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Abstract

Gentry’s groundbreaking work [8] showed that a fully homomorphic, provably
secure scheme is possible via bootstrapping a somewhat homomorphic scheme.
However, a major drawback of bootstrapping is its high computational cost.
One alternative is to use a different metric for noise so that homomorphic opera-
tions do not accumulate noise, eliminating the need for boostrapping altogether.
Leonardi and Ruiz-Lopez present a group-theoretic framework for such a “noise
non-accumulating” multiplicative homomorphic scheme [12], but Agathocleous
et al. expose weaknesses in this framework when working over finite abelian
groups [1]. Tangentially, Li and Wang present a “noise non-accumulating” fully
homomorphic scheme by performing Ostrovsky and Skeith’s transform [18] on
a multiplicative homomorphic scheme of non-abelian group rings [14]. Unfortu-
nately, the security of Li and Wang’s scheme relies on the Factoring Large Num-
bers assumption, which is false given an adversary with a quantum computer
[22]. In this work, we seek to modify Li and Wang’s scheme to be post-quantum
secure by fitting it into the Leonardi and Ruiz-Lopez framework for non-abelian
rings. We discuss improved security assumptions for Li and Wang encryption
and assess the shortcomings of working in a non-abelian setting. Finally, we
show that a large class of semisimple rings is incompatible with the Leonardi
and Ruiz-Lopez framework.

1 Introduction

Fully homomorphic encryption has often been referred to as the “holy grail”
of cryptography after it was proposed by Rivest, Adleman and Dertouzos in
1978. Since then, a working fully homomorphic scheme was discovered by Gen-
try in 2009 [8]. Gentry’s scheme is based on the learning with errors (LWE)
problem on lattices, which can be thought of as finding solutions to a system
of noisy linear equations. Due to worst-case to average-case reductions of LWE,
it is a promising security assumption [21]. However, homomorphic operations
on noisy equations compound noise, making decryption errors more likely. The
first ingredient in Gentry’s scheme is a bounded-depth homomorphic encryp-
tion scheme with security based on the hardness of LWE. The second ingredient
is a bootstrapping algorithm which periodically reduces the accumulated noise
in ciphertexts, making it then theoretically possible to perform an unbounded



number of homomorphic operations. For a somewhat homomorphic scheme to
be bootstrappable, it needs to satisfy an additional circular security assumption,
which requires semantic security even if an encryption of the secret key under
the public key is made public. Gentry’s original scheme proved that fully homo-
morphic encryption is possible, but it was too inefficient to be practical. Since
then, a number of improvements have been made [4][9][7][3][6][11].

It is natural to interpret homomorphic encryption through the framework of
groups, and in fact there are many examples of group-based encryption which
initially seemed to lend themselves nicely to homorphic encryption (see textbook
RSA, ElGamal, Goldwasser-Micali, and [25] for more examples). However, the
work of Armknecht et. al [2] showed that IND-CPA security is not possible for
abelian groups when attacked by a quantum enabled adversary.

Leonardi and Ruiz-Lopez propose abstracting the notion of “learning”, “noise”,
and “rounding” and study a generalized version of LWE in a generic group set-
ting [12]. LWE is based on erasing an error by rounding to the nearest integer.
This procedure requires a metric, which in general may not be efficiently com-
putable. A purely algebraic definition of noise is elements sampled from a secret
normal subgroup N ≤ H because these can be efficiently erased by projecting
onto the quotient H/N . In this setting, noise does not accumulate, meaning un-
bounded depth homomorphic operations can be performed without the need for
inefficient bootstrapping.

The primary motivations behind considering learning with noise problems
outside of the LWE setting are to avoid bootstrapping, which is necessary to
deal with noise accumulation, and to avoid the best attacks on LWE-based en-
cryption, as they are instance-specific for Fq. The primary difficulties of the
generic group learning with noise problems are the quantum and classical at-
tacks presented in [1] (see Section 3.1) on finite abelian instances as well as
finding non-abelian, efficient instances where this problem is hard.

Motivation: The main motivation of this work was to find a concrete in-
stance for the Leonardi and Ruiz-Lopez framework. Given the classical and quan-
tum attacks on the abelian case, it was reasonable to look for non-abelian in-
stances. While non-commutativity seems to better protect against attacks, it
also limits cryptographic capabilities. One solution suggested in [14] is to embed
the non-abelian group in a group ring. But we then need to modify Leonardi
and Ruiz-Lopez encryption to sample noise from ideals of the group ring.

1.1 Our results

Our results address finite groups and group rings and include:

– Generalizing and formalizing the set-up and security assumptions for Li and
Wang’s application of Ostrovsky and Skeith’s Transform in [14].

– Reducing the quantum security of Li and Wang’s multiplicative and fully
homomorphic encryption schemes.

– Attempting to generalize Li and Wang encryption so that its security does
not rely on RSA primes.
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– Proving that it is infeasible to instantiate Leonardi and Ruiz-Lopez en-
cryption on group rings, and more generally any efficiently decomposable
semisimple rings, eliminating a large class of non-commutative structures.

The layout of the paper is as follows: in section 2 we review the mathemati-
cal background. In section 3 we review the three cryptographic primitives that
are combined for our construction: the generalized LWE problem proposed by
Leonardi and Ruiz-Lopez in [12], the transform from a multiplicative scheme
on a simple non-abelian group to a fully homomorphic scheme given by Ostro-
vsky and Skeith in [18], and the fully homomorphic scheme proposed by Li and
Wang based on group rings on simple non-abelian groups in [14]. In section 4
we present our construction for a “noise non-accumulating” fully homomorphic
cryptosystem: an Ostrosky-Skeith Transform on a modification of Li and Wang
encryption inspired by the Leonardi and Ruiz-Lopez homomorphism learning
problem. We discuss sampling secret keys efficiently and prove that the an in-
stance based on group rings does not satisfy the security requirements in [1]. We
also suggest areas of further research.

1.2 Other Non-Commutative FHE Schemes

Cheng et al. provide a generalization of LWE to group rings in [5]. A concrete
example they study is the group ring Z[D2n], where D2n is the dihedral group of
order 2n, which is non-abelian. The main advantage of considering non-abelian
groups in LWE is to avoid attacks on principal ideal lattices. Their proposed
encryption scheme uses noise that is measured by the size of the coefficients of
elements in the group ring; this scheme has the disadvantage of accumulating
noise.

Li and Wang introduce a noise non-accumulating fully homomorphic frame-
work, different from the one our construction is based on, also using analogous
matrix conjugation techniques [13]. The framework uses a non-commutative ring
because it is unclear how to recover a message, which according to the decryp-
tion algorithm is the solution to a multi-variable linear system of equations,
when variables do not commute. It seems that non-commutativity also protects
against eigenvalue attacks. While this framework does not rely on quantum-
insecure RSA primes like in [14], it does fail to be IND-CPA in general.

An approach that is similar to ours in the use of the Ostrovsky and Skeith
transform to construct a noise non-accumulating fully homomorphic scheme is by
Nuida [16]. After proving that a naive approach using matrix rings is susceptible
to “linear attacks”, the author proposes instead basing a scheme on Coxeter
groups from combinatorial group theory. However, the scheme as presented in
[16] suffers from unbounded ciphertexts, meaning that only a bounded number
of homomorphic operations can be performed despite the fact that noise does
not accumulate.

In general, constructing a fully homomorphic secure scheme without boot-
strapping is a difficult problem. See [24] for more weaknesses of multiple proposed
schemes.
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2 Preliminaries

2.1 Groups

Let G be a set equipped with an associative binary operation · : G × G → G.
We call e ∈ G an identity element if e · g = g · e = g for every g ∈ G. The
identity element is unique, if it exists. We call (G, ·) a monoid if it contains the
identity. Given a g ∈ G, we say that another element is the inverse of g in G,
denoted g−1, if g · g−1 = g−1 · g = e. The inverse of an element is unique, if it
exists. We call a monoid (G, ·) a group if it also contains an inverse element g−1

for each g ∈ G. A group is abelian (or commutative) if g · h = h · g for any two
elements g, h ∈ G. From now on, to denote the group operation we may write
gh, or g+h if the context is abelian, in place of g ·h. If G is a group, we say that
H is a subgroup of G if H is a non-empty subset of G closed under the group
operation and inverses, and denote this by H ≤ G. The center of a group is the
set Z(G) := {g ∈ G : gh = hg for all h ∈ G}.

Given two groups G1 and G2, a mapping ϕ : G1 → G2 is a (group) ho-
momorphism if ϕ(g1g2) = ϕ(g1)ϕ(g2). A bijective homomorphism is called an
isomorphism. Two groups G1 and G2 are said to be isomorphic if there exists
an isomorphism ϕ : G1 → G2, and we write this as G1

∼= G2. The kernel of a
homomorphism ϕ : G1 → G2 is the set ker(ϕ) := {g ∈ G1 : ϕ(g1) = eG2

} ⊆ G1,
where eG2

is the identity in G2. The image of ϕ is defined to be Im(ϕ) := {h ∈
G2 : h = ϕ(g) for some g ∈ G}. The kernel and image of a homomorphism are
subgroups of G1 and G2, respectively. We say that H ≤ G is normal if it is the
kernel of a group homomorphism with domain G, and denote this H E G. We
always have {e}, Z(G), GEG, and any subgroup of an abelian group is normal.
A group is called simple if it has no normal subgroups different from {e} and it-
self. Given a normal subgroup HEG, we can construct the quotient group G/H,
which is the set of (left) cosets of H in G equipped with the well-defined group
operation gH ·hH = ghH for any gH, hH ∈ G/H. The First Isomorphism The-
orem says that, for any homomorphism ϕ : G1 → G2, G/ker(ϕ) ∼= Im(ϕ). The
Correspondence Theorem says that, if N EG, then there is a 1-1 correspondence
between subgroups N ≤ H ≤ G and subgroups H/N ≤ G/N . The Third Iso-
morphism Theorem says that this correspondence is normality-preserving; that
is, if we further have that HEG, then H/N EG/N and (G/N)/(H/N) ∼= G/H.

Permutation Groups For n ∈ N, the set Sn is the set of all bijections
σ : {1, . . . , n} → {1, . . . , n}, which forms a group when equipped with the com-
position operation. Elements of Sn are called permutations and are written using
cyclic notation, where σ = (a1 a2 . . . am) means σ(ai) = ai+1 for all 1 ≤ i < m
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and σ(am) = a1, and cycles that are written side by side are multiplied. A trans-
position is a permutation of the form (a1 a2) for some a1, a2 ∈ {1, . . . , n}. We
define the homomorphism sgn : Sn → Sn by sgn(σ) = 1 if σ ∈ Sn can be written
as the product of an even number of transpositions, in which case we call σ an
even permutation, and sgn(σ) = −1 otherwise, in which case we call σ an odd
permutation.

The set of all even permutations of Sn form a subgroup called An. It is a
well-known fact that A5 is the smallest non-abelian, simple group.

2.2 Group Rings and Group Algebras

A ring is a set R equipped with two operations, called addition and multipli-
cation and denoted + and ×, so that (R,+) is an abelian group, (R,×) is a
monoid, and left and right distributivity hold. The additive and multiplicative
identities are denoted 0R and 1R, resp. A ring homomorphism is a map between
two rings that respects the ring operations.

For a ring R, an R-module is a set A equipped with a scalar multiplication
operation · : R × A → A, so that 1R · a = a for all a ∈ A and left and right
distributivity hold. An R-module A is called free if there exists a subset B ⊆ A
so that every element of A is a unique, R-linear combination of elements in
B. In this case we would call B a basis. Given a free R-module A with basis
B = {b1, . . . , bN}, we define a map [·]bi : A→ R which given a ∈ A, outputs the
coefficient on bi in the unique R-linear combination of the basis B that equals
a. If the context is clear, we use the shorthand ai := [a]bi .

An R-algebra is a ring S that is an R-module, such that left and right dis-
tributivity hold. An R-algebra homomorphism is a map between two R-algebras
which respects the R-algebra operations.

A field is a ring K such that every non-zero element has a multiplicative
inverse. Such elements are called units. A vector space is a K-module, where K
is a field. Vector spaces are always free. The vector space KN is the set of all
linear combinations of {ei : 1 ≤ i ≤ N}, where ei is the N -tuple that contains 1
in the i-th entry and 0 everywhere else.

An integral domain is a ring R that does not contain any non-zero elements
a ∈ R for which there exist b ∈ R with ab = 0; such elements are called zero
divisors. In general, every unit is a non-zero divisor. If R is a finite ring, then
every non-zero divisor is also a unit.

Given a group G and a ring R, the group ring R[G] is the set of formal finite
sums of elements in G with coefficients in R. Then R[G], equipped with the
natural addition, multiplication, and scalar multiplication operations, is an R-
algebra. If both R and G are finite, then |R[G]| = |R||G|. See [19] for a thorough
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introduction to group rings.

The group ringK[G] is also aK-vector space with basisG. IfG = {g1, . . . , gN},
then ν : K[G] → KN is a K-vector space homomorphism given by linearly ex-
tending the map gi 7→ ei. We always assume to order G so that g1 = e is the
identity. We also have the natural right-multiplication matrix ring embedding
ρ : K[G] ↪→MN×N (K), given by

ρ(α) = ρ

(
N∑
i=1

[α]gigi

)
:=
[
[α]g−1

j gi

]
1≤i≤N
1≤j≤N

where [α]gi ∈ K is the coefficient of gi ∈ G on α. Then ρ is an R-algebra
homomorphism and for any α, β ∈ R[G],

[β · α]gi = [ρ(α)ν(β)]ei

Notice that ν(α) is simply the first column of the matrix ρ(α).

Given a prime p, the integers modulo p form a field and are denoted Fp. We
are primarily interested in the group ring Fp[A5].

An R-module is called simple if it is non-zero and has no non-zero proper R-
submodules. A ring is called semisimple if it is the direct sum of simple modules
over itself.

2.3 Ideals and Zero Sets

Given a ring R, we say that I ⊆ R is a left (resp. right) ideal of R if (I,+) is
a subgroup of (R,+) and rI ⊆ I for all r ∈ R. Ideals are exactly the kernels of
ring homomorphisms.

Given a K-algebra A ⊆ MN×N (K), we say that a ∈ A is a zero of a poly-
nomial f ∈ K[x11, . . . , xNN ] if f(a) := f(a11, . . . , aNN ) = 0. The zero set of
f is VA(f) := {a ∈ A : f(a) = 0}.The ideal of a set of points S ⊆ A is
I(S) := {f ∈ K[x11, . . . , xNN ] : f(a) = 0, ∀a ∈ S}.

We define the coordinate ring on A to be

Γ (A) := K[x11, . . . , xNN ]/I(A)

where I(A) := {f ∈ K[x11, . . . , xNN ] : f(a) = 0 for all a ∈ A} is the ideal of A,
sometimes called the defining equations of A.

For the group ringK[G], where |G| = N , we have Γ (ρ(K[G])) ∼= K[x1, . . . , xN ].

6



Determinental Zero Sets For any matrix
[
mij

]
1≤i,j≤N ∈ MN×N (K), we

define its determinant to be

det
([
mij

]
1≤i,j≤N

)
:=
∑
σ∈SN

sgn(σ)m1σ(1) . . .mNσ(N)

=
∑
τ∈SN

sgn(τ)mτ(1)1 . . .mτ(N)N

We write det to also mean the polynomial

det


x11 . . . x1N...

...
xN1 . . . xNN


 ∈ K[x11, . . . , xNN ]

Given a K-algebra A ⊆MN×N (K), we have VA(det) = {a ∈ A : det(a) = 0}
to be the determinental zero set. For the group ring K[G], where |G| = N ,
we use the shorthand VK[G](det) := Vρ(K[G])(det). Further, if α ∈ K[G], then
det(ρ(α)) = 0 iff ρ(α) is non-invertible iff α is non-invertible so when K[G] is
finite, VK[G](det) is exactly the set of zero divisors.

More generally, we may define a determinental ideal of rank r to be

Ir =


det(M) : M is an r × r minor of

x11 . . . x1N...
...

xN1 . . . xNN



 ⊆ K[x11, . . . , xNN ]

Then the corresponding zero set is VK[G](Ir) = {α ∈ K[G] : rank(ρ(α)) < r}.
Explicitely, VK[G](det) = VK[G](IN ).

For a subgroupH ≤ G, we define the projection of α ∈ R[G] to be projH(α) =∑
g∈H [α]gg. The proposition below gives a shortcut to computing the formula

for the determinant polynomial for K[G] by piecing together the determinant
polynomials of K[H] for subgroups H ≤ G.

Proposition 1. If H ≤ G and x =
∑
g∈G xgg, where the xg are distinct ambient

variables for each g ∈ G, then det(projH(x)) | det(x).

Proof. Reorder G so that H is listed first. Since H is closed under the binary
operation on G, we can block-decompose the matrix

ρ(x) =

[
A B
C D

]
where A = ρ(projH(x)). Then by properties of the determinant,

det(projH(x)) = det(A) | det(A)det(D − CA−1B) = det(x)
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Augmentation Ideal For a groupK[G] and embedding ρ : K[G] ↪→MN×N (K),
we define the determinant and trace of an element α ∈ K[G] to be det(α) :=
det(ρ(α)) and tr(α) := tr(ρ(α)). By definition of the right-multiplication em-
bedding, tr(α) = N · [α]e.

We are also interested in the augmentation ideal, which is defined as

I := VK[G]

 N∑
i=1

N∑
j=1

xij

 =

{
α ∈ K[G] :

N∑
i=1

αi = 0

}

for N - char(K). It is easy to verify that this set I indeed an ideal of K[G]: first,
0 ∈ I, and second, for all α, β ∈ I and γ ∈ K[G],

N∑
i=1

(α+ β)i =

N∑
i=1

αi +

N∑
i=1

βi = 0 =⇒ α+ β ∈ I

and

N∑
i=1

(γα)i =

N∑
i=1

(αγ)i =

N∑
i=1

αi

N∑
i=1

γi =

N∑
i=1

γi

N∑
i=1

αi = 0 =⇒ αγ, γα ∈ I

Proposition 2. I ⊆ VK[G](det), where G = {g1, . . . , gN} is finite.

Proof. Let α ∈ I. So
∑N
i=1 αi = 0. Then ρ(α) · ν

(∑N
i=1 kgi

)
= 0 ∈ KN for any

k ∈ K, so in particular ρ(α) is a zero divisor. Therefore ρ(α) is non-invertible,
or equivalently, det(ρ(α)) = 0.

Proposition 3. I is an N − 1 dimensional vector subspace of K[G], where
G = {g1, . . . , gN}.

Proof. Using the standard basis for K[G], we may write

I =

{
α ∈ K[G] :

N∑
i=1

αi = 0

}
= span {g1 − gi : i 6= 1}

2.4 Lagrange Interpolation

The Lagrange polynomial L(x) is the unique polynomial of lowest degree that
fits a set of data. Specifically, given a data set {(ai, bi) : 1 ≤ i ≤ k}, where all
the ai are distinct, then L(ai) = bi for each 1 ≤ i ≤ k and deg(L(x)) ≤ k − 1.

The construction is as follows: let {`1(x), . . . , `k(x)} be rational functions,
each of degree k − 1, defined by

`i(x) =
∏

1≤j≤k
j 6=i

x− xj
xi − xj
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Then

L(x) =
∑
i=1

bi`i(x)

One can check that L(x) satisfies the required properties.
We use Lagrange interpolation for efficient determinant computations (see

section 4.1). Specifically, we compute a bivariate function L(x1, x2) using the
data points {(ai, bi) : 1 ≤ i ≤ k} = {(a, L(x1, a)) : a ∈ Fp}, where p is greater
than the x2 degree of L(x1, x2).

3 Existing Encryption Schemes

Next, we recall the three major works that we base our construction on: section
3.1 outlines the Leonardi and Ruiz-Lopez homomorphism learning problem and
encryption, section 3.2 reviews Ostrovsky and Skeith’s transformation from a
multiplicative homomorphic scheme on a simple, non-abelian group to a fully
homomorphic scheme, and section 3.3 describes Li and Wang’s application of
the transform.

Notation: We use lower-case and upper-case letters to denote messages and
encryptions, resp.

3.1 Leonardi and Ruiz-Lopez Encryption

In this section, we describe an unbounded homomorphic symmetric encryption
scheme proposed by Leonardi and Ruiz-Lopez [12, section 5.1]. We will refer to
this as LRL-encryption.

Fix three public finite groups G,H, and K in which binary operations and
element sampling can be performed efficiently; see [12] for a generalization to
finitely generated groups.

KeyGen(1λ): given the security parameter λ and public, efficiently com-
putable groups G,H,K, generate efficiently computable homomorphisms ϕ :
G→ H and ψ : H → K. Compute ker(ψ) and sample an element τ ∈ H\ker(ψ).
The secret key is sk = (ϕ,ψ, τ).

Enc(sk, b): given the secret key sk = (ϕ,ψ, τ), the encryption of a bit
b ∈ {0, 1} is Enc(β) = (g, ϕ(g)hτ b), for randomly chosen g ∈ G, h ∈ ker(ψ).

Dec(sk, C): given the secret key sk = (ϕ,ψ, τ) and an encryption C =
(g, h′) ∈ G × H, compute m = ψ(ϕ(g))−1 · ψ(h′). The decryption of (g, h′)
is a bit

Dec(sk, C) =

{
0 if m = 1K

1 if m 6= 1K
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Security of LRL The security of LRL-encryption depends on the hanrdness
of the learning homomorphism with noise (LHN) problem for the public groups
G,H,K.

Definition 1 (LHN, Definition 2 in [12]). We say that an algorithm A solves
LHN for G,H,K if, for any ϕ : G→ H, A is able to learn ϕ with non-negligible
probability, given a set of samples (g, ϕ(g)h) ∈ G×H, where g ∈ G and h ∈ H
are sampled uniformly.

See [1] for more details about the necessary security properties for an instance
of LRL-encryption. Here is a summary for symmetric encryption:

1. There are an exponential number of choices of homomorphisms ϕ : G → H
and ψ : H → K such that Z(H) 6⊆ ker(ψ).

2. The number of normal subgroups in H is exponential in the security param-
eter.

We refer the reader to [1] for details on the known classical attacks on asym-
metric LRL-encryption.When H is abelian, the security of LRL-encryption re-
duces to replacing G with its abelianization G/[G,G], which is potentially a
smaller group. See Lemma 3 in [1].

Note that the remaining classical and quantum attacks on abelian LRL-
encryption in [1] and [12] only apply to the asymmetric scheme. However, the
existence of such attacks motivate the search for a non-abelian instance of LRL-
encryption.

3.2 Ostrovsky and Skeith’s Transform

Given any multiplicative homomorphic scheme over any non-abelian simple group,
such as the group of alternating permutations on five elements A5, Ostrovsky
and Skeith construct a fully homomorphic scheme that encrypts bit-wise and
whose security only relies on the security on the original multiplicative homo-
morphic scheme. We refer to this process as the OS-transform and review the
key elements of the transform below.

Theorem 1. (Theorem 2.1 of [18]). Given a finite, non-abelian, simple group
G, any function f : {0, 1}m → {0, 1}n can be represented solely in terms of the
group operation on G.

Proof sketch: Cauchy’s Theorem guarantees the existence of an element x ∈
G of order 2. Then the commutator subgroup [CG(x), CG(x)] is equal to the
whole group G, where CG(x) := {gxg−1 : g ∈ G} denotes the conjugacy
class of x. Therefore, there must exist a sequence of commutators s1, . . . , sr ∈
[CG(x), CG(x)] such that x = s1 · · · sr. This gives two sequences of elements in
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G, {gi}ri=1 and {hi}ri=1, such that si = [gixg
−1
i , hixh

−1
i ], and we can define the

operator NAND:{e, x}2 → {e, x} by

NAND(a, b) = x

r∏
i=1

[giag
−1
i , hibh

−1
i ]

One can check that this is the desired function. By associating {e, x} with {0, 1},
it is thus possible to represent any function f : {0, 1}m → {0, 1}n using the group
operation in G, since NAND is a universal gate.

Corollary 1. (Corollary 2.4 of [18]). Constructing a fully homomorphic scheme
over a ring with identity is equivalent to constructing a group homomorphic
encryption over any finite non-abelian simple group.

See the full version [17] or [20] for more details.

Explicitly: Choose the elements e = (), x = (12)(34), s1 = (15342), s2 =
(345), g1 = (354), h1 = (243), and h2 = () as in [14]. So x is an order 2 permu-
tation with x = (s41s

2
2)2s21 and si = [gixg

−1
i , hixh

−1
i ] for i ∈ {1, 2}. Under the

OS-transform, the operator NAND:{e, x}2 → {e, x} is given by NAND(a, b) =
x(s′41 s

′2
2 )2s′21 , where s′i = [giag

−1
i , hibh

−1
i ] for i ∈ {1, 2}.

Now suppose there is a symmetric, multiplicatively homomorphic encryption
scheme

EM = (KeyGenM , EncM , DecM ,MulM )

where KeyGenM (λ) outputs a secret key sk under the security parameter λ,
EncM (sk, ·) :M→ C and DecM (sk, ·) : C →M are the encryption and decryp-
tion functions, andM and C are the message space and cipher space, respectively.
The message space M comes equipped with an associative multiplication oper-
ation. The scheme EM satisfies soundness if DecM (sk,EncM (sk,m)) = m for
all m ∈ M for any secret key. Also, MulM : C × C → C is an operation satis-
fying the compact ciphertext requirement (see [8]) supported by the encryption
scheme; that is, DecM (sk,MulM (EncM (sk,m1), EncM (sk,m2))) = m1 ·m2 for
anym1,m2 ∈M. For shorthand notation, we write C1C2 to meanMulM (C1, C2)
when it is clear that C1 and C2 are ciphertexts. We also note that MulM only
needs to output an encryption of the product of decryptions of two ciphertexts,
so it need not be deterministic.

Suppose further that A5 ≤M. Then the OS-transform outputs a new, sym-
metric, fully homomorphic encryption scheme we denote

EF = (KeyGenF , EncF , DecF , NANDF )

as follows. First, KeyGenF outputs the secret key sk = KeyGenM (λ) and the
public parameters X = Enc(sk, x), Gi = EncM (sk, gi) and Hi = EncM (sk, hi)
for i ∈ {1, 2}. Let µ : {0, 1} → {e, x} map 0 7→ e and 1 7→ x. Then EncF :
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{0, 1} → C is defined by EncF (sk, b) = EncM (sk, µ(b)) and DecF : C → {0, 1}
is defined by DecF (sk, C) = µ−1(DecM (sk, C)). Soundness of EF clearly follows
from soundness of EM , and semantic security of EF follows from semantic secu-
rity of EM (indistinguishability given an adversary with access to an encryption
oracle).

Finally, NANDF : C×C → C is defined by NANDF (C1, C2) = X(S4
1S

2
2)2S2

1 ,
where

Si = [GiC1G
−1
i , HiC2H

−1
i ]

for i ∈ {1, 2}. We note that NANDF outputs an encryption of the nand of the
decryptions of two ciphertexts, so just like MulM it need not be deterministic.

Remark 1. The ciphertext space C equipped with MulM is not necessarily as-
sociative or commutative, even if M is, and C does not necessarily contain an
identity or inverses, even if M does. However, the image of C under the projec-
tion DecM is M, which we can require to be a group. So following Remark
1 in [14], since the operation NANDF only requires taking inverses of en-
cryptions of e, x, gi, hi for i ∈ {1, 2}, then for m ∈ {e, x} we stipulate that
Enc(sk,m)−1 := Enc(sk,m), and for m ∈ {g1, g2, h1, h2}, we stipulate that
Enc(sk,m)−1 := MulM (Enc(sk,m), Enc(sk,m)). Then decryption on the out-
put of NANDF is sound.

3.3 Li and Wang Encryption

In this section, we describe a noiseless encryption scheme by Li and Wang [14].
The scheme is built by applying the OS-transform [18] to a symmetric multi-
plicative homomorphic encryption scheme. We refer to it as LW-encryption. Here
we show that the LW-encryption is insecure in a post-quantum setting.

In work published the same year [16, §5.2] it was explained that matrix con-
jugation does not add any additional security to a group-based FHE schemes
(and they credit an anonymous reviewer). Their overview is that upper triangu-
lar matrices (which will be seen in 3.3) are distinguishable from generic matrices
by a linear condition which can be easily tested, and matrix conjugation simply
transforms this to a more complicated looking linear condition. This does not
seem to immediately apply to the LW-encryption scheme as it is only a group-
based HE scheme. This work [16] differs from our work where we show that a
quantum adversary can recover partial secret information of the LW-encryption
HE scheme, and also create a distinguisher when the underlying group is abelian.

In order to apply the OS-transform, A5 (or, equivalently, any other non-
abelian simple group) needs to embed into the message space of a multiplicative
homomorphic scheme. But the non-abelian group operation is inconvenient to
use for a cryptographic construction. In LW-encryption, A5 is embedded into
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the group ring Zn[A5], where n is a big Blum integer, via the natural inclusion
map ν : G ↪→ Zn[A5]. The unembedding map ν−1 : Zn[A5]→ G is given by

ν−1(α) =

{
gi if αi 6= 0 and αj = 0, ∀j 6= i

⊥ otherwise

Symmetric Multiplicative Homomorphic Scheme KeyGenM (1λ): Choose
four sufficiently large primes p, p0, q, q0 such that p = 2p0 + 1 ≡ 3 (mod 4) and
q = 2q0 + 1 ≡ 3 (mod 4) and define the Blum integer n = pq. Sample a random
invertible matrix H ∈ M2×2(Zn[A5]). Output the secret key sk = (H, p, q) and
the public parameter n.

EncM (sk,m): Sample random α, β, γ ∈ Zn[A5] and t ∈ Z∗n. The encryption
of m ∈ A5 is

Enc(sk,m) = H

[
pt · ν(m) + qα β

0 γ

]
H−1 ∈M2×2(Zn[A5])

DecM (sk, C): Compute the matrix W = H−1CH. Then m = ν−1(p ·W11),
where W11 is the left-top corner entry of W .

MulM (C1, C2): Output C1 · C2.

See [14, section 2.2.2] for the proofs of soundness for DecM (sk, C) and
MulM (C1, C2), i.e. for all m ∈ A5,

m = Dec(sk,Enc(sk,m))

and
DecM (sk,MulM (C1, C2)) = DecM (sk, C1) ·DecM (sk, C2)

Symmetric Fully Homomorphic Scheme LW-encryption follows by apply-
ing the OS-transform (see section 3.2) to the specific scheme described in section
3.3 to obtain the symmetric, fully-homomorphic encryption

EF = (KeyGenF , EncF , DecF , NANDF ).

Post-Quantum Security The security of LW-encryption relies on two secret
primes p, q that factor the public parameter n. Shor’s Algorithm allows an ad-
versary with access to a quantum computer to recover these two primes [22].

Following the analysis in [23], we reduce the post-quantum security of the
MHE scheme, and hence the FHE scheme, as they are presented in [14], if A5

were replaced with an abelian group G. Let n = pq be a big Blum integer,
and suppose the adversary has access to a factoring oracle (such as a quantum
computer) so she knows p and q.
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Lemma 1. Each matrix A with invertible diagonal entries is of the form

D
[
1 b
c 1

]
where D is a diagonal matrix.

Proof. Write

A =

[
h1 h2
h3 h4

]
=⇒ A =

[
h1 0
0 h4

] [
1 h2/h1

h3/h4 1

]
The MHE in section 3.3 uses a secret matrix H ∈M2×2(Zn[G]) as a private

key and encrypts m ∈ G by

Enc(H,m) = H

[
pt · ν(m) + qα0 β

0 γ

]
H−1 ∈M2×2(Zn[G])

Writing H−1 as in Lemma 1, since the diagonal entries are invertible with over-
whelming probability, and using that diagonal matrices commute in the abelian
setting, we see that Enc(H,m) equals[

1 b
c 1

]−1
D−1

[
pt · ν(m) + qα β

0 γ

]
D
[
1 b
c 1

]
=

[
1 b
c 1

]−1 [
pt · ν(m) + qα β

0 γ

] [
1 b
c 1

]

It is sufficient for an adversary to recover b, c ∈ Zn[G]. If Enc(H,m) =

[
A B
C D

]
,

then[
1 b
c 1

] [
A B
C D

]
=

[
A+ bC B + bD
cA+ C cB +D

]
=

[
pt · ν(m) + qα β

0 γ

] [
1 b
c 1

]
=

[
pt · ν(m) + qα+ βc pt · ν(m)b+ qαb+ β

γc γ

]
Therefore, γ = cB + D and γc = cA + C =⇒ c2B + c(D − A) − C = 0. As
we are in the abelian setting, we can then recover c using the quadratic formula,
assuming that B is invertible:

c =
−(D −A)±

√
(D −A)2 + 4BC

2B

To solve the square root in Zn[G], project onto Fp and Fq and combine solutions
using the Chinese Remainder Theorem. If given Y ∈ K[G], for K a field, to solve
the equation X2 = Y it suffices to solve ρ(X)2 = ρ(Y ), since ρ is injective.

Distinguishing encryptions from random noise. Let

C =

[
A B
C D

]
∈M2×2(K[G])
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First, WLOG assume the coefficients on B are uniformly distributed whenever C
is a valid encryption; otherwise, encryptions would be distinguishable. Construct
the one variable polynomial F (x1) = det(x1 · e +

∑N
i=2Bigi) ∈ K[x1]. Then B

is non-invertible iff det(B) = F (B1) = 0. Since the first coefficient B1 ∈ K is
uniformly distributed and the N degree polynomial F (x1) has at most N roots,
for |K| � N the probability that B is invertible is close to 1 (essentially, the
space of non-invertible matrices has codimension 1).

In that case, if C is a valid encryption of m ∈ A5, then Y := (D−A)2 + 4BC
is a perfect square in K[G]. By the same arguments as above, we can also as-
sume that the coefficients of Y are uniformly distributed and Y is invertible,
i.e. ρ(Y ) has full rank, with high probability; otherwise, encryptions would be
distinguishable by computing this Y . Recall the ideal of ρ(K[G]) is I(ρ(K[G]) =
(x22 − x11, x21 − x12, . . . , xNN − x11), which is prime because Γ (ρ(K[G])) ∼=
K[x1, . . . , xN ] is an integral domain. Hence, ρ(K[G]) is a variety.

The set of matrices in ρ(K[G]) that have repeated eigenvalues are exactly
the vanishing place of the polynomial that maps a matrix representation of a
group ring element to the discriminant of its characteristic polynomial ρ(Y ) 7→∏
i 6=j(λi − λj). From algebraic geometry, either this set has codimension 1, or

every matrix in ρ(K[G]) has a repeated eigenvalue.

So by similar reasoning as above, when |K| � N we can, with high proba-
bility, expect WLOG ρ(Y ) to have distinct eigenvalues. Then it is easy to char-
acterize the square roots of ρ(Y ), if they exist. Working over a prime field, write
the diagonalization as ρ(Y ) = P−1diag(λ1, . . . , λN )P , where λ1, . . . , λN ∈ K are
the eigenvalues of ρ(Y ) and P ∈ MN×N (K) is invertible. Then M2 = ρ(Y ) iff
M = P−1diag(

√
λ1, . . . ,

√
λN )P , where any square root of each λi can be cho-

sen, for each 1 ≤ i ≤ N . Over a prime field Fp, for all non-zero eigenvalues there

are two choices of the square root
√
λi = ±λ

p+1
4

i , yielding at most 2N solutions
M .

The probability that a randomly chosen element of Fp is a perfect square
is O(1/2). So given a diagonalization of ρ(Y ) with N distinct eigenvalues, the
probability of all the eigenvalues having a square root in Fp is O(1/2N ) in Fp.
Thus, the probability that a randomly chosen invertible Y ∈ Zn[G] is a perfect
square is O(1/22N ). As this is an easily testable property, one can construct a
distinguisher which guesses as a valid encryption if Y is a perfect square, and
guesses as random noise otherwise. This distinguisher will be correct when given
valid encryptions, and will only guess incorrectly on a random noise sample with
probability of O(1/22N ).

Remark 2. Since fully homomorphic LW-encryption builds on the multiplicative
homomorphic scheme in 3.3, the above attack reduces its security as well.
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Asymmetric LW-encryption: Further, Li and Wang propose a further
modification to EF as it is presented above to construct an asymmetric, fully
homomorphic encryption ([14, section 2.2.4]). The security of the modification
relies on the hardness of solving extended discrete logarithms in the ring of 2×2
matrices over the group ring Zn[A5]. However, Myasnikov and Ushakov present a
polynomial-time quantum algorithm to solve discrete logarithms for this setting
[15].

Therefore, LW-encryption most likely does not belong in the realm of post-
quantum cryptography.

4 Our Construction

Write A5 = {e = σ1, σ2, . . . , σN} with N = |A5| = 60.

Modifying LW-encryption from 3.3, we let p ≡ 3 (mod 4) be a large public
prime and take the message space to be M = Fp[A5]. We have the usual inclu-
sions A5 ↪→ Fp[A5] ↪→M2×2(Fp[A5]).

Sample a secret ideal: let α2, . . . , αN ∈ Fp be randomly chosen. Compute and
factor

F (x1) := det

(
ρ

(
x1σ1 +

N∑
i=2

αiσi

))
∈ Fp[x1]

Then let α1 be any root of F (x1). Take the two-sided ideal

I := 〈α〉 :=

〈
N∑
i=1

αiσi

〉
⊆ VFp[A5](det)

Remark 3. If α is a zero divisor in a finite group ring K[G], then all the non-zero
elements of the left and right ideals (and thus the two-sided ideal) generated by
α are zero divisors.

See 4.1 for further details on sampling ideals and the relationship between
the multiplicity of the chosen root α1 and the size of the ideal 〈α〉.

KeyGen(1λ): Let I ⊆ Fp[A5] be a secret ideal sampled as above. Let H ∈
M2×2(Fp[A5]) be a random invertible secret matrix. Output sk = (I,H).

EncM (sk,m): For m ∈ A5, we encrypt similar to Section 3.3. Sample random
k ∈ F×p , h ∈ I, and β, γ ∈ Fp[A5]. Let

EncM (sk,m) = H

[
kν(m) + h β

0 γ

]
H−1
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DecM (sk,m): Given an encryption C = EncM (sk,m), compute

M = H−1CH

ThenDecM (sk,m) = ν−1(M11), whereM11 denotes the residue class in Fp[A5]/I
of the top left entry of M .

MulM (C1, C2): Given C1 = EncM (sk,m1) and C2 = EncM (sk,m2),

MulM (C1, C2) = C1C2

Soundness of MulM(C1, C2)

MulM (C1, C2) = H

[
k1ν(m1) + h1 β

0 γ

] [
k2ν(m2) + h2 α3

0 α4

]
H−1

The bottom left and top left entries of the product of the inner two matrices is,
respectively, zero and

(k1ν(m1) + h1)(k2ν(m2) + h2) = k1k2ν(m1m2) + h

where h ∈ I is uniformly distributed. The bottom right and top right entries are
also uniformly distributed.

Soundness of DecM(sk,m) As described above, compute

M11 = (H−1CH)11 = kν(m) + h.

Then ν−1(M11) = m ∈ Fp[A5]/I. Decryption is sound if and only if m = m′ =⇒
m = m′ for any m,m′ ∈ A5. See 4.2 for more details.

4.1 Secret Ideals

Experimental data shows that computing the determinant for a general matrix
ρ(
∑N
i=1 xigi) is much less efficient than computing det(ρ(α)) for any α ∈ K[G],

because storing N -variable polynomial expressions in the matrix entries is too
memory intensive. However, it is possible to compute parts of the general deter-
minant. It is efficient to compute det(ρ(α(xi))) ∈ K[xi], where α(xi) ∈ K[xi][G]
such that (α(xi))i = xi and (α(xi))j ∈ K for all j 6= i. WLOG we may take
i = 1; otherwise, perform finitely many elementary column operations to place
all the variable entries in ρ(α(xi)) on the main diagonal (this amounts to choos-
ing a different ordering for G). Then computing the determinant of an N × N
matrix where all of the non-diagonal entries are in K is feasible.
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Dimensions of Ideals Generated by Zero Divisors Fix α2, . . . , αN ∈ K.
Define α : K → K[G] by α(x) = xσ1 +α2σ2 + . . .+αNσN . Also define M : K →
ρ(K[G]) by M(x) = ρ(α(x)). Notice that given any r ∈ K,

M(x) = (x− r)IN − (−M(r))

Let y = x− r. So det(M(x)) = det(M(y+ r)) is the characteristic polynomial of
−M(r). That is, if m ≥ 0 is the largest integer such that (y−s)m | det(M(y+r)),
then s is an eigenvalue of −M(r) with algebraic multiplicity m.

In particular, if α(r) is a zero divisor, then x − r = y | det(M(y + r)) =
det(M(x)). In that case, let mr ≥ 1 be the largest integer such that (x− r)mr |
det(M(x)). That means that 0 is an eigenvalue of −M(r) with algebraic multi-
plicity mr.

By linear algebra, −M(r) ∼
[
0 B
0 D

]
, where the top left block is of dimension

nullity(M(r))× nullity(M(r)). So the characteristic polynomial ρ−M(r)(y) is

ρ−M(r)(y) = ynullity(M(r))ρD(y)

We see that nullity(M(r)) ≤ mr.

Note nullity(M(r)) = dim({α(r) · σ1, . . . , α(r) · σN}) = dim(〈α(r)〉).

Using Lagrange Interpolation Consider again the determinant of a general
matrix det(ρ(

∑N
i=1 xigi)). Suppose we factor this determinant, in N variable

x1, . . . , xN , into the product of factors
m∏
i=1

fi(x1, . . . , xN )ei . Since roots of these

factors correspond to zero divisors of K[G], and hence principal ideals, a natural
question to ask is if two distinct roots of a single factor give the same principal
ideal. We will answer that question here in the negative.

Substituting the above function M(x) = ρ(α(x)) for the general matrix will

give a determinant with factors in one variable, say
m∏
i=1

fi(x)ei . A linear factors

of det(M(x)) will correspond to a unique principal ideal, as they only have one
root when K is a field, and so cannot be used to answer the question in the
preceding paragraph. Further, the non-linear factors of det(M(x)) correspond
to no ideals at all, since if they had roots in K they would factor further. For
these reasons, it is not sufficient to look at single variable expressions instead of
the general matrix. However, a bivariate expression should be sufficient to find
two roots of a single factor and answer our question.

Using similar notation, we may compute det(ρ(α(x1, j))) ∈ K[x1] for each
1 ≤ j ≤ N , where α(x1, ·) : K → K[G] is defined by α(x1, x2) = x1σ1 + x2σ2 +
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α3σ3+ . . .+αNσN . However, we found that the function det(ρ(α(x1, x2))) is still
too computationally intensive, even if substantially better than the generic case
withN variables. Instead, using Lagrange Interpolation on the data {(j, α(x1, j)) :
1 ≤ j ≤ |K|} as described in 2.4, one can recover the unique degree |K|−1 poly-
nomial det(α(x1, x2)) ∈ K[x1, x2]. Note that this process can be iterated to
recover det(α(x1, x2, x3)), and so on, defined similarly. However, this algorithm
is exponential in k and experimental data shows that it is infeasible beyond
det(α(x1, x2)) for large p.

Now that we are able to feasibly compute two distinct roots of a single factor,
say x1, x2 and x′1, x

′
2, we have empirical evidence that they need not generate the

same (one- or two-) sided ideals. That is, 〈α(x1, x2)〉 6= 〈α(x′1, x
′
2)〉 in general,

and further, these ideals can have different dimension. See Appendix A for an
example.

4.2 Soundness of Quotient

Let G = A5 and K = Fp. In order for the choice of secret ideal I to yield a sound
Dec(sk, ·) algorithm, we must have the following injective homomorphism that
is the identity on G:

ϕ : G ↪→ K[G] ↪→ K[G]/I ↪→ G

The first step G ↪→ K[G] is the inclusion homomorphism. The last step is
K[G]/I ↪→ G, gi + I 7→ gi for each gi ∈ G. The last step is well-defined and ϕ is
injective iff for all gi 6= gj ∈ G,

gi − gj 6∈ I (1)

By Maschke’s Theorem (see 2), K[G] is principal, so I = 〈α〉 for some
α ∈ K[G] with det(α) = 0.

It may be difficult to satisfy condition (1) above. But if the goal is to create
a FHE scheme, then it is sufficient to distinguish between encryptions of e ∈ A5

and x ∈ A5, as they are defined in 3.2. To that end, order A5 so that g1 := e is
the first element and g60 := x is the last element.

Sample a secret ideal: Follow the procedure in 4.1 to obtain a factored
polynomial expression in one variable F (x1) := det(ρ(α(x1))) ∈ K[x1]. There is
at least one linear factor

(x1 +

N∑
i=2

αi) | F (x1)

corresponding to an element of the augmentation ideal. From numerical analy-
ses, if p ≡ 1 (mod 6), we expect F (x1) to have other linear terms as well because
of Euler’s Criterion. Let r ∈ K be a root of F (x1). Then substitute x for r to
get α(r) ∈ K[G]. Let b = (1, 0, . . . , 0,−1)T ∈ KN . Row-reduce to check that
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ρ(α(r))v = b has no solutions v ∈ KN . If a solution exists, then e− x ∈ 〈α(r)〉,
so choose new random α2, . . . , α60 ∈ K and repeat the procedure again.

Otherwise, I = 〈α(r)〉 yields a sound decryption algorithm.

4.3 Number of Ideals in a Group Ring

Recall the following fundamental results in representation theory:

Theorem 2 (Maschke’s Theorem). If K is a field and G is a group such
that char(K) - N , then K[G] is semisimple.

Theorem 3 (Artin-Wedderburn Theorem). If R is a finite-dimensional
semisimple K-algebra for a field K, then R is isomorphic to a product of finitely
many ni-by-ni matrix rings Mni

(Di), where each Di is a finite-dimensional di-
vision algebra over K, and both the ni and Di are unique up to permutation.

Corollary 2. If K is a field and G is a group such that char(K) - N , then K[G]
is isomorphic to a unique (up to permutation) product

∏m
i=1Mni

(Di), with each
Di a finite-dimensional division algebra over K.

From representation theory, m is the number of irreducible representations of G
and equals the number of conjugacy classes of G. Each ni is the dimension of an
irreducible representation. Additionally,

|G| =
m∑
i=1

n2i

The group A5 has 5 conjugacy classes. The unique way (up to relabelling)
to write |An| = 60 as a sum of five squares is given by n1 = 1, n2 = 3, n3 = 3,
n4 = 4, n5 = 5.

Note: For 1 ≤ i ≤ n, let Φi : G → Mni×ni
(Di) be the ith representa-

tion, corresponding to each dimension ni. Then the ith character is defined as
χi : G→ Di by χi(g) = tr(Φi(g)) for each g ∈ G. Since every Φi is a homomor-
phism, Φi(e) = Ini

, so χi(e) = ni.

The Wedderburn-Artin decomposition of Fp[A5] is given by the product of
the codomains of the irreducible representations (irreps) of A5. So

Fp[A5] = M1×1(D1)×M3×3(D2)×M3×3(D3)×M4×4(D4)×M5×5(D5) (2)

Since Fp[A5] is finite, each Di is also finite. By Wedderburn’s Little Theorem,
each Di is actually a finite field extension of Fp. By comparing the number of
elements on both sides of equation 2, we see that Di = Fp for each 1 ≤ i ≤ 5.
From [10], we have
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Proposition 4. Every two-sided ideal of Mn×n(R) has the form Mn×n(I) for
some unique two-sided ideal I ⊆ R.

Note: The only left (resp. right) ideals in a division ring D are (0) and D. This
is because, if there is an ideal I ⊆ D with 0 6= u ∈ I, then u−1u = uu−1 = 1 ∈ D.
An easy consequence is that Mn×n(D) has no non-trivial two-sided ideals.

Therefore, there is a 1-1 correspondence between ideals of Fp[A5] and ideals

of
∏5
i=1Mni×ni

(Fp), which are exactly of the form 〈(b1, b2, b3, b4, b5)〉 with each
bi ∈ {0, 1}. So Fp[A5] has 25 = 32 two-sided ideals.

Remark 4. By Artin-Wedderburn decomposition of semisimple rings, if char(K) -
N , then K[G] is a principal ideal domain. The decomposition of Fp[A5] shows
that there are 5 maximal two-sided ideals: these are generated by (1, 1, 1, 1, 0),
(1, 1, 1, 0, 1), (1, 1, 0, 1, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 1), using the shorthand as above,
and similarly 5 minimal ideals. In particular, Fp[A5] is not a local ring. Also, in
light of section 4.1, given an ideal I = 〈(b1, b2, b3, b4, b5)〉, dim(I) = b1 + 9b2 +
9b3 + 16b4 + 25b5.

The above results apply to all finite K-algebras K[G]. The number of two-
sided ideals of K[G] is constant with respect to the size of K, as long as char(K) -
N . Therefore, K[G], as well as any finite semisimple ring whose decomposition
can be efficiently computed, is an inadequate context for a (ring) homomorphism
learning problem for non-commutative LRL-encryption.

One-Sided Ideals One may consider instead using left (resp. right) ideals, but
two problems arise: first, both left and right noise accumulates in the product
during the MulM operation described in 4:

(k1m1 + h1)(k2m2 + h2) = k1k2m1m2 + k2h1m2 + k1m1h2 + h1h2

so the encryption scheme as it is presented in 4 is not compatible with one-sided
ideals as secret keys; second, and more generally, the following proposition shows
that the number of one-sided ideals in K[G] does not grow with the security
parameter p.

Proposition 5. Let n ∈ N and K be a field. Then the left (resp. right) ideals
of Mn×n(K) are in bijection with the subspaces of Kn.

Proof. Given a subspace V ⊆ Kn, define I ⊆Mn×n(K) to be the set of matrices
that vanish on V . One can show that I is a left ideal. Conversely, given a left
ideal I ⊆Mn×n(K), let

V =
⋂
x∈I

Null(x) ⊆ Kn

V is an intersection of subspaces so it is itself a subspace. One can show this
gives a 1-1 correspondence between left ideals and subspaces. The argument is
symmetrical for right ideals.

Remark 5. The above result generalizes to ideals of Mn×n(R) and R-submodules
of Rn, where R is an associative, unital ring.
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4.4 Future Work

Our work shows that group rings are incompatible with the current model
for LRL-encryption. Given the existing abelian classical and quantum attacks,
we plan to consider other non-abelian groups and rings for instantiating LRL-
encryption and prove security results or construct attacks.

One interesting avenue is to consider finitely generated groups, and use gen-
eral probability distributions instead of uniform sampling, as described in [12].
In particular, Coxeter groups seem to yield more fruitful results as in [16], and
they are not as simply decomposed as semisimple rings.

Further work can also be done using isogeny cryptography; while [12] showed
that instantiating LRL encryption with isogenies as the secret homomorphisms
ϕ and ψ is not quantum secure, it would be interesting to consider the group
elements of the public G, H, and K themselves to be isogenies, as the endo-
morphism rings of supersingular curves over (over an algebraically closed field
of finite characteristic) are non-commutative.
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A Ideals from Bivariate Determinants

A.1 Example in A4

Consider the group algebra Z13[A4] (the choice of 13 is motivated by #A4 = 12,
and the need for sufficient points in the field to perform Lagrange interpolation).
Let α : Z13 × Z13 → Z13[A4] be

α(x, y) = x id(A4) + y (13)(24) + 8(12)(34) + 8(14)(23) + 10(243)

+ 2(134) + 6(123) + 9(142) + 11(234) + 9(132) + 7(124) + 8(143)

Then, using Lagrange interpolation, we can compute and factor the associated
determinant:

det(ρ(α(x, y))) = (x+ y + 9)(x+ y)2(x3 + 12x2y + 12xy2

+ y3 + 10x2 + 10y2 + 6xy + 12x+ 5y)3

Consider the following three roots corresponding to the quadratic factor (x1 +
x2)2 for this determinant.

α1 = 0 id(A4) + 0(13)(24) + 8(12)(34) + 8(14)(23) + 10(243) + 2(134)

+ 6(123) + 9(142) + 11(234) + 9(132) + 7(124) + 8(143),

α2 = 6 id(A4) + 7(13)(24) + 8(12)(34) + 8(14)(23) + 10(243) + 2(134)

+ 6(123) + 9(142) + 11(234) + 9(132) + 7(124) + 8(143),

α3 = 1 id(A4) + 12(13)(24) + 8(12)(34) + 8(14)(23) + 10(243) + 2(134)

+ 6(123) + 9(142) + 11(234) + 9(132) + 7(124) + 8(143).

These three elements of Z13[A4] are all zero divisors, arising from the same
factor of det(ρ(α(x, y))), so to verify our claim from 4.1 we examine the (one-
sided) ideals they generate. First, 〈α1〉L and 〈α2〉L have dimension 7 (where
〈·〉L denotes the left-principal ideal), but they are not equal. Next, 〈α3〉L has
dimension 10, and is therefore distinct from both 〈α1〉L and 〈α2〉L.
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A.2 Example in A5

Since #A5 = 60, we use the field Z61 to have sufficient data for Lagrange inter-
polation. We chose random coefficients and set α : Z61 × Z61 → Z61[A5] as

α(x, y) = x id(A5) + y (1, 2, 3) + 18(1, 3, 2) + 22(1, 4, 5, 3, 2) + 46(1, 5, 4, 3, 2)

+ 57(2, 3, 4) + 39(1, 2)(3, 4) + 17(1, 3, 4) + 7(1, 4)(3, 5) + 59(1, 5, 4)

+ 13(2, 4, 3) + 41(1, 2, 4) + 17(1, 3)(2, 4) + (1, 4, 2, 5, 3)

+ 37(1, 5, 4, 2, 3) + 32(2, 5, 4) + 46(1, 2, 5, 4, 3) + 6(1, 3, 2, 5, 4)

+ 54(1, 4)(2, 3) + 10(1, 5, 3, 2, 4) + 32(3, 4, 5) + 20(1, 2, 3, 4, 5)

+ 43(1, 3, 4, 5, 2) + 34(1, 4, 3, 5, 2) + 57(1, 5, 2) + 21(2, 3)(4, 5)

+ 4(1, 2)(4, 5) + 19(1, 3)(4, 5) + 15(1, 4, 3) + 10(1, 5, 3) + 37(2, 4, 5)

+ 2(1, 2, 4, 5, 3) + 46(1, 3, 2, 4, 5) + 22(1, 4, 3, 2, 5) + 41(1, 5)(2, 3)

+ 35(2, 5, 3) + 43(1, 2, 5) + 58(1, 3)(2, 5) + 19(1, 4, 5, 2, 3)

+ 35(1, 5, 2, 4, 3) + 44(3, 5, 4) + 57(1, 2, 3, 5, 4) + 31(1, 3, 5, 4, 2)

+ 33(1, 4, 2) + 54(1, 5, 3, 4, 2) + 9(2, 3, 5) + 33(1, 3, 5) + 10(1, 4, 5)

+ 29(1, 5)(3, 4) + 59(2, 4)(3, 5) + 59(1, 3, 5, 2, 4) + 51(1, 4)(2, 5)

+ 30(1, 5, 2, 3, 4) + (2, 5)(3, 4) + 25(1, 2, 5, 3, 4) + 28(1, 3, 4, 2, 5)

+ 60(1, 4, 2, 3, 5) + 53(1, 5)(2, 4)

Then, using Lagrange interpolation, we can compute and factor the associ-
ated determinant, det(ρ(α(x1, x2))). This is to large to print, and would be too
computationally intensive for previous methods to compute. However, one factor
is

(x5 + 60x4y + 41x4 + x3y2 + 34x3y + 36x3 + x2y3 + 10x2y2

+ 22x2y + 59x2 + 60xy4 + 31xy3 + 24xy2 + 20xy + 60x

+ y5 + 44y4 + 6y3 + 48y2 + 26y + 49)5

which has, among others, the roots (2, 27) and (5, 1). The (left- or right-) ideals
generated by α(2, 27) and α(5, 1) each have dimension 55 and are distinct.
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