1,179 research outputs found

    5GNOW: Challenging the LTE Design Paradigms of Orthogonality and Synchronicity

    Full text link
    LTE and LTE-Advanced have been optimized to deliver high bandwidth pipes to wireless users. The transport mechanisms have been tailored to maximize single cell performance by enforcing strict synchronism and orthogonality within a single cell and within a single contiguous frequency band. Various emerging trends reveal major shortcomings of those design criteria: 1) The fraction of machine-type-communications (MTC) is growing fast. Transmissions of this kind are suffering from the bulky procedures necessary to ensure strict synchronism. 2) Collaborative schemes have been introduced to boost capacity and coverage (CoMP), and wireless networks are becoming more and more heterogeneous following the non-uniform distribution of users. Tremendous efforts must be spent to collect the gains and to manage such systems under the premise of strict synchronism and orthogonality. 3) The advent of the Digital Agenda and the introduction of carrier aggregation are forcing the transmission systems to deal with fragmented spectrum. 5GNOW is an European research project supported by the European Commission within FP7 ICT Call 8. It will question the design targets of LTE and LTE-Advanced having these shortcomings in mind and the obedience to strict synchronism and orthogonality will be challenged. It will develop new PHY and MAC layer concepts being better suited to meet the upcoming needs with respect to service variety and heterogeneous transmission setups. Wireless transmission networks following the outcomes of 5GNOW will be better suited to meet the manifoldness of services, device classes and transmission setups present in envisioned future scenarios like smart cities. The integration of systems relying heavily on MTC into the communication network will be eased. The per-user experience will be more uniform and satisfying. To ensure this 5GNOW will contribute to upcoming 5G standardization.Comment: Submitted to Workshop on Mobile and Wireless Communication Systems for 2020 and beyond (at IEEE VTC 2013, Spring

    SINR-based Network Selection for Optimization in Heterogeneous Wireless Networks (HWNs)

    Get PDF
    To guarantee the phenomenon of "Always Best Connection" in heterogeneous wireless networks, a vertical handover optimization is necessary to realize seamless mobility. Received signal strength (RSS) from the user equipment (UE) contains interference from surrounding base stations, which happens to be a function of the network load of the nearby cells. An expression is derived for the received SINR (signal to interference and noise ratio) as a function of traffic load in interfering cells of data networks. A better estimate of the UE SINR is achieved by taking into account the contribution of inter-cell interference. The proposed scheme affords UE to receive high throughput with less data rate, and hence benefits users who are located far from the base station. The proposed scheme demonstrates an improved throughput between the serving base station and the cell boundary
    • …
    corecore