265 research outputs found

    LWE from Non-commutative Group Rings

    Get PDF
    The Ring Learning-With-Errors (LWE) problem, whose security is based on hard ideal lattice problems, has proven to be a promising primitive with diverse applications in cryptography. There are however recent discoveries of faster algorithms for the principal ideal SVP problem, and attempts to generalize the attack to non-principal ideals. In this work, we study the LWE problem on group rings, and build cryptographic schemes based on this new primitive. One can regard the LWE on cyclotomic integers as a special case when the underlying group is cyclic, while our proposal utilizes non-commutative groups, which eliminates the weakness associated with the principal ideal lattices. In particular, we show how to build public key encryption schemes from dihedral group rings, which maintains the efficiency of the ring-LWE and improves its security

    Cyclotomic Polynomials in Ring-LWE Homomorphic Encryption Schemes

    Get PDF
    Homomorphic Encryption has been considered the \u27Holy Grail of Cryptography\u27 since the discovery of secure public key cryptography in the 1970s. In 2009, a long-standing question about whether fully homomorphic encryption is theoretically plausible was affirmatively answered by Craig Gentry and his bootstrapping construction. Gentry\u27s breakthrough has initiated a surge of new research in this area, one of the most promising ideas being the Learning With Errors (LWE) problem posed by Oded Regev\u27s. Although this problem has proved to be versatile as a basis for homomorphic encryption schemes, the large key sizes result in a quadratic overhead making this inefficient for practical purposes. In order to address this efficiency issue, Oded Regev, Chris Peikert and Vadim Lyubashevsky ported the LWE problem to a ring setting, thus calling it the Ring Learning with Errors (Ring-LWE) problem. The underlying ring structure of the Ring-LWE problem is Z[x]/Φm(x)\mathbb{Z}[x]/\Phi_m(x) where Φm(x)\Phi_m(x) is the mmth cyclotomic polynomial. The hardness of this problem is based on special properties of cyclotomic number fields. In this thesis, we explore the properties of lattices and algebraic number fields, in particular, cyclotomic number fields which make them a good choice to be used in the Ring-LWE problem setting. The biggest crutch in homomorphic encryption schemes till date is performing homomorphic multiplication. As the noise term in the resulting ciphertext grows multiplicatively, it is very hard to recover the original ciphertext after a certain number of multiplications without compromising on efficiency. We investigate the efficiency of an implemented cryptosystem based on the Ring-LWE hardness and measure the performance of homomorphic multiplication by varying different parameters such as the cipherspace cyclotomic index and the underlying ring Zp\mathbb{Z}_p

    On Jacobians of geometrically reduced curves and their N\'eron models

    Full text link
    We study the structure of Jacobians of geometrically reduced curves over arbitrary (i. e., not necessarily perfect) fields. We show that, while such a group scheme cannot in general be decomposed into an affine and an Abelian part as over perfect fields, several important structural results for these group schemes nevertheless have close analoga over non-perfect fields. We apply our results to prove two conjectures due to Bosch-L\"utkebohmert-Raynaud about the existence of N\'eron models and N\'eron lft-models over excellent Dedekind schemes in the special case of Jacobians of geometrically reduced curves. Finally, we prove some existence results for semi-factorial models and related objects for general geometrically integral curves in the local case.Comment: 49 Pages. Results unchanged. Several sections substantially rewritten and some proofs simplified. Typographical errors corrected, references adde

    Algorithms on Ideal over Complex Multiplication order

    Get PDF
    We show in this paper that the Gentry-Szydlo algorithm for cyclotomic orders, previously revisited by Lenstra-Silverberg, can be extended to complex-multiplication (CM) orders, and even to a more general structure. This algorithm allows to test equality over the polarized ideal class group, and finds a generator of the polarized ideal in polynomial time. Also, the algorithm allows to solve the norm equation over CM orders and the recent reduction of principal ideals to the real suborder can also be performed in polynomial time. Furthermore, we can also compute in polynomial time a unit of an order of any number field given a (not very precise) approximation of it. Our description of the Gentry-Szydlo algorithm is different from the original and Lenstra- Silverberg's variant and we hope the simplifications made will allow a deeper understanding. Finally, we show that the well-known speed-up for enumeration and sieve algorithms for ideal lattices over power of two cyclotomics can be generalized to any number field with many roots of unity.Comment: Full version of a paper submitted to ANT

    Encriptação parcialmente homomórfica CCA1-segura

    Get PDF
    Orientadores: Ricardo Dahab, Diego de Freitas AranhaTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Nesta tese nosso tema de pesquisa é a encriptação homomórfica, com foco em uma solução prática e segura para encriptação parcialmente homomórfica (somewhat homomorphic encryption - SHE), considerando o modelo de segurança conhecido como ataque de texto encriptado escolhido (chosen ciphertext attack - CCA). Este modelo pode ser subdividido em duas categorias, a saber, CCA1 e CCA2, sendo CCA2 o mais forte. Sabe-se que é impossível construir métodos de encriptação homomórfica que sejam CCA2-seguros. Por outro lado, é possível obter segurança CCA1, mas apenas um esquema foi proposto até hoje na literatura; assim, seria interessante haver outras construções oferecendo este tipo de segurança. Resumimos os principais resultados desta tese de doutorado em duas contribuições. A primeira é mostrar que a família NTRU de esquemas SHE é vulnerável a ataques de recuperação de chave privada, e portanto não são CCA1-seguros. A segunda é a utilização de computação verificável para obter esquemas SHE que são CCA1-seguros e que podem ser usados para avaliar polinômios multivariáveis quadráticos. Atualmente, métodos de encriptação homomórfica são construídos usando como substrato dois problemas de difícil solução: o MDC aproximado (approximate GCD problem - AGCD) e o problema de aprendizado com erros (learning with errors - LWE). O problema AGCD leva, em geral, a construções mais simples mas com desempenho inferior, enquanto que os esquemas baseados no problema LWE correspondem ao estado da arte nesta área de pesquisa. Recentemente, Cheon e Stehlé demonstraram que ambos problemas estão relacionados, e é uma questão interessante investigar se esquemas baseados no problema AGCD podem ser tão eficientes quanto esquemas baseados no problema LWE. Nós respondemos afirmativamente a esta questão para um cenário específico: estendemos o esquema de computação verificável proposto por Fiore, Gennaro e Pastro, de forma que use a suposição de que o problema AGCD é difícil, juntamente com o esquema DGHV adaptado para uso do Teorema Chinês dos Restos (Chinese remainder theorem - CRT) de forma a evitar ataques de recuperação de chave privadaAbstract: In this thesis we study homomorphic encryption with focus on practical and secure somewhat homomorphic encryption (SHE), under the chosen ciphertext attack (CCA) security model. This model is classified into two different main categories: CCA1 and CCA2, with CCA2 being the strongest. It is known that it is impossible to construct CCA2-secure homomorphic encryption schemes. On the other hand, CCA1-security is possible, but only one scheme is known to achieve it. It would thus be interesting to have other CCA1-secure constructions. The main results of this thesis are summarized in two contributions. The first is to show that the NTRU-family of SHE schemes is vulnerable to key recovery attacks, hence not CCA1-secure. The second is the utilization of verifiable computation to obtain a CCA1-secure SHE scheme that can be used to evaluate quadratic multivariate polynomials. Homomorphic encryption schemes are usually constructed under the assumption that two distinct problems are hard, namely the Approximate GCD (AGCD) Problem and the Learning with Errors (LWE) Problem. The AGCD problem leads, in general, to simpler constructions, but with worse performance, wheras LWE-based schemes correspond to the state-of-the-art in this research area. Recently, Cheon and Stehlé proved that both problems are related, and thus it is an interesting problem to investigate if AGCD-based SHE schemes can be made as efficient as their LWE counterparts. We answer this question positively for a specific scenario, extending the verifiable computation scheme proposed by Fiore, Gennaro and Pastro to work under the AGCD assumption, and using it together with the Chinese Remainder Theorem (CRT)-version of the DGHV scheme, in order to avoid key recovery attacksDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação143484/2011-7CNPQCAPE

    Symbolic Proofs for Lattice-Based Cryptography

    Get PDF
    International audienceSymbolic methods have been used extensively for proving security of cryptographic protocols in the Dolev-Yao model, and more recently for proving security of cryptographic primitives and constructions in the computational model. However, existing methods for proving security of cryptographic constructions in the computational model often require significant expertise and interaction, or are fairly limited in scope and expressivity. This paper introduces a symbolic approach for proving security of cryptographic constructions based on the Learning With Errors assumption (Regev, STOC 2005). Such constructions are instances of lattice-based cryptography and are extremely important due to their potential role in post-quantum cryptography. Following (Barthe, Grégoire and Schmidt, CCS 2015), our approach combines a computational logic and deducibility problems-a standard tool for representing the adversary's knowledge, the Dolev-Yao model. The computational logic is used to capture (indistinguishability-based) security notions and drive the security proofs whereas deducibility problems are used as side-conditions to control that rules of the logic are applied correctly. We then use AutoLWE, an implementation of the logic, to deliver very short or even automatic proofs of several emblematic constructions, including CPA-PKE (Gentry et al., STOC 2008), (Hierarchical) Identity-Based Encryption (Agrawal et al. Eurocrypt 2010), Inner Product Encryption (Agrawal et al. Asiacrypt 2011), CCA-PKE (Micciancio et al., Eurocrypt 2012). The main technical novelty beyond AutoLWE is a set of (semi-)decision procedures for deducibility problems, using extensions of Gröbner basis computations for subalgebras in the (non-)commutative setting (instead of ideals in the commutative setting). Our procedures cover the theory of matrices, which is required for lattice-based assumption, as well as the theory of non-commutative rings, fields, and Diffie-Hellman exponentiation, in its standard, bilinear and mul-tilinear forms. Additionally, AutoLWE supports oracle-relative assumptions , which are used specifically to apply (advanced forms of) the Leftover Hash Lemma, an information-theoretical tool widely used in lattice-based proofs
    corecore