STG.R
83, 84 Temporal pole (superior) TPOsup.L TPOsup.R
85, 86 Middle temporal gyrus MTG.L MTG.R
87, 88 Temporal pole (middle) TPOmid.L TPOmid.R
89, 90 Inferior temporal ITG.L ITG.R
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appeared in all the three scales. They were the connections
between the left middle occipital gyrus and the left middle
orbitofrontal cortex, as well as between the right superior
temporal gyrus and the right middle occipital gyrus. The
ROIs used in Figure 8 are listed in Table X.

DISCUSSION

The population size of our study (40 high-risk vs. 40 low-
risk) has been commonly seen in previous classification
studies. For example, for schizophrenia classification, Arde-
kani et al. [2011] used 50 healthy controls and 50 patients,
and Calhoun et al. [2008] used 26 healthy controls, 21 schizo-

phrenia patients, and 14 bipolar patients. For ASD, Bosl
et al. [2011] used 33 normal controls and 46 ASD patients,
and Ingalhalikar et al. [2012] used 30 normal controls and 45
ASD patients.

The way to divide sub-ROIs is a critical step for build-
ing the multiscale connectivity networks. If we use a fixed
number to divide every ROI, the sub-ROIs generated from
the smaller ROIs may be too little to have any fibers tra-
versing them, thus resulting in the heavy weights on the
connections between the sub-ROIs generated from those
larger ROIs. However, those larger regions may not be dis-
criminative in classification. It is more reasonable to have
each sub-ROI be as the equal size as possible so that it can
be weighted fairly in a connectivity network. The 203 and

Figure 8.

Connectogram of the top 20 discriminative connections selected by our framework in the (a)

90-ROI, (b) 203-ROI, and (c) 403-ROI networks, respectively. The intrahemisphere and interhe-

misphere connections are shown in red and black colors, respectively. For the abbreviations of

the ROIs, please refer to Table X. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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403 sub-ROIs were the results of an approximately size of
20 and 16 mm for each sub-ROI, respectively. They were
anatomically meaningful considering that the structure of
the original AAL ROIs was retained. For example, the
superior temporal gyrus was a single ROI in the original
AAL atlas while we subdivided it into multiple sub-ROIs
with similar sizes. In this way, we retained the anatomical
information of each sub-ROI.

The original 90-ROI infant AAL cortical parcellation
might not be the most suitable for identifying differences
between high-risk and low-risk ASD infants. Smaller net-
works (with larger ROIs) might be more beneficial for
group studies since more stable features within groups
can be extracted, while larger networks (with smaller
ROIs) provide more detailed connectivity information at
the individual level and more precise distinction can be
captured [Cammoun et al., 2012]. The right scale depends
on the studies [Fornito et al., 2010; Zalesky et al., 2010]. In
this study, we further divide the original ROIs into smaller
ROIs to form atlases of three different scales, that is, 90
ROIs, 203 ROIs, and 403 ROIs. The 403-ROI networks give
the highest classification accuracy for all three measures
(FA, MD, and length) (see Figures 4–6). The multiscale net-
works improve the classification accuracy for each metric
(FA, MD, and length) by 5.4, 4.5, and 4.6%, compared with
the best single networks, respectively. The AUCs are
improved by 13.8, 12, and 11.7%, respectively (see Figures
4–6). Integrating multiscale networks further improves clas-
sification performance. We note that, however, adding the
604-ROI networks does not further improve the classifica-
tion accuracy (see the “Number of Atlases” section).

Wee et al. [2011] demonstrated that utilizing networks
constructed from multiple DWI-derived parameters enhan-
ces classification performance. In this work, we confirm
this and show that, using the multiparameter networks
based on FA, MD, and length, we can improve the accu-
racy by 2.5, 2.5, and 2% compared with any single param-
eter network (see Figure 7).

The top 20 most discriminative connections (see Figure
8) from the networks of three different scales overlap, that
is, the top selected connections in the original 90-ROI net-
work contain many selected sub-ROI connections in the
203-ROI and the 403-ROI networks. The relevant regions
include (1) multiple cortical regions, such as the orbital
part of the left frontal lobe, the bilateral temporal lobes,
the bilateral occipital lobes, the bilateral calcarine fissures,
the bilateral lingual gyri, the right cuneus, the right insula
and (2) several subcortical regions, such as the left globus
pallidum, the left putamen, and the bilateral parahippo-
campal gyri. Those findings are consistent with the regions
identified in a number of ASD infant or child studies. The
temporal lobes, the occipital lobes, the calcarine fissures,
the lingual gyri, and the cuneus are involved in processing
auditory and visual stimuli, language and nonlinguistic
social stimuli. Abnormalities exist in all these regions in
ASD patients [Johnson et al., 2005; Redcay, 2008; Schultz

et al., 2000; Wetherby et al., 2004]. The frontal cortical con-
nectivity abnormalities were also well documented in ASD
[Just et al., 2012]. Among the subcortical regions, insula is
positioned as a hub to mediate external and internal cogni-
tive processes. Its dysfunction plays an important role in
ASD [Uddin and Menon, 2009]. The basal ganglia region
that contains globus pallidum and putamen also shows
shape deformation in ASD patients [Qiu et al., 2010].
Attenuated neural activities in parahippocampal regions
may explain some aspects of ASD [Sumiyoshi et al., 2011].

It is also interesting to notice the asymmetry between the
left hemisphere and the right hemisphere in the three con-
nectograms in Figure 8. The majority of the top 20 discrimi-
native connections lie in the left hemisphere in all three-
scale networks. This is consistent to the left-hemisphere
hypothesis for ASD [Chandana et al., 2005; Chugani et al.,
1997]. The hypothesis can explain many of the symptoms of
ASD, most notably the language deficits, as language is a
left-brain skill. On the other hand, while more connections
in the right hemisphere become discriminative in the 403-
ROI networks with additional interhemisphere connections.
This demonstrates that subtler changes in the connectome
can be detected with smaller ROIs.

Our framework uses features extracted from multiple net-
works constructed from multiscale ROIs. The number of fea-
tures increases to tens of thousands when more ROIs are
used. Our feature selection step removes irrelevant features
and eventually retains only hundreds of features. Moreover,
the classification accuracy is improved 16%, that is, from 60 to
76%, demonstrating the effectiveness of our feature selection
strategy. The t-test acts as an effective feature ranking method
that is preferable in high dimensional problems because of its
computational scalability. Feature subset selection methods
such as LASSO select a subset of features that may have better
discriminative power jointly. The latter methods usually have
better classification performance, but its high computational
cost limits their applications to those problems. In our case,
approximately a quarter of a million of features were retrieved
from the nine networks. Simply applying the subset feature
selection may not be realistic. It is possible that the t-test may
miss some of the features that were irrelevant individually yet
relevant when considered jointly. However, the t-test filtered
much more irrelevant features and reduced the computational
cost for the LASSO logistic regression. It has been proved to
be an effective feature selection step in other studies [Fan
et al., 2007; Wee et al., 2014]. The fact that the logistic regres-
sion performs better than the linear regression (76 vs. 71%)
implies that the relationship between the features and the
labels may not be linear. This observation is also consistent
with the observation that the SVM with RBF kernel performs
better than the SVM with linear kernel (76 vs. 70%).

The fiber count is a common measure used in the con-
nectivity analysis. However, the mean values of FA, MD,
and fiber length take the whole tract path between two
ROIs into account. Adding or missing a few more fibers
will probably not change their overall characteristics as
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much as that of fiber count. Therefore, they provide more
reliable connectivity features than fiber count, and it has
been demonstrated by our experiment results (i.e., the
mean ACC of FA at the 90-ROI scale was 0.675 vs. that of
fiber count at 0.586).

Many factors, such as field strength [Dennis et al., 2013;
Zhan et al., 2013a], scanners [Zhan et al., 2014a], feature
space [Zhan et al., 2014b], and imaging acquisition param-
eters [Zhan et al., 2012, 2013b], affect the construction of
connectivity network. The choice of diffusion models (e.g.,
tensor, multitensor, and spherical deconvolution), tracking
parameters, seed locations, maximum turning angle, and
stopping criteria will also introduce variability in network
construction and classification results [Dennis et al., 2015b;
Zhan et al., 2013c, 2015]. Tractography is even more chal-
lenging given that the image quality at the 6-month-old is
generally insufficient, both in terms of contrast and resolu-
tion. In the future, more efforts need to be dedicated to
refining these tractography and imaging parameters.

CONCLUSION

We propose a classification framework that uses the com-
plementary information from multiparameter multiscale
structural networks for identification of 6-month-old infants
who are at high-risk for ASD. The experiment results confirm
the effectiveness of the proposed framework. The discrimina-
tive connections identified in our study may serve as potential
imaging connectomic biomarkers for ASD diagnosis or predic-
tion. Our method can also be generalized for detecting other
WM related diseases.
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