5 research outputs found

    A History of Until

    Get PDF
    Until is a notoriously difficult temporal operator as it is both existential and universal at the same time: A until B holds at the current time instant w iff either B holds at w or there exists a time instant w' in the future at which B holds and such that A holds in all the time instants between the current one and w'. This "ambivalent" nature poses a significant challenge when attempting to give deduction rules for until. In this paper, in contrast, we make explicit this duality of until to provide well-behaved natural deduction rules for linear-time logics by introducing a new temporal operator that allows us to formalize the "history" of until, i.e., the "internal" universal quantification over the time instants between the current one and w'. This approach provides the basis for formalizing deduction systems for temporal logics endowed with the until operator. For concreteness, we give here a labeled natural deduction system for a linear-time logic endowed with the new operator and show that, via a proper translation, such a system is also sound and complete with respect to the linear temporal logic LTL with until.Comment: 24 pages, full version of paper at Methods for Modalities 2009 (M4M-6

    Labeled natural deduction systems for a family of tense logics

    No full text
    We give labeled natural deduction systems for a family of tense logics extending the basic linear tense logic Kl. We prove that our systems are sound and complete with respect to the usual Kripke semantics, and that they possess a number of useful normalization properties (in particular, derivations reduce to a normal form that enjoys a subformula property). We also discuss how to extend our systems to capture richer logics like (fragments of) LTL

    Investigation of the tradeoff between expressiveness and complexity in description logics with spatial operators

    Get PDF
    Le Logiche Descrittive sono una famiglia di formalismi molto espressivi per la rappresentazione della conoscenza. Questi formalismi sono stati investigati a fondo dalla comunit\ue0 scientifica, ma, nonostante questo grosso interesse, sono state definite poche Description Logics con operatori spaziali e tutte centrate sul Region Connection Calculus. Nella mia tesi considero tutti i pi\uf9 importanti formalismi di Qualitative Spatial Reasoning per mereologie, mereo-topologie e informazioni sulla direzione e studio alcune tecniche generali di ibridazione. Nella tesi presento un\u2019introduzione ai principali formalismi di Qualitative Spatial Reasoning e le principali famiglie di Description Logics. Nel mio lavoro, introduco anche le tecniche di ibridazione per estendere le Description Logics al ragionamento su conoscenza spaziale e presento il potere espressivo dei linguaggi ibridi ottenuti. Vengono presentati infine un risultato generale di para-decidibilit\ue0 per logiche descrittive estese da composition-based role axioms e l\u2019analisi del tradeoff tra espressivit\ue0 e propriet\ue0 computazionali delle logiche descrittive spaziali.Description Logics are a family of expressive Knowledge-Representation formalisms that have been deeply investigated. Nevertheless the few examples of DLs with spatial operators in the current literature are defined to include only the spatial reasoning capabilities corresponding to the Region Connection Calculus. In my thesis I consider all the most important Qualitative Spatial Reasoning formalisms for mereological, mereo-topological and directional information and investigate some general hybridization techniques. I will present a short overview of the main formalisms of Qualitative Spatial Reasoning and the principal families of DLs. I introduce the hybridization techniques to extend DLs to QSR and present the expressiveness of the resulting hybrid languages. I also present a general paradecidability result for undecidable languages equipped with composition-based role axioms and the tradeoff analysis of expressiveness and computational properties for the spatial DLs
    corecore