14,873 research outputs found

    Classification and Recovery of Radio Signals from Cosmic Ray Induced Air Showers with Deep Learning

    Full text link
    Radio emission from air showers enables measurements of cosmic particle kinematics and identity. The radio signals are detected in broadband Megahertz antennas among continuous background noise. We present two deep learning concepts and their performance when applied to simulated data. The first network classifies time traces as signal or background. We achieve a true positive rate of about 90% for signal-to-noise ratios larger than three with a false positive rate below 0.2%. The other network is used to clean the time trace from background and to recover the radio time trace originating from an air shower. Here we achieve a resolution in the energy contained in the trace of about 20% without a bias for 80%80\% of the traces with a signal. The obtained frequency spectrum is cleaned from signals of radio frequency interference and shows the expected shape.Comment: 20 pages, 13 figures, resubmitted to JINS

    Binary object recognition system on FPGA with bSOM

    Get PDF
    Tri-state Self Organizing Map (bSOM), which takes binary inputs and maintains tri-state weights, has been used for classification rather than clustering in this paper. The major contribution here is the demonstration of the potential use of the modified bSOM in security surveillance, as a recognition system on FPGA

    PresenceSense: Zero-training Algorithm for Individual Presence Detection based on Power Monitoring

    Full text link
    Non-intrusive presence detection of individuals in commercial buildings is much easier to implement than intrusive methods such as passive infrared, acoustic sensors, and camera. Individual power consumption, while providing useful feedback and motivation for energy saving, can be used as a valuable source for presence detection. We conduct pilot experiments in an office setting to collect individual presence data by ultrasonic sensors, acceleration sensors, and WiFi access points, in addition to the individual power monitoring data. PresenceSense (PS), a semi-supervised learning algorithm based on power measurement that trains itself with only unlabeled data, is proposed, analyzed and evaluated in the study. Without any labeling efforts, which are usually tedious and time consuming, PresenceSense outperforms popular models whose parameters are optimized over a large training set. The results are interpreted and potential applications of PresenceSense on other data sources are discussed. The significance of this study attaches to space security, occupancy behavior modeling, and energy saving of plug loads.Comment: BuildSys 201
    corecore