5,618 research outputs found

    Labeled Packing of Cycles and Circuits

    Full text link
    In 2013, Duch{\^e}ne, Kheddouci, Nowakowski and Tahraoui [4, 9] introduced a labeled version of the graph packing problem. It led to the introduction of a new parameter for graphs, the k-labeled packing number λ\lambda k. This parameter corresponds to the maximum number of labels we can assign to the vertices of the graph, such that we will be able to create a packing of k copies of the graph, while conserving the labels of the vertices. The authors intensively studied the labeled packing of cycles, and, among other results, they conjectured that for every cycle C n of order n = 2k + x, with k ≥\ge 2 and 1 ≤\le x ≤\le 2k -- 1, the value of λ\lambda k (C n) was 2 if x was 1 and k was even, and x + 2 otherwise. In this paper, we disprove this conjecture by giving a counter example. We however prove that it gives a valid lower bound, and we give sufficient conditions for the upper bound to hold. We then give some similar results for the labeled packing of circuits

    Some results on triangle partitions

    Full text link
    We show that there exist efficient algorithms for the triangle packing problem in colored permutation graphs, complete multipartite graphs, distance-hereditary graphs, k-modular permutation graphs and complements of k-partite graphs (when k is fixed). We show that there is an efficient algorithm for C_4-packing on bipartite permutation graphs and we show that C_4-packing on bipartite graphs is NP-complete. We characterize the cobipartite graphs that have a triangle partition

    Packing tight Hamilton cycles in 3-uniform hypergraphs

    Full text link
    Let H be a 3-uniform hypergraph with N vertices. A tight Hamilton cycle C \subset H is a collection of N edges for which there is an ordering of the vertices v_1, ..., v_N such that every triple of consecutive vertices {v_i, v_{i+1}, v_{i+2}} is an edge of C (indices are considered modulo N). We develop new techniques which enable us to prove that under certain natural pseudo-random conditions, almost all edges of H can be covered by edge-disjoint tight Hamilton cycles, for N divisible by 4. Consequently, we derive the corollary that random 3-uniform hypergraphs can be almost completely packed with tight Hamilton cycles w.h.p., for N divisible by 4 and P not too small. Along the way, we develop a similar result for packing Hamilton cycles in pseudo-random digraphs with even numbers of vertices.Comment: 31 pages, 1 figur

    A Pfaffian formula for monomer-dimer partition functions

    Full text link
    We consider the monomer-dimer partition function on arbitrary finite planar graphs and arbitrary monomer and dimer weights, with the restriction that the only non-zero monomer weights are those on the boundary. We prove a Pfaffian formula for the corresponding partition function. As a consequence of this result, multipoint boundary monomer correlation functions at close packing are shown to satisfy fermionic statistics. Our proof is based on the celebrated Kasteleyn theorem, combined with a theorem on Pfaffians proved by one of the authors, and a careful labeling and directing procedure of the vertices and edges of the graph.Comment: Added referenc

    Hamiltonian mappings and circle packing phase spaces: numerical investigations

    Full text link
    In a previous paper we introduced examples of Hamiltonian mappings with phase space structures resembling circle packings. We now concentrate on one particular mapping and present numerical evidence which supports the conjecture that the set of circular resonance islands is dense in phase space.Comment: 9 pages, 2 figure
    • …
    corecore